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Abstract

We establish a general form of explicit, input-dependent, measure-valued warpings
for learning nonstationary kernels. While stationary kernels are ubiquitous and
simple to use, they struggle to adapt to functions that vary in smoothness with
respect to the input. The proposed learning algorithm warps inputs as conditional
Gaussian measures that control the smoothness of a standard stationary kernel.
This construction allows us to capture non-stationary patterns in the data and
provides intuitive inductive bias. The resulting method is based on sparse spectrum
Gaussian processes, enabling closed-form solutions, and is extensible to a stacked
construction to capture more complex patterns. The method is extensively validated
alongside related algorithms on synthetic and real world datasets. We demonstrate
a remarkable efficiency in the number of parameters of the warping functions in
learning problems with both small and large data regimes.

1 Introduction

Many interesting real world phenomena exhibit varying characteristics, such as smoothness, across
their domain. Simpler phenomena that do not exhibit such variation may be called stationary.
The typical kernel based learner canonically relies on a stationary kernel function, a measure of
"similarity", to define the prior beliefs over the function space. Such a kernel, however, cannot
represent desirable nonstationary nuances, like varying spatial smoothness and sudden discontinuities.
Restrictive stationary assumptions do not generally hold and limit applicability to interesting problems,
such as robotic control and reinforcement learning [1], spatial mapping [2], genetics [3], and Bayesian
optimisation [4]. One obvious way to alleviate the problem of finding the appropriate kernel function
given one’s data is hyperparameter optimisation. However for a GP with stationary kernel, even if the
optimal set of hyperparameters were found, it would be insufficient if our underlying response were
nonstationary with respect to the observed inputs.

In this paper we propose a method for nonstationary kernel learning, based on sparse spectral kernel
representations. Our method is linear in complexity with respect to the number of data points and
is simultaneously able to extract nonstationary patterns. In our setup, we consider the problem of
learning a function f : X → R as a nonstationary Gaussian process. We decompose f as:

f(x) = E[u ◦m(x)|u] , x ∈ X , (1)

where ◦ denotes function composition, u : Q → R is a function over a latent space Q, and m(x)
represents the warped input. If u has covariance function ku, the resulting f follows a GP with
covariance kf (x,x′) = E[ku(m(x),m(x′))]. The latter constitutes a nonstationary kernel.
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To model u as a stationary GP on Q, we propose a formulation for m : X → Q, which is based on a
locally affine stochastic transform:

m(x) = G(x)x + h(x) , (2)

where G(x) and h(x) are Gaussian processes. Intuitively, the matrix G scales the inputs, with a
similar effect to what length-scales have on stationary kernels [5], but which now varies across the
space, while h allows for arbitrary shifts.

The conditional expectation (1) also corresponds to the composition of a function on Q with a
measure [6] on Q, which is actually a function of x ∈ X . In our case, the measure-valued warpings
are Gaussian probability measures, which we parametrise as Gaussian process conditioned on pseudo-
training points. In particular, we use sparse spectrum Gaussian processes [7] due to their scalability
and availability of closed-form results for Gaussian inputs [8].

1.1 Contributions

• We propose a new method to learn nonstationary Gaussian process models via input warping.
We introduce the use of a measure-valued, self-supervised and input-dependent warping
function as a natural improvement for sparse spectrum Gaussian processes. We term this
sparse spectrum warped input measures (SSWIM);

• We propose a self-supervised training scheme for representing the warping function allowing
us to cleanly represent the latent measure valued warping; and

• We propose a simple extension to multiple levels of warping by propagating moments.

1.2 Related work

Foundational work [9, 10] on kernel based nonstationarity necessitated manipulation of the kernel
function with expensive inference procedures. Recent spectral representation of kernel functions have
emerged with Bochner’s theorem [11]. In this paradigm, one constructs kernels in the Fourier domain
via random Fourier features (RFFs) [12, 13] and extensions for nonstationarity via the generalised
Fourier inverse transform [14, 15, 2, 16]. While general, these methods suffer from various drawbacks
such as expensive computations and overfitting due to over-parameterised models [2].

