
Appendix

A Deferred proofs

In this section, we show the proofs omitted from Sec. 3 and Sec. 4.

A.1 Proof of Lemma 1

We state again Lemma 1 from Sec. 3 and present the proof.

Lemma 1. (Effect of the random step) Let η ∼ U([−ε, ε]d) be a random starting point, and
α ∈ [0, 2ε] be the step size of FGSM-RS defined in Eq. (3), then
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Proof. First, note that due to the Jensen’s inequality, we can have a convenient upper bound which is
easier to work with:

E [‖δFGSM−RS(η)‖2] ≤
√

E
[
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]
. (8)

Therefore, we can focus on E
[
‖δFGSM−RS‖22

]
which can be computed analytically. Let us denote

by∇ def
= ∇x `(x+ η, y; θ) ∈ Rd, we then obtain:
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where in the last step we use the law of total expectation by noting that sign(∇i) is also a random
variable since it depends on ηi.

We first consider the case when sign(∇i) = 1, then the inner conditional expectation is equal to:∫ ε
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The case when sign(∇i) = −1 leads to the same expression:∫ ε
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Combining these two cases together with Eq. (8), we have that:
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A.2 Proof and discussion of Lemma 2

We state again Lemma 2 from Sec. 4 and present the proof.
Lemma 2. (Gradient alignment at initialization) Let z ∼ U([0, 1]p) be an image patch for p ≥ 2,
η ∼ U([−ε, ε]d) a point inside the `∞-ball, the parameters of a single-layer CNN initialized i.i.d. as
w ∼ N (0, σ2

wIp) for every column of W , u ∼ N (0, σ2
uIm) for every column of U , b := 0, then the

gradient alignment is lower bounded by

lim
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}
.

Proof. For k and m large enough, the law of large number ensures that an empirical mean of i.i.d.
random variables can be approximated by its expectation with respect to random variables z, η, w, u.
This leads to
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We directly compute for the denominator:

Ew,z[‖w‖22 1〈w,z〉≥0] = Ew,η,z[‖w‖22 1〈w,z+η〉≥0] = 0.5pσ2
w.

For the numerator, by bounding Pη [〈w, η〉 ≥ 〈w, z〉] ≤ e
− 〈z,w〉2

2ε2‖w‖22 via the Hoeffding’s inequality, we
obtain
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where the last inequality is obtained via the Cauchy-Schwarz inequality. On the other hand, we have:
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Now we combine both lower bounds together to establish a lower bound on Eq. (9):
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where in the last step we used that p ≥ 2.

The main purpose of obtaining the lower bound in Lemma 2 was to get an expression that can give us
an insight into the key quantities which gradient alignment at initialization depends on. Considering
the limiting case k,m→∞ was necessary to obtain a ratio of expectations that allowed us to derive
a simpler expression. Finally, we lower bounded the gradient alignment from Eq. (9) using the
Hoeffding’s and Cauchy-Schwarz inequalities and used p ≥ 2 to obtain a dimension-independent
constant in front of the expectation in Eq. (10). Now we would like to provide a better understanding
about the key quantities involved in the lemma and to assess the tightness of the derived lower bound.
For this purpose, in Fig. 9 we plot:
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Figure 9: Visualization of the key quantities involved in Lemma 2.

• cos (∇x `(x, y),∇x `(x+ η, y)) for k = 100 patches and m = 4 filters (which resembles
the setting of the 4-filter CNN on CIFAR-10). We note that it is a random variable since it is
a function of random variables x, η,W,U .

• limk,m→∞ cos (∇x `(x, y),∇x `(x+ η, y)) evaluated via Eq. (9).

• Our first lower bound max
{

1− 1
pσ2

w
Ew,z

[
‖w‖22 e

− 1
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]
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}
obtained via Ho-

effding’s inequality.
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}
.

