A Proof of Proposition [I]

We first follow the proof of the log-sum inequality to prove the following inequality:
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where g, (y|Dr) £ Eq, 010, [P(¥10)] = [ 4.(6|D;) p(y|6) d6 and p(y|D;) = Eygpp,) [p(y]6)] =
[ p(6D:) p(y|6) d6.

Proof. Define the function f(t) £ tlog ¢ which is convex. Then,
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where the inequality is due to Jensen’s inequality. O

Then, integrating both sides of (TI)) w.r.t. 3,
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B Proof of Proposition 2]

From (2)),
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Then, taking an expectation of both sides w.r.t. ¢, (0|D,.),

logp(D.[D,) = [ 4.(01D,) log(D.J0) a0 + qu<0|7>,.>1ogq;§z|'g;) ao- [ quwmrﬂogm a6

= /qu(9|D,-) log p(D.|0) d6 + KL[qu(0[D;) || p(6|D)] — KL[q.(8|D:) || p(6|D:)]
=U —KL|[q.(0|D;) || p(0|D;)] .
Therefore,
U =log p(Dc|Dyr) + KL[qu(0[D;) || p(6|D;)] = log p(De|Dr)
since KL[q,,(0|D,) || p(6]|D,-)] > 0. So, U is an upper bound of log p(D.|D,.).

C Bayesian Linear Regression

We perform unlearning of a simple Bayesian linear regression model: v, = a3 + bx? + cx +d + €
where a = 2, b= —3, ¢ = 1, and d = 0 are the model parameters 6, and the noise is € ~ A/(0, 0.052).
Though the exact posterior belief of 8 is known to be a multivariate Gaussian, we choose to use a
low-rank approximation (i.e., multivariate Gaussian with a diagonal covariance matrice) and represent
the approximate posterior beliefs of the model parameters with independent Gaussians so that the
approximation is not exact.

Fig.[/p shows the remaining data D, and erased data D.. Note that the erased data D, is informative
to the approximate posterior beliefs of the model parameters 6 as D, are clustered. So, the difference
between the samples drawn from predictive distributions ¢(y.|D) (Fig. ) vs. ¢(y|D,) (Fig. ) is
large.

Table 2: KL divergences achieved by EUBO (left column) and rKL (right column) with varying A for
synthetic linear regression dataset.

A KL[qvu(e‘,Drv)O || q(a‘IDT)} KL[(L(GlDT’ )‘) H Q(elpr)]

0.5 0.1143 0.1012
0.1 0.0899 0.0600
0.0 266.68 0.0158

From Table 2] the KL divergences achieved by EUBO and rKL with A = 0.1, 0.5 are smaller than
KL[q(8|D) || ¢(8|D;)] of value 0.1170 (i.e., baseline representing no unlearning), hence demonstrat-
ing reasonable unlearning performance. When A = 0, EUBO suffers from catastrophic unlearning,
but rKL does not. The KL divergences in Table [2|also agree with the plots of samples drawn from the
predictive distributions induced by EUBO and rKL in Fig.[7/|by comparing with the samples drawn
from the predictive distribution obtained using VI from retraining with D,. in Fig.[7.

D Bimodal Posterior Belief

Let the posterior belief of model parameter 6 given full data D be a Gaussian mixture (i.e., a bimodal
distribution):

p(0|D) £ 0.5 ¢(0;0,1) + 0.5 ¢(6;2,1) (12)
where ¢(0; i1, 0?) is a Gaussian p.d.f. with mean y and variance 0. We deliberately choose the
likelihood of the erased data D, to be

¢(0;2,1)
D0) &1+ 222 13
p(DI8) 21+ S (13
so that the posterior belief of 6 given the remaining data D,. is a Gaussian:
p(0|D)
p(0|D,) x = ¢(0;0,1 (14)
O1P) > i, oy ~ A0V
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Figure 7: Plots of (a) synthetic linear regression dataset with erased data D, (crosses) and remaining
data D, (dots), and samples from predictive distributions obtained using VI from (b) training with
full data D and (c) retraining with D,.. Plots of samples from predictive distributions (d-f) G, (y.|D;)
and (g-i) ¢, (y.|D,) induced, respectively, by EUBO and rKL with varying .

where the proportionality is due to (2).

We assume to only have access to the likelihood of the erased data in @); the exact posterior beliefs
of # given the full data (T2) and that given the remaining data (T4) are not available. Instead, we have
access to an approximate posterior belief ¢(6|D) given the full data obtained using VI by minimizing
KL[g(0|D) || p(6|D)] or, equivalently, maximizing the ELBO (Section2):

q(0|D) = ¢(0;1.004,1.390?) . (15)

Given the likelihood p(D.|0) of the erased data in (T3) and the approximate posterior belief ¢(6|D)
given the full data (T3), unlearning from D, is performed using EUBO and rKL to obtain
Gu(0]Dy; A = 0) = $(0;0.060,1.000%) and G, (0|D,; X = 0) = $(#;0.062,1.018?) ,

respectively. Hence, both EUBO and rKL perform reasonably well since their respective G, (6|D;; A =
0) and G, (8| D,; A = 0) are close to p(8]D,.) = ¢(6;0, 1) (14) when p(6|D) is a bimodal distribution.