More expressive modelling frameworks [17, 18, 19, 20] have played a major role in expanding the
efficacy of kernel based learning. Perhaps the most well known in the recent literature is Deep Kernel
Learning Wilson et al. [21] and the deep Gaussian process [22] and heretofore its various extensions
[23, 24, 25]. While functionally elegant, methods like DKL and DGP often rely on increasing the
complexity of the composition to produce expressiveness and are often unsuitable or unwieldy in
practice occasionally resulting in performance worse than stationary inducing point GPs [23]. We
remark a notable difference between DGP and SSWIM is one should interpret our pseudo-training
points as hyperparameters of the kernel as opposed to parameters of a variational approximation.

Simple bijective input warpings were considered in Snoek et al. [26] for transforming nonstationary
functions into more well behaved functions. In Heinonen et al. [27] the authors augment the
standard GP model by learning nonstationary data-dependent functions for the hyperparameters of a
nonstationary squared-exponential kernel [28]. Their method, however, is limited to low dimensions.
More recently, the work of Hegde et al. [29] has explored a dynamical systems view of input warpings
by processing the inputs through time-dependent differential fields. Less related models presented in
Wang and Neal [30], Dutordoir et al. [31], Snelson et al. [32] involve output warping non-Gaussian
likelihoods and heteroscedastic noise. For the curious reader we examine contrasting properties of
output and input warping in the supplementary material.

2 Sparse spectrum Gaussian processes

We start by reviewing relevant background with regards to kernel methods for Gaussian process
regression. In particular, we focus on the sparse spectrum approximation to GPs [7], which we use to
formulate nonstationary kernels.
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Gaussian processes. Suppose our goal is to learn a function f : RD → R given IID data D =
{xi, yi}Ni=1, with each data pair related through

y = f(x) + ε, ε ∼ N (0, σ2
n), (3)

where ε is IID additive Gaussian noise. A Gaussian process is a distribution on functions f over an
input space X ⊆ RD such that any finite set of inputs x1, ...,xN ∈ X produces a multivariate normal
distribution of response variables fN := [f(x1), ..., f(xN )]T:

fN ∼ N (mN ,KN ) , (4)

where mN = m(x1, ...,xN ) is the mean vector, and KN = {k(xi,xj)}i,j with kernel k.

Approximate GP in feature space. Full GP inference is a challenging problem naively occurring
in O(N3) complexity as a consequence of having to invert an (N,N) Gram matrix. An alternative
perspective on approximate GP inference is to consider the feature space view of the kernel function
using Bochner’s theorem [11]. Under this view, random Fourier features [12, 13] decompose the
kernel function in terms of Fourier features based on a finite approximation to the kernel’s spectrum.

As presented by Rahimi and Recht [12], the Fourier transform of any shift-invariant positive-definite
kernel k : RD × RD → R yields a valid probability distribution pk, so that k is approximately:

k(x,x′) = Eω∼pk [cos(ω
T(x− x′))] ≈ φ(x)Tφ(x′) , (5)

where φ corresponds to the approximate feature map:

φ(x) =

√
2

M

[
cos
(
ωT

1x
)
, . . . , cos

(
ωT
Mx
)
, sin

(
ωT

1x
)
, . . . , sin

(
ωT
Mx
) ]
∈ R2M . (6)

Using the feature map above we are able to define a GP termed the Sparse Spectrum Gaussian Process
(SSGP) [7]. Due to feature map (6), the SSGP is a Gaussian distribution over the feature weights
w ∈ R2M . If we assume the weight prior is N (0, I), after conditioning on data D the posterior
distribution of w ∼ N (α, σ2

nA−1), where:

α = A−1Φy, (7)

A = ΦΦT + σ2
nI, (8)

following from Bayesian Linear Regression [33]. The design matrix Φ = [φ(x1), ....,φ(xN )] and
column vector y = [y1, ..., yN ]T are given directly by the data D. The posterior distribution over the
response y given an x is exactly Gaussian:

p(f(x)|x) = N
(
αTφ(x), σ2

n‖φ(x)‖2A−1

)
, (9)

where we define ‖v‖2Σ := vTΣv. Multivariate outputs can be modelled as conditionally independent
GPs for each output dimension or jointly by encoding the covariance between the outputs as a
vector-valued GP [34].