For the last three quantities we approximate the expectations by Monte-Carlo sampling by using
1,000 samples. For all the quantities we use patches of size p = 3 × 3 × 3 = 27 as in our
CIFAR-10 experiments. We plot gradient alignment values for ε ∈ [0, 0.1] since we are interested
in small `∞-perturbations such as, e.g., ε = 8/255 ≈ 0.03 which is a typical value used for CIFAR-
10 [23]. First, we can observe that all the four quantities have very high values in [0.7, 1.0] for
ε ∈ [0, 0.1] which is in contrast to the gradient alignment value of 0.12 that we observe after
catastrophic overfitting for ε = 10/255 ≈ 0.04. Next, we observe that cos (∇x `(x, y),∇x `(x+ η, y))
has some noticeable variance for the chosen parameters k = 100 patches and m = 4 filters.
However, this variance is significantly reduced when we increase the parameters k and m, especially
when considering the limiting case k,m → ∞. Finally, we observe that both lower bounds on
limk,m→∞ cos (∇x `(x, y),∇x `(x+ η, y)) that we derived are empirically tight enough to properly
capture the behaviour of gradient alignment for small ε. However, we choose to report the last one in
the lemma since it is slightly more concise than the one obtained via Hoeffding’s inequality.

B Experimental details

We list detailed evaluation and training details below.

Evaluation. Throughout the paper, we use PGD-50-10 for evaluation of adversarial accuracy which
stands for the PGD attack with 50 iterations and 10 random restarts following [47]. We use the step
size α = ε/4. The choice of this attack is motivated by the fact that in both public benchmarks of [23]
on MNIST and CIFAR-10, the adversarial accuracy of PGD-100-50 and PGD-20-10 respectively is
only 2% away from the best entries.

Although we train our models using half precision [24], we always perform robustness evaluation
using single precision since evaluation with half precision can sometimes overestimate the robustness
of the model due to limited numerical precision in the calculation of the gradients.

We perform evaluation of standard accuracy using full test sets, but we evaluate adversarial accuracy
using 1,000 random points on each dataset.

Training details for ResNet-18. We use the implementation code of [47] with the only difference
that we do not use image normalization and gradient clipping on CIFAR-10 and SVHN since we
found that they have no significant influence on the final results. We use cyclic learning rates and
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half-precision training following [47]. We do not use random initialization for PGD during adversarial
training as we did not find that it leads to any improvements on the considered datasets (see the
justifications in Sec. D.1 below). We perform early stopping based on the PGD accuracy on the
training set following [47]. We observed that such a simple model selection scheme can successfully
select a model before catastrophic overfitting that has non-trivial robustness.

On CIFAR-10, we train all the models for 30 epochs with the maximum learning rate 0.3 except
AT for free [34] which we train for 96 epochs with the maximum learning rate 0.04 using m = 8
minibatch replays to get comparable results to the other methods.

On SVHN, we train all the models for 15 epochs with the maximum learning rate 0.05 except AT for
free [34] which we train for 45 epochs with the maximum learning rate 0.01 using m = 8 minibatch
replays. Moreover, in order to prevent convergence to a constant classifier on SVHN, we linearly
increase the perturbation radius from 0 to ε during the first 5 epochs for all methods.

For PGD-2 AT we use for training a 2-step PGD attack with step size α = ε/2, and for PGD-10 AT
we use for training a 10-step PGD attack with α = 2ε/10.

For Fig. 1 and Fig. 8 we used the GradAlign λ values obtained via a linear interpolation on the
logarithmic scale between the best λ values that we found for ε = 8 and ε = 16 on the test sets. We
perform the interpolation on the logarithmic scale since the values of λ are non-negative, a usual linear
interpolation would lead to negative values of λ. The resulting λ values for ε ∈ {1, . . . , 16} are given
in Table 2. We note that at the end we do not report the results with ε > 12 for SVHN since many
models have trivial robustness close to that of a constant classifier. For the PGD-2 + GradAlign

Table 2: GradAlign λ values used for the experiments on CIFAR-10 and SVHN. These values are obtained via
a linear interpolation on the logarithmic scale between successful λ values at ε = 8 and ε = 16.

ε (/255) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

λCIFAR−10 0.03 0.04 0.05 0.06 0.08 0.11 0.15 0.20 0.27 0.36 0.47 0.63 0.84 1.12 1.50 2.00
λSVHN 1.66 1.76 1.86 1.98 2.10 2.22 2.36 2.50 2.65 2.81 2.98 3.16 3.35 3.56 3.77 4.00

experiments reported below in Table 4 and Table 5, we use λ = 0.1 for the CIFAR-10 and λ = 0.5
for SVHN experiments.