E Gaussian Process (GP) Classification with Synthetic Moon Dataset:
Additional Details and Experimental Results

This section discusses the sparse GP model that is used in the classification of the synthetic moon
dataset in Sec. Let y, € {0, 1} be the class label of x € X C R?; y, = 1 denotes the ‘blue’
class plotted as blue dots in Fig. 4. The probability of yy is defined as follows:

. 1

Pl = 15) = o) (16)
_ s _exp(fx)

P(yx = 0fx) = 5 + exp(fx)
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Figure 8: Plots of approximate posterior beliefs (a-b) ¢(fx|D) and (c-d) ¢(fx|D:)-

where fx is modeled using a GP [28]], that is, every finite subset of { fx } xcx follows a multivariate
Gaussian distribution. A GP is fully specified by its prior mean (i.e., assumed to be 0 w.l.o.g.)

and covariance ky,s = cov(x,x’), the latter of which can be defined by the widely-used squared
exponential covariance function ky,s = UJ% exp(—0.5]|A(x — x')||) where A = diag[\;, \2] and 0?

are the length-scale and signal variance hyperparameters, respectively. In this experiment, we set
A1 = 1.56, Ao = 1.35, and JJ% =4.74.

We employ a sparse GP model, namely, the deterministic training conditional (DTC) [27] ap-
proximation of the GP model with a set X, of 20 inducing inputs. These inducing inputs are
randomly selected from X and remain the same (and fixed) for both model training and unlearn-

ing. Given the latent function values (i.c., also known as inducing variables) fx, £ (fx)xcx,
at these inducing inputs, the posterior belief of the latent function value fx at a new input x is a

Gaussian p(fx|fx,) = N (ke K3' v 1, Fxx — ku, K3 v Ka,x) where Kyx, £ (kxxt)xex, -
kX“,x = k;(rxu, and KXUX“ = (kxx’)x,x’EX“,-

Using p(fx|fx,) and ¢(fx,|D) = N(px,, Sx,), it can be derived that the approximate posterior
belief q(fx|D) of fx given full data D is also a Gaussian with the following respective posterior
mean and variance:

fxip 2 ke, K3l v pa, (17)
o—im 2 e — ke, K3l v Kux + ke, Ky v B, K3 4 k- (18)

The approximate posterior belief ¢( fx|D,.) of fx from retraining with remaining data D, using VI
(specifically, using ¢(fx, |D,)) can be derived in the same way as that of ¢( fx|D).

The parameters p v, , 3y, of the approximate posterior belief ¢(fx, |D) is optimized by maximizing
the ELBO with stochastic gradient ascent (let @ = fy, in () in Sec. [2):

D) + logp(fx,)]

Ety, ~a(tx, 1) 108 P(Dlfx,) —logq(fx,
where p(D|fx, ) is computed using (16), and (T8).

Fig. [8] visualizes ¢( fx|D) (Figs. [8h and[8p) and ¢( fx|D,) (Figs.[8k and[8ld) whose corresponding
predictive distributions ¢(yx = 1|D) and q(yx = 1|D,) are shown in Figs. 4p and Ac, respectively.
On the other hand, Figs. E] and (10| visualize the approximate posterior beliefs ¢, (fx|D.; A) and
Gv(fx|Dr; ) induced, respectively, by EUBO and rKL whose corresponding predictive distributions
Gu(yx = 1|D,) and ¢, (yx = 1|D,.) are shown in Figs. -k. Similar to the comparison between
predictive distributions ¢, (yx = 1|D.) vs. ¢(yx = 1|D,) in Sec. it can be observed that
the approximate posterior belief G, (fx|Dr; A = 107?) induced by EUBO is similar to ¢(fx|D;)
obtained using VI from retraining with D, (compare Figs.[9 vs. [8c and Figs.[9d vs.[8[d). However,
Gu(fx|Dr; A = 0) induced by EUBO differs from g( fx|D,) obtained using VI from retraining with
D, (compare Figs. [9¢ vs.[8f and Figs.[9f vs.[8d). On the other hand, both the approximate posterior
beliefs G, (fx|Dr; A = 1077) and G, (fx|Dr; A = 0) induced by rKL are similar to ¢( fx|D,.) obtained
using VI from retraining with D, (compare Fig.[I0]vs. Figs. [8k-d).

F A Note on Erasing Informative Data

In this section, we study the performance of our unlearning methods when erasing a large quantity
of data or with different distributions of erased data (i.e., erasing the data randomly vs. deliberately
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Figure 9: Plots of approximate posterior belief G, (fx|D,; A) induced by EUBO for varying .
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Figure 10: Plots of approximate posterior belief G, (fx|Dy; A) induced by rKL for varying .
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erasing all data in a given class). Let us consider the experiment in Sec. [.T|on the sparse GP model
(i.e., the model parameters 6 in (] in Sec. 2]are inducing variables fy, ) in the classification of the
synthetic moon dataset as it allows us to easily visualize both the approximate posterior beliefs of
the latent function fx and the predictive distributions of the output/observation yx. A key factor
influencing the performance of our unlearning methods in the above-mentioned scenarios is the
difference between the approximate posterior belief of model parameters fy, given remaining data
D, vs. that given full data D. We quantify such a difference by how much the erased data D, reduces
the entropy of model parameters/inducing variables fr, given remaining data D,.:

T2 H(fx,|D,)—H(fx,