Kernels with Gaussian inputs. In our formulation of non-stationary kernel, we take form the
kernel based on expectations with respect to distributions conditioned on the inputs. In the sparse-
spectrum formulation, the expected kernel is simply the result of the inner product between the
expected feature map of each input, due to the linearity of expectations. For the case of Gaussian
inputs, results by Pan et al. [8] then allow us to compute the expected feature map in closed form.
For a Gaussian input x̃ ∼ N (x̂,Σ), we have:

E[cos(ωTx̃)] = exp

(
−1

2
‖ω‖2Σ

)
cos(ωTx̂) , (10)

E[sin(ωTx̃)] = exp

(
−1

2
‖ω‖2Σ

)
sin(ωTx̂). (11)

What is important to note here is the exponential constant which scales the standard feature by a
value proportional to the uncertainty in the warped input. That is to say, expectations that take on
larger (predictive) uncertainties will be smaller than if we did not take this uncertainty into account.
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Algorithm 1 Sparse Spectrum Warped Input Measures
Input: {X,y}
Output: θ = {θu,θg,θh,Xg,Yg,Xh,Yh}
Initialize pseudo-training points {Xg,Yg}, {Xh,Yh}
for t ∈ {1, . . . , T} do

Fit g and h to {Xg,Yg}, {Xh,Yh}
Compute m̂ and Σm for X
Fit u using expected feature map
Calculate log p(y|θ)
Update gradients and take new step.

end for

3 Sparse spectrum warped input measures

In this section we introduce the main contribution of the paper: sparse spectrum warped input
measures (SSWIM). The key idea in our work is based on two crucial steps. First, we construct
a stochastic vector-valued mapping modelling the input warping m : X → Q, where X ⊆ RD
represents the raw input space and Q is the resulting warped space. A top-level GP modelling
u : Q → R then estimates the output of the regression function f : X → R. To learn the warping,
each lower-level SSGP is provided with pseudo-training points, which are learned jointly with the
remaining hyper-parameters of both GP models.

It is important to note that the pseudo-training points are free parameters of the latent warping
function and therefore hyperparameters of the top-level function. Furthermore, while our construction
and implementation assumes a pseudo-training dimensionality equal to that of the original data
dimX = dimQ, nothing preventing us from embedding the input warping into a lower dimQ �
dimX or higher dimQ � dimX dimensional manifold.

3.1 Warped input measures

To model and propagate the uncertainty on the warping operator G through the predictions, we start
by modelling G : X → L(X ) as a Gaussian process. Then every linear operation on G results in
another GP [35], so that m(x) = G(x)x + h(x), for a deterministic x ∈ X , is Gaussian. Similarly,
as expectations constitute linear operations, the expected value of the GP u under the random input
given by the warping is also Gaussian [36]. Marginalising m out of the predictions, i.e. inferring the
expected value of f under the distribution of m, f̂(x) = E[u ◦m(x)|u], we end up with a final GP,
which has analytic solutions.

From Section 2, the uncertain-inputs predictions from û = E[u(x̃)|u] for m(x) ∼ N (m̂(x),Σm(x))
are given by the SSGP predictive equations in (9) using the expected feature map for E[φ(m(x))].
Equation 11 then allows us to compute E[φ(m(x))] in closed form for a given mean m̂(x) and
covariance matrix Σm(x). The general form of the covariance matrix Σm(x) for m(x) involves
dealing with a fourth order tensor describing the second moment of G. For this paper, however, we
consider a particular case with a more elegant formulation and yet flexible enough to accommodate
for a large variety of warpings.

Let G(x)x := g(x) � x, where � denotes the element-wise product and g is a vector-valued
Gaussian process. This type of warping is equivalent to G(x) map to a diagonal matrix. The mean
and covariance matrix of the warped input m(x), can be derived as (see Appendix for details):

m̂(x) = ĝ(x)� x + ĥ(x) (12)

Σm(x) = x1T �Σg(x)� 1xT + Σh(x) , (13)
where ĝ(x) and Σg(x) are the predictive mean and covariance, respectively, of the GP defining g,
while ĥ(x) and Σh(x) are the same for the GP on h.

3.2 Latent self-supervision with pseudo-training

In order to fully specify our latent function, we utilise pseudo-training pairs {Xg,Yg} and {Xh,Yh},
somewhat analogous to the well known inducing-points framework for sparse Gaussian processes
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[37]. Conditioning on these virtual observations allows us to implicitly control the Gaussian measure
determined by the warping SSGP.