Training details for the single-layer CNN. The single-layer CNN that we study in Sec. 4 has 4
convolutional filters, each of them of size 3× 3. After the convolution we apply ReLU activation,
and then we directly have a fully-connected layer, i.e. we do not use any pooling layer. For training
we use the ADAM optimizer with learning rate 0.003 for 30 epochs using the same cyclical learning
rate schedule.

ImageNet experiments. We use ResNet-50 following the training scheme of [47] which includes
3 training stages on different image resolution. For GradAlign, we slightly reduce the batch size
on the second and third stages from 224 and 128 to 180 and 100 respectively in order to reduce
the memory consumption. For all ε ∈ {2, 4, 6}, we train FGSM models with GradAlign using
λ ∈ {0.01, 0.1}. The final λ we report are λ ∈ {0.01, 0.01, 0.1} for ε ∈ {2, 4, 6} respectively.

Computing infrastructure. We perform all our experiments on NVIDIA V100 GPUs with 32GB of
memory.

C Supporting experiments and visualizations for Sec. 3 and Sec. 4

We describe here supporting experiments and visualizations related to Sec. 3 and Sec. 4.

C.1 Quality of the linear approximation for ReLU networks

For the loss function ` of a ReLU-network, we compute empirically the quality of the linear approxi-
mation defined as

| `(x+ δ)− `(x)− 〈δ,∇x `(x)〉 |,
where the dependency of the loss ` on the label y and parameters θ are omitted for clarity. Then we
perform the following experiment: we take a perturbation δ ∈ {−ε, ε}d, and then zero out different
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Figure 10: The quality of the linear approximation of `(x+ δ) for δ with different `2-norm for ‖δ‖∞ fixed to ε
for a standard and PGD-trained ResNet-18 on CIFAR-10.

fractions of its coordinates, which leads to perturbations with a fixed ‖δ‖∞ = ε, but with different
‖δ‖2 ∈ [0,

√
dε]. As the starting δ we choose two types of perturbations: δFGSM generated by

FGSM and δrandom sampled uniformly from the corners of the `∞-ball. We plot the results in Fig. 10
on CIFAR-10 for ε = 8/255 averaged over 512 test points, and conclude that for both δFGSM and
δrandom the validity of the linear approximation crucially depends on ‖δ‖2 even when ‖δ‖∞ is fixed.
The phenomenon is even more pronounced for FGSM perturbations as the linearization error is much
higher there. Moreover, this observation is consistent across both standardly and adversarially trained
ResNet-18 models.

C.2 Catastrophic overfitting in a single-layer CNN

We describe here complementary figures to Sec. 4 which are related to the single-layer CNN.

Training curves. In Fig. 11, we show the evolution of the FGSM/PGD accuracy, FGSM/PGD loss,
and gradient alignment together with cos(δFGSM , δPGD). We observe that catastrophic overfitting
occurs around epoch 6 and that its pattern is the same as for the deep ResNet which was illustrated in
Fig. 4. Namely, we see that concurrently the following changes occur around epoch 6: (a) there is a
sudden drop of PGD accuracy with an increase in FGSM accuracy, (b) the PGD loss grows by an order
of magnitude while the FGSM loss decreases, (c) both gradient alignment and cos(δFGSM , δPGD)
significantly decrease. Throughout all our experiments we observe a very high correlation between
cos(δFGSM , δPGD) and gradient alignment. This motivates our proposed regularizer GradAlign
which relies on the cosine between∇x `(x, y; θ) and∇x `(x+ η, y; θ), where η is a random point.
In this way, we avoid using an iterative procedure inside the regularizer unlike, for example, the
approach of [28].

Additional filters. In Fig. 12, we show the evolution of the regular filter w1 and filter w4 that leads
to catastrophic overfitting for the three input channels (red, green, blue). We can observe that in the
red and green channels, w4 has learned a Laplace filter which is very sensitive to noise. Moreover,
w4 significantly increases in magnitude after catastrophic overfitting contrary to w1 whose magnitude
only decreases (see the colorbar values in Fig. 12 and the plots in Fig. 5).