We model the multiplicative warping g : RD → RD using a standard, multi-output, SSGP that
is analytically fit on virtual pseudo-training points {Xg,Yg}. Assuming coordinate-wise output
independence, we model g as g(x) ∼ N (ĝ(x),Σg(x)), where:

ĝ(x) = φg(x)
TA−1g ΦgYg (14)

Σg(x) = σ2
n,gφg(x)

TA−1g φg(x)I , (15)

with Φg := Φg(Xg) as the matrix of Fourier features for the pseudo-inputs Xg, and Ag =

ΦgΦT
g + σ2

n,gI. The pseudo-inputs Xg are initially sampled uniformly across the data domain,
Xg ∼ U(min(X),max(X)). The pseudo-training targets Yg are initialised [Yg]i,j ∼ N (1, σ2

γ)

where σ2
γ mimics a prior variance for the latent warping function. The mean at 1 keeps the initial

warping close to identity.

We adopt a similar construction for the GP on the additive component of the warping h. However,
we initialise the pseudo-training targets Yh with zero-mean values [Yh]i,j ∼ N (0, σ2

γ), so that we
favour a null effect initially. In summary, the complete expected kernel is thus given as:

kf (x,x
′) := E[φ(m(x)]TE[φ(m(x′))] , (16)

where the expectation is taken over m, whose distribution is recursively defined by equations 12 to
15.

3.3 A layered warping

We have thus far considered a single warping m of the input x. It is natural to ask: can we warp
the warpings? A simple way to answer this is to revisit how we interpret a single warping: we are
transforming the original input space, with which our response varies in a non-stationary way, to a
new space a GP with a stationary kernel can easily represent. We could thus intuit a warping of a
warping to mean that we are transforming the first level of warping to a second one to which our
response variable is simply more stationary than if we had just relied on the first warping alone. We
present now an extension to SSWIM which lets us perform this measure value warping of a measure
valued warping. Let us begin by defining the J th warping as:

m(J)(x(J−1)) = g(J)(x(J−1))� x(J−1) + h(J)(x(J−1)), (17)

where:

x(J−1) = m(J−1)(x(J−2)) , J ≥ 2 (18)

While multiplication of a known vector by a Gaussian random matrix keeps Gaussianity, after the
first warping layer, the product of two Gaussians is no longer Gaussian in (17). For the layered
formulation, we therefore apply moment matching to approximate each layer’s warped input as a
Gaussian x(J) ∼ N (x̂(J),Σ(J)

x ). Making independence assumptions on (17) and applying known
results for the Hadamard product of independent random variables [38], we have:

x̂(J) = ĝ(J) � x̂(J−1) + ĥ
(J)

(19)

Σ(J)
x = Σ(J−1)

x �Σ(J)
g + Σ(J−1)

x � ĝ(J)ĝ(J)T + Σ(J)
g � x̂(J−1)x̂(J−1)T + Σ

(J)
h , (20)

where g(J) ∼ N (ĝ(J),Σ(J)
g ) and h(J) ∼ N (ĥ

(J)
,Σ

(J)
h ) are the SSGP predictions using the

expected feature map (Equation 11) of the previous layer’s output x(J−1).

The layered warping allows for more complex input transformations. The drawback, however, is
an increased computational cost due to the additional hyper-parameters, i.e. the pseudo-training
points. In addition, we are taking a non-linearly transformed Gaussian input, which leads to a
non-Gaussian result, and moment-matching it with a Gaussian. This distribution mismatch leads
to compounding effects across several layers which could make the top-level Gaussian tend to a
high-variance flat distribution. However, the training process should compensate for this increase in
variance by adjusting the pseudo-training points according to a loss that takes the data into account,
e.g. the GP marginal likelihood.
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3.4 Joint training

The goal of optimization in learning our warping with uncertainty is to quickly discover hyper-
parameters whose models explain the variation in the data. We also want to avoid pathologies
that may manifest with an arbitrarily complex warping function. We do this by minimising the
model’s negative log-marginal likelihood. Given a set of observations D = {xi, yi}Ni=1, we learn the
hyper-parameters θ by minimising the negative log-marginal likelihood:

− log p(y|θ) = 1

2σ2
n

(yTy − yTΦ̂
T

FA−1F Φ̂Fy) +
1

2
log|AF | −

D

2
log σ2

n +
M

2
log 2πσ2

n , (21)

where Φ̂F is the matrix whose rows to expected feature maps for the top-level SSGP, i.e. [Φ̂F ]i =
Em[φF (m(xi))]

T, and |AF | denotes the determinant of AF . The expectation is taken under the
warping m, whose parameters are computed from the predictive mean and covariance functions of
the lower-level GPs (cf. (12) and (13)), and available in closed form via Equation 11.