Additional feature maps. In Fig. 13, we show additional feature maps for images with and without
uniform random noise η ∼ U([−10/255, 10/255]d). These figures complement Fig. 7 shown in the
main part. We clearly see that only the last filter w4 is sensitive to the noise since the feature maps
change dramatically. At the same time, other filters w1, w2, w3 are only slightly affected by the
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Figure 11: Visualization of the training process of an FGSM trained CNN with 4 filters with ε = 10/255. We
can observe catastrophic overfitting around epoch 6.
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Figure 12: Evolution of the regular filter w1 and filter w4 that leads to catastrophic overfitting. We plot red
(R), green (G), and blue (B) channels of the filters. We can observe that in R and G channels, w4 has learned a
Laplace filter which is very sensitive to noise.

addition of the noise. We also show the input gradients in the last column which illustrate that after
adding the noise the gradients change drammatically which leads to small gradient alignment and, in
turn, to the failure of FGSM as the solution of the inner maximization problem.
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Figure 13: Input images, feature maps, and gradients of the single-layer CNN trained on CIFAR-10 at the end
of training (after catastrophic overfitting). Odd row: original images. Even row: original image plus random
noise U([−10/255, 10/255]d). We observe that only the last filter w4 is highly sensitive to the small uniform noise
since the feature maps change dramatically.
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D Additional experiments for different adversarial training schemes

In this section, we describe additional experiments related to GradAlign that complement the results
shown in Sec. 5.

D.1 Stronger PGD-2 baseline

As mentioned in Sec. 5, the PGD-2 training baseline that we report outperforms other similar baselines
reported in the literature [49, 28]. Here we elaborate what are likely to be the most important sources
of difference. First, we follow the cyclical learning rate schedule of [47] which can work as implicit
early stopping and thus can help to prevent catastrophic overfitting observed for PGD-2 in [28].
Another source of difference is that [28] use the ADAM optimizer while we stick to the standard
PGD updates using the sign of the gradient [23].

The second important factor is a proper step size selection. While [49] do not observe catastrophic
overfitting, their PGD-3 baseline achieves only 32.51% adversarial accuracy compared to the 48.43%
for our PGD-2 baseline evaluated with a stronger attack (PGD-50-10 instead of PGD-20-1). One
potential explanation for this difference lies in the step size selection, where for PGD-2 we use
α = ε/2. Related to the step size selection, we also found that using random initialization in PGD (we
will refer to as PGD-k-RS) as suggested in [23] requires a larger step size α. We show the results in
Table 3 where we can see that PGD-2-RS AT with α = ε/2 achieves suboptimal robustness compared
to α = ε used for training. However, we consistently observed that PGD-2 AT with α = ε/2 and no
random step performs best. Thus, we use the latter as our PGD-2 baseline throughout the paper, thus
always starting PGD-2 from the original point, without using any random step.

Table 3: Robustness of different PGD-2 schemes for ε = 8/255 on CIFAR-10 for ResNet-18. The results are
averaged over 5 random seeds used for training.

Model PGD-2-RS AT, α = ε/2 PGD-2-RS AT, α = ε PGD-2 AT, α = ε/2

PGD-50-10 accuracy 45.06±0.44% 48.07±0.52% 48.43±0.40%

D.2 Results with early stopping

We complement the results presented in Fig. 8 without early stopping with the results with early
stopping which we show in Fig. 14. For CIFAR-10, we observe that FGSM + GradAlign leads to a
good robustness and accuracy outperforming FGSM AT and FGSM-RS AT and performing similarly
to PGD-2 and slightly improving for larger ε close to 16/255. For SVHN, GradAlign leads to better
robustness than other FGSM-based methods. We also observe that for large ε on both CIFAR-10 and
SVHN, AT for Free performs similarly to FGSM-based methods. Moreover, for ε ≥ 10/255 on SVHN,
AT for Free converges to a constant classifier.
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Figure 14: Accuracy (dashed line) and robustness (solid line) of different adversarial training (AT) methods on
CIFAR-10 and SVHN with ResNet-18 trained and evaluated with different l∞-radii. The results are obtained
with early stopping, averaged over 5 random seeds used for training and reported with the standard deviation.
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On both CIFAR-10 and SVHN, we can see that although early stopping can lead to non-trivial
robustness, standard accuracy is often significantly sacrificed which limits the usefulness of this
technique. This is in contrast to training with GradAlign which leads to the same standard accuracy
as PGD-10 training.

D.3 Results for specific `∞-radii

Here we report results from Fig. 8 for specific `∞-radii which are most often studied in the literature.