3.5 Computational complexity

The top-level function u and two warping functions G and h all inherit the complexity of SSGP with
and without predictions under uncertainty [8] which is O(nm2 +m3) for n samples and m features.
For multiple warping levels this cost is multiplied by the number of levels J therefore the overall
complexity remains O(nm2 +m3). In practice m is very small with m < 1000. For SSWIM, a
single pseudo-training point has dimensionality D which is the same as the raw input x. Therefore G
and h consist of D ×NG and D ×Nh pseudo-training points respectively. The functions u, G and
h contain model and kernel hyperparameters of size |θu|, |θG| and |θh| respectively which should
each not exceed much more than D for conventional stationary kernels.

3.6 On function classes of the warping

It has been remarked in prior work on deep GP models that degenerate covariance matrices may arise
after consecutive compositions [39, 29]. Recent works, such as [29, 40], that employ a dynamical
systems based formulation can demonstrate improved uncertainty propagation under an injective
warping (by maintaining monotonic constructions) as opposed to conventional deep GP models
[22]. Indeed our proposed SSWIM is not guaranteed to be injective and falls into the most general
class of functions. An interesting consequence of this is that one could argue injectivity is not
necessarily ideal for learning latent mappings and furthermore it certainly is not a necessary condition
for preventing collapse of uncertainty although such phenomena may be correlated. To comment
further, by relaxing from certain function types it is plausible for multiple different input values in a
prior warping layer to warp into the same input location in the next layer; i.e. in a surjective function.
This may ultimately be a desirable property – it suggests compressiblity of the input domain – in
that there might be an underlying non-monotonic, non-stationary covariance function at play in the
latent representation. Such expressiveness would not be able to be directly captured by a purely
injective mapping. Injectivity and even bijectivity could be enforced as an additional constraint and
this perspective undoubtedly deserves future investigation.

3.7 On kernel priors

One may enquire about the choice of kernels for latent and top level functions. Our methodology
is, generally speaking, "kernel prior agnostic" in the sense that the nonstationarity is accomplished
through the affine warpings. We remark that kernel choice undoubtedly may play a role in perfor-
mance. One could indeed use extremely expressive kernels, like the stationary spectral mixture [41]
or quantile kernel representations [42]. However, to restrict the space of analysis to measure the effect
of the warping construction, we aimed to forgo kernel discovery.

4 EXPERIMENTS

We experimentally validate SSWIM alongside various state of the art methods in both small and large
data regimes as well as expand upon the intuition in Section 4.1.1 by examining specific aspects of
the model. Section 4.1.2 analyses computational complexity and model performance with respect to
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Figure 1: Visualisation of SSWIM learning an input warping. (a) Noisy training data. Going left to
right, the signal observations exhibit abrupt steps, periodic, and spatial frequency nonstationarity. (b)
The learned warping functions. (c) The training data after input warping, and (d) Final prediction
with respect to the warped inputs. The key observation here is how the spatially varying frequencies
and steps in the original training data from (a) have been transformed to (c) where the warped data
varies in a more uniform (stationary) manner.

Figure 2: Performance in RMSE and MNLP as the number of pseudo-training points increases.

the pseudo-training points. We investigate increasing the number of warping levels in Section 4.1.3.
Large scale comparison alongside various algorithms is presented in Section 4.2.

For every quantitative experiment, we report the mean and standard deviation over ten repeats.
Metrics are presented in the standardized data scale. In all experiments the Matern 3

2 is used as
the base kernel. For performance evaluation we use the test Root Mean Square Error (RMSE) and
test Mean Negative Log Probability (MNLP). These are defined as RMSE =

√
〈(y∗j − µ∗j)2〉 and

MNLP = 1
2 〈(

y∗j−µ∗j
σ∗j

)2 + log σ2
∗j + log 2π〉 where y∗j is the true test value, and µ∗j and σ2

∗j are the
predictive mean and variance respectively for the jth test observation. Mean is denoted as 〈·〉.

4.1 Analysis

In this section we comment on the geometric interpretation of the warping in the sense of conditional
affine maps as well as analyse key hyperparameters.