CIFAR-10 results. We report robustness and accuracy in Table 4 for CIFAR-10 without using
early stopping where we can clearly see which methods lead to catastrophic overfitting and thus
suboptimal robustness. We compare the same methods as in Fig. 8, and additionally we report the
results for ε = 8/255 of the CURE [25], YOPO [49], and LLR [28] approaches. First, for ε = 8/255,
we see that FGSM + GradAlign outperforms AT for Free and all methods that use FGSM training.
Then, we also observe that the model trained with CURE [25] leads to robustness that is suboptimal
compared to FGSM-RS AT evaluated with a stronger attack: 36.3% vs 45.1%. YOPO-3-5 and
YOPO-5-3 [49] require 3 and 5 full steps of PGD respectively, thus they are much more expensive
than FGSM-RS AT, and, however, they lead to worse adversarial accuracy: 38.18% and 44.72% vs
45.10%. Qin et al. [28] report that LLR-2, i.e. their approach with 2 steps of PGD, achieves 44.50%
adversarial accuracy with MultiTargeted attack [13] and 46.47% with their untargeted PGD attack
which uses a different loss function compared to our PGD attack. These two evaluations are not
directly comparable to other results in Table 4 since the attacks are different and moreover they use a
larger network (Wide-ResNet-28-8) which usually leads to better results [23]. However, we think that
the gap of 3− 4% adversarial accuracy of MultiTargeted evaluation compared to that of our reported
FGSM + GradAlign and PGD-2 methods (47.58% and 48.43% resp.) is still significant since the
difference between MultiTargeted and a PGD attack with random restarts is observed to be small (e.g.
around 1% between MultiTargeted and PGD-20-10 on the CIFAR-10 challenge of [23]).

For ε = 16/255, none of the one-step methods work without early stopping except
FGSM + GradAlign. We also evaluate PGD-2 + GradAlign and conclude that the benefit of
combining the two comes when PGD-2 alone leads to catastrophic overfitting which occurs at

Table 4: Robustness and accuracy of different robust training methods on CIFAR-10. We report results without
early stopping for ResNet-18 unless specified otherwise in parentheses. The results of all the methods reported
in Fig. 8 are shown here with the standard deviation and averaged over 5 random seeds used for training.

Model Accuracy Attack
Standard Adversarial

ε = 8/255
Standard 94.03% 0.00% PGD-50-10
CURE [25] 81.20% 36.30% PGD-20-1
YOPO-3-5 [49] 82.14% 38.18% PGD-20-1
YOPO-5-3 [49] 83.99% 44.72% PGD-20-1
LLR-2 (Wide-ResNet-28-8) [28] 90.46% 44.50% MultiTargeted [28]
FGSM 85.16±1.3% 0.02±0.04% PGD-50-10
FGSM-RS 84.32±0.08% 45.10±0.56% PGD-50-10
FGSM + GradAlign 81.00±0.37% 47.58±0.24% PGD-50-10
AT for Free (m = 8) 77.92±0.65% 45.90±0.98% PGD-50-10
PGD-2 (α = 4/255) 82.15±0.48% 48.43±0.40% PGD-50-10
PGD-2 (α = 4/255) + GradAlign 81.16±0.39% 47.76±0.77% PGD-50-10
PGD-10 (α = 2ε/10) 81.88±0.37% 50.04±0.79% PGD-50-10

ε = 16/255
FGSM 73.76±7.4% 0.00±0.00% PGD-50-10
FGSM-RS 72.18±3.7% 0.00±0.00% PGD-50-10
FGSM + GradAlign 58.46±0.22% 28.88±0.70% PGD-50-10
AT for Free (m = 8) 48.10±9.83% 0.00±0.00% PGD-50-10
PGD-2 (α = ε/2) 68.65±5.83% 9.92±14.00% PGD-50-10
PGD-2 (α = ε/2) + GradAlign 61.38±0.71% 29.80±0.42% PGD-50-10
PGD-10 (α = 2ε/10) 60.28±0.50% 33.24±0.52% PGD-50-10
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Table 5: Robustness and accuracy of different robust training methods on SVHN. We report results without
early stopping for ResNet-18. All the results are reported with the standard deviation and averaged over 5
random seeds used for training.

Model Accuracy
Standard PGD-50-10

ε = 8/255
Standard 96.00% 1.00%
FGSM 91.40±1.64% 0.04±0.05%
FGSM-RS 95.38±0.27% 0.00±0.00%
FGSM + GradAlign 92.36±0.47% 42.08±0.25%
AT for Free (m = 8) 75.34±28.4% 43.16±12.3%
PGD-2 (α = ε/2) 92.68±0.45% 47.28±0.26%
PGD-2 + GradAlign (α = ε/2) 92.46±0.35% 47.02±0.83%
PGD-10 (α = 2ε/10) 91.92±0.40% 52.08±0.49%

ε = 12/255
FGSM 88.74±1.25% 0.00±0.00%
FGSM-RS 94.70±0.66% 0.00±0.00%
FGSM + GradAlign 88.54±0.21% 24.04±0.31%
AT for Free (m = 8) 18.50±0.00% 18.50±0.00%
PGD-2 (α = ε/2) 92.74±2.26% 14.30±13.34%
PGD-2 + GradAlign (α = ε/2) 87.14±0.26% 31.26±0.24%
PGD-10 (α = 2ε/10) 84.52±0.63% 38.32±0.38%

Table 6: Robustness and accuracy of different robust training methods on ImageNet. We report results without
early stopping for ResNet-50.

Model `∞-radius Standard accuracy PGD-50-10 accuracy

FGSM 2/255 61.7% 42.1%
FGSM-RS 2/255 59.3% 41.1%
FGSM + GradAlign 2/255 61.8% 41.4%
FGSM 4/255 56.9% 30.6%
FGSM-RS 4/255 55.3% 27.8%
FGSM + GradAlign 4/255 57.8% 30.5%
FGSM 6/255 51.5% 20.6%
FGSM-RS 6/255 36.6% 0.1%
FGSM + GradAlign 6/255 51.5% 20.3%

ε = 16/255. For ε = 8/255, there is no benefit of combining the two approaches. This is consistent
with our observation regarding catastrophic overfitting for FGSM (e.g. see Fig. 8 for small ε): if there
is no catastrophic overfitting, there is no benefit of adding GradAlign to FGSM training.

To further ensure that FGSM + GradAlign models do not benefit from gradient masking [27],
we additionally compare the robustness of FGSM + GradAlign and FGSM-RS models obtained
via AutoAttack [8]. We observe that AutoAttack proportionally reduces the adversarial accuracy
of both models: for ε = 8/255, FGSM + GradAlign achieves 44.54±0.24% adversarial accuracy
while FGSM-RS achieves 42.80±0.58%. This is consistent with the evaluation results of [8] where
they show that AutoAttack reduces adversarial accuracy for many models by 2%-3% for ε = 8/255

compared to the originally reported results based on the standard PGD attack (see Table 2 in [8]).
The same tendency is observed also for higher ε, e.g. for ε = 16/255 FGSM + GradAlign achieves
20.56±0.36% adversarial accuracy when evaluated with AutoAttack.

SVHN results. We report robustness and accuracy in Table 5 for SVHN without using early stopping.
We can see that for both ε = 8/255 and ε = 16/255, GradAlign successfully prevents catastrophic
overfitting in contrast to FGSM and FGSM-RS, although there is still a 5% gap to PGD-2 training for
ε = 8/255. AT for free performs slightly better than FGSM + GradAlign for ε = 8/255, but it already
starts to show a high variance in the robustness and accuracy depending on the random seed. For
ε = 12/255, all the 5 models of AT for free converge to a constant classifier.
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Combining PGD-2 with GradAlign does not lead to improved results for ε = 8/255 since there
is no catastrophic overfitting for PGD-2. However, for ε = 12/255, we can clearly see that PGD-
2 + GradAlign leads to better results than PGD-2 achieving 31.26±0.24% instead of 14.30±13.34%
adversarial accuracy.

ImageNet results. We also perform similar experiments on ImageNet in Table 6. We observe that
even for standard FGSM training, catastrophic overfitting does not occur for ε ∈ {2/255, 4/255}
considered in [34, 47], and thus there is no additional benefit from using GradAlign since its
main role is to prevent catastrophic overfitting. We report the results of FGSM + GradAlign for
completeness to show that GradAlign can be applied on the ImageNet scale, although it leads to
approximately 3× slowdown on ImageNet compared to standard FGSM training.