4.1.1 Inductive bias and a geometric interpretation

An intuitive interpretation of SSWIM is by imagining it as learning a conditional affine transformation.
The quintessential affine transformation of some vector x is described as Ax+ b for some multiplica-
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Table 1: RMSE and MNLP metrics for various real world datasets.
(D,N) (8, 1030) (16, 5875) (15, 17379) (379, 53500) (81, 21263) (9, 45730) (77, 583250) (90, 515345)

Method concrete parkinsons bikeshare ct slice supercond protein buzz song

R
M

SE
(×

1
0
−

1
)

SSWIM1 3.05± 0.26 7.63± 0.20 0.13± 0.04 0.46± 0.02 3.44± 0.14 5.91± 0.07 2.98± 0.04 8.12± 0.05
SSWIM2 3.01± 0.31 7.55± 0.15 0.11± 0.03 0.23± 0.01 3.02± 0.04 5.80± 0.08 2.40± 0.01 7.97± 0.03
DSDGP 5.88± 1.24 7.94± 0.20 0.33± 0.55 4.81± 1.18 5.10± 0.84 5.96± 0.06 3.65± 0.75 8.46± 0.03
DKL 3.18± 0.38 8.84± 0.74 0.24± 0.03 0.52± 0.08 3.46± 0.18 7.15± 1.10 4.11± 3.33 16.66± 8.14
RFFNS 3.46± 0.24 8.15± 0.15 0.05± 0.01 4.39± 0.27 3.85± 0.05 6.87± 0.06 5.70± 0.84 8.35± 0.03
SVGP 3.32± 0.26 8.14± 0.12 0.06± 0.03 1.16± 0.02 4.06± 0.05 7.32± 0.08 9.98± 0.02 12.19± 0.18
SGPR 5.55± 0.58 7.86± 0.22 0.67± 0.18 1.79± 0.04 4.27± 0.06 6.45± 0.07 2.89± 0.02 8.40± 0.04
RFFS 3.33± 0.30 8.24± 0.17 0.03± 0.00 2.34± 0.05 3.89± 0.06 6.91± 0.07 3.78± 0.14 8.36± 0.04

M
N

L
P

(×
1
0
−

1
) SSWIM1 10.22± 4.15 11.95± 0.47 -11.89± 0.15 -11.24± 0.05 3.55± 0.32 8.95± 0.12 2.03± 0.13 12.08± 0.05

SSWIM2 5.19± 2.59 12.50± 0.44 -11.78± 0.07 -11.79± 0.02 2.82± 0.29 8.82± 0.15 -0.09± 0.04 11.93± 0.04
DSDGP 11.02± 1.06 11.91± 0.24 -23.28± 8.29 6.62± 2.61 7.36± 1.62 9.04± 0.10 3.80± 2.02 12.52± 0.04
DKL 7.69± 0.20 13.17± 1.12 6.82± 0.01 6.83± 0.01 7.76± 0.10 11.02± 1.53 9.01± 4.65 42.64± 44.77
RFFNS 3.31± 0.45 12.18± 0.18 -11.97± 0.00 5.95± 0.66 4.66± 0.12 10.39± 0.08 8.78± 1.87 12.39± 0.04
SVGP 2.83± 0.56 12.21± 0.14 -27.70± 1.24 -5.98± 0.13 5.32± 0.12 11.10± 0.09 63.31± 3.44 18.02± 0.09
SGPR 8.48± 2.10 12.39± 0.30 -13.67± 0.98 -3.14± 0.26 5.58± 0.10 10.05± 0.13 1.11± 0.12 11.97± 0.07
RFFS 3.05± 0.96 12.29± 0.20 -11.98± 0.00 -0.33± 0.22 4.79± 0.13 10.45± 0.09 4.41± 0.37 12.40± 0.05

tion matrix A and addition vector b. Such transformations are typically interpreted geometrically
[43] as translation, rotation, reflection, scale and shear. SSWIM learns a conditional affine map that
depends on the input. I.e. A and b become maps A(x) and b(x). By directly applying a learned
warping to the original input data we transform the inputs into a locally Euclidean manifold which
ultimately preserves any structure with respect to the input resulting in a convenient inductive bias.
Observe in Figure 1 (c) how we have non-uniformly "stretched out" out the left and rightmost parts
of the original data in (a) to produce a new warped dataset. What was original spatially nonstationary
becomes spatially homogeneous resulting excellent prediction as in Figure 1 (d).

4.1.2 How many pseudo-training points?

To understand the overall sensitivity of our method we visualise the predictive performance as
a function of the number of pseudo-training points. Figure 2 shows performance, in log scale,
with respect to the number of pseudo-training points on real world datasets. We observe trending
improvement however very few pseudo-targets are required to get excellent performance, even
in much higher dimensional problems like superconductivity (D = 81) and ct slice (D = 379),
suggesting that there is significant expressiveness in the underlying warping function.