For ε = 6/255, we observe that catastrophic overfitting occurs for FGSM-RS very early in training
(around epoch 3), but not for FGSM or FGSM + GradAlign training. This contradicts our ob-
servations on CIFAR-10 and SVHN where we observed that FGSM-RS usually helps to postpone
catastrophic overfitting to higher ε. However, it is computationally demanding to replicate the results
on ImageNet multiple times over different random seeds as we did for CIFAR-10 and SVHN. Thus,
we leave a more detailed investigation of catastrophic overfitting on ImageNet for future work.

D.4 Ablation studies

In this section, we aim to provide more details about sensitivity of GradAlign to its hyperparameter
λ, the total number of training epochs, and also discuss training with GradAlign for very high ε
values.

Ablation study for GradAlign λ. We provide an ablation study for the regularization parameter
λ of GradAlign in Fig. 15, where we plot the adversarial accuracy of ResNet-18 trained using
FGSM + GradAlign with ε = 16/255 on CIFAR-10. First, we observe that for small λ catastrophic
overfitting occurs so that the average PGD-50-10 accuracy is either 0% or greater than 0% but
has a high standard deviation since only some runs are successful while other runs fail because
of catastrophic overfitting. We observe that the best performance is achieved for λ = 2 where
catastrophic overfitting does not occur and the final adversarial accuracy is very concentrated. For
larger λ values we observe a slow decrease in the adversarial accuracy since the model becomes
overregularized. We note that the range of λ values which have close to the best performance (≥ 26%
adversarial accuracy) ranges in [0.25, 4], thus we conclude that GradAlign is robust to the exact
choice of λ. This is also confirmed by our hyperparameter selection method for Fig. 8, where we
performed a linear interpolation on the logarithmic scale between successful λ values for ε = 8/255

and ε = 16/255. Even such a coarse hyperparameter selection method, could ensure that none of the
FGSM + GradAlign runs reported in Fig. 15 suffered from catastrophic overfitting.
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Ablation study for the total number of training epochs. Recently, Rice et al. [30] brought up the
importance of early stopping in adversarial training. They identify the phenomenon called robust
overfitting when training longer hurts the adversarial accuracy on the test set. Thus, we check here
whether training with GradAlign has some influence on robust overfitting. We note that the authors
of [30] suggest that robust and catastrophic overfitting phenomena are distinct since robust overfitting
implies a gap between training and test set robustness, while catastrophic overfitting implies low
robustness on both training and test sets. To explore this for FGSM + GradAlign, in Fig. 16 we show
the final clean and adversarial accuracies for five different models trained with {30, 50, 100, 150, 250}
epochs. We observe the same trend as [30] report: training longer slightly degrades adversarial
accuracy (while in our case also the clean accuracy slightly improves). Thus, this experiment also
suggests that robust overfitting is not directly connected to catastrophic overfitting and has to be
addressed separately. Finally, we note based on Fig. 16 that when we use FGSM in combination with
GradAlign, even training up to 200 epochs does not lead to catastrophic overfitting.

Ablation study for very high ε. Here we make an additional test on whether GradAlign prevents
catastrophic overfitting for very high ε values. In Fig. 8 and Fig. 14 we showed results for ε ≤ 16
for CIFAR-10 and for ε ≤ 12 on SVHN. For SVHN, FGSM + GradAlign achieves 24.04±0.31%
adversarial accuracy which is already close to that of a majority classifier (18.50%). The effect of
increasing the perturbations size ε on SVHN even further just leads to learning a constant classifier.
However, on CIFAR-10 for ε = 16, FGSM + GradAlign achieves 28.88±0.70% adversarial accuracy
which is sufficiently far from that of a majority classifier (10.00%). Thus, a natural question is whether
catastrophic overfitting still occurs for GradAlign on CIFAR-10, but just for higher ε values than
what we considered in the main part of the paper. To show that it is not the case, in Table 7 we
show the results of FGSM + GradAlign trained with ε ∈ {24/255, 32/255} (we use λ = 2.0 and the
maximum learning rate 0.1). We observe no signs of catastrophic overfitting even for very high ε such
as 32/255. Note that in this case the standard accuracy is very low (23.07±3.35%), thus considering
such large perturbations is not practically interesting, but it rather serves as a sanity check that our
method does not suffer from catastrophic overfitting even for very high ε.

Table 7: Robustness and accuracy of FGSM + GradAlign for very high ε on CIFAR-10 without early stopping
for ResNet-18. We report results with the standard deviation and averaged over 3 random seeds used for training.
We observe no catastrophic overfitting even for very high ε.

`∞-radius Standard accuracy PGD-50-10 accuracy

24/255 41.80±0.36% 17.07±0.90%
32/255 23.07±3.35% 12.93±1.44%

D.5 Comparison of GradAlign to gradient-based penalties

In this section, we compare GradAlign to other alternatives: `2 gradient norm penalization and
CURE [25]. The motivation to study them comes from the fact that after catastrophic overfitting,
the input gradients change dramatically inside the `∞-balls around input points, and thus other
gradient-based regularizers may also be able to improve the stability of the input gradients and thus
prevent catastrophic overfitting.

In Table 8, we present results of FGSM training with other gradient-based penalties studied in the
literature:

• `2 gradient norm regularization [31, 36]: λ ‖∇x`(x, y; θ)‖22,

• curvature regularization (CURE) [25]: λ ‖∇x`(x+ δFGSM , y; θ)−∇x`(x, y; θ)‖22.

First of all, we note that the originally proposed approaches [31, 36, 25] do not involve adversarial
training and rely only on these gradient penalties to achieve some degree of robustness. In contrast,
we combine the gradient penalties with FGSM training to see whether they can prevent catastrophic
overfitting similarly to GradAlign. For the gradient norm penalty, we use the regularization parame-
ters λ ∈ {1,000, 2,000} for ε ∈ {8/255, 16/255} respectively. For CURE, we use λ ∈ {700, 20,000}
for ε ∈ {8/255, 16/255} respectively. In both cases, we found the optimal hyperparameters using a
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Table 8: Additional comparison of FGSM AT with GradAlign to FGSM AT with other gradient penalties on
CIFAR-10. We report results without early stopping for ResNet-18. All the results are reported with the standard
deviation and averaged over 5 random seeds used for training.

Model Accuracy
Standard PGD-50-10

ε = 8/255

FGSM + ‖∇x‖22 77.47±0.14% 46.69±1.27%
FGSM + CURE 80.20±0.29% 47.25±0.21%
FGSM + GradAlign 81.00±0.37% 47.58±0.24%

ε = 16/255

FGSM + ‖∇x‖22 56.44±2.22% 13.64±11.2%
FGSM + CURE 62.39±0.42% 25.38±0.29%
FGSM + GradAlign 58.46±0.22% 28.88±0.70%

grid search over λ. We can see that for ε = 8/255 all three approaches successfully prevent catas-
trophic overfitting, although the final robustness slightly varies between 46.69% for FGSM with the
`2-gradient penalty and 47.58% for FGSM with GradAlign.

For ε = 16/255, both FGSM + CURE and FGSM + GradAlign prevent catastrophic overfitting
leading to very concentrated results with a small standard deviation (0.29% and 0.70% respectively).
However, the average adversarial accuracy is better for FGSM + GradAlign: 28.88% vs 25.38%. At
the same time, FGSM with the `2-gradient penalty leads to unstable final performance: the adversarial
accuracy has a high standard deviation: 13.64± 11.2%.

We think that the main difference in the performance of GradAlign compared to the gradient
penalties that we considered comes from the fact that it is invariant to the gradient norm, and it takes
into account only the directions of two gradients inside the `∞-ball around the given input.

Inspired by CURE, we also tried two additional experiments:

1. Using the FGSM point δFGSM for the gradient taken at the second input point for
GradAlign, but we observed that it does not make a substantial difference, i.e. this version
of GradAlign also prevents catastrophic overfitting and leads to similar results. However,
if we use CURE without FGSM in the cross-entropy loss, then we observe a benefit of
using δFGSM in the regularizer which is consistent with the observations made in Moosavi-
Dezfooli et al. [25].

2. Using GradAlign without FGSM in the cross-entropy loss. In this case, we observed that
the model did not significantly improve its robustness suggesting that GradAlign is not
a sufficient regularizer on its own to promote robustness and has to be used with some
adversarial training method.

We think that an interesting future direction is to explore how one can speed up GradAlign or to
come up with other regularization methods that are also able to prevent catastrophic overfitting,
but avoid relying on the input gradients which lead to a slowdown in training. We think that some
potential strategies to speed up GradAlign can include parallelization of the computations or saving
some computations by subsampling the training batches for the regularizer. We postpone a further
exploration of these ideas to future work.
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