We remark that a possible drawback of pseudo-training points and fitting a stochastic model over
those points is the question of how to set the prior of their locations. Furthermore, how do we initialise
them? To answer this, it is natural to set G and h to be fit to noisy pseudo-targets with mean I and 0
respectively. This has a nice interpretation as the matrices corresponding to the identity operations of
an affine transformation.

4.1.3 Increased warping depth

Figure 3: Performance in RMSE and MNLP as the number of warping levels increases.

In this experiment we evaluate the predictive performance of SSWIM as we increase the number of
levels of consecutive input warping from 0 to 3. A depth of 0 simply corresponds to the stationary
SSGPR specification. Figure 3 summarises the results. For all the datasets we can see that adding
just a single level of input warping increases predictive performance. Adding additional levels of
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warping seems to consistently improve performance however it adds additional variance to all results
which could be explained by the additional complexity required for optimization.

4.2 Real datasets

We compare our model on various real-world datasets including multiple regression tasks [44, 45, 46].
All datasets are standardised using the train set. We use 2

3 of the samples for training and the
remaining 1

3 for testing. We compare multiple related algorithms alongside our proposed method
SSWIM using both one level of warping (SSWIM1) and two levels of warping (SSWIM2), Deep
Kernel Learning [21] (DKL), SSGP with stationary random fourier features kernel (RFFS), SSGP
with nonstationary kernel features (RFFNS) with freely variable mean and width for the Matern 3

2
spectral frequencies [15, 2], Sparse Gaussian Process Regression (SGPR) [37], Sparse Variational
Gaussian Process (SVGP) [47], and Doubly Stochastic Deep GP with 2 layers (DSDGP) [23]. All
experiments were performed on a Linux machine with a single Titan V GPU. We ran all methods
for 150 iterations with stochastic gradient descent and the library GPyTorch was used for DKL,
DSDGP, SGPR, and SVGP. We have provided implementations for RFFS, RFFNS, and SSWIM.
Full experimental details are provided in the supplementary material with additional commentary.
PyTorch Code is provided to reproduce the experimental results.

In the main experimental results given in Table 1 we can observe a consistent high performance across
all datasets for SSWIM in all tasks for the RMSE metric. For concrete, parkinsons and bikeshare
SSWIM is outperformed in MNLP by DSDGP, SVGP and RFFS suggesting they were more capable
of representing the predictive distribution rather than the mean. For the remaining datasets SSWIM
has performed extremely well, most notably on the high dimensional problem ct slice. SSWIM2 with
two levels of warping comprehensively outperforms other methods as well as SSWIM1 which also
performs competitively. These results further corroborate the analysis given in Figure 2 and Figure 3.

5 Conclusion

We have proposed a crucial advance to the sparse spectrum Gaussian process framework to account
for nonstationarity through a novel input warping formulation. Our model analytically incorporates
complete Gaussian measures in the functional input warping with the concept of pseudo-training
data and latent self-supervision. We have further extended this core contribution with the necessary
results to extend the warping to multiple levels resulting in higher levels of model expressiveness.

Experimentally, the methodology we propose has demonstrated excellent results in the total number
of hyperparameters for various low and high dimensional real world datasets when compared to
deterministic and neural network based approaches but also performing exceptionally well in contrast
to deep Gaussian processes. Our model suggests an interesting and effective inductive bias when
interpreted as a learned conditional affine transformation. This perspective invites a fresh take on
how to discover more effective representations of nonstationary data.
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Broader Impact

The problem we address in this paper of efficient modelling of nonstationary stochastic processes is
fundamental in geostatistics, time-series analysis, and the study of dynamical systems. To this end,
our technique is directly applicable to spatial-temporal problems such as air pollution monitoring,
the spread of diseases, and the study of natural resources such as underground water. In all of
these problems, the strength of the spatial relationships between inputs varies with respect to the
location. For example, during the current pandemic, nearby cities might exhibit different levels
of infection rates within their boundaries but still being related due to infected people travelling
between them Senanayake et al. [48]. Our approach is directly applicable to these cases and can be
incorporated within epidemiological models that typically aggregate populations in large regions for
a more refined prediction and study of intervention policies such as social distancing.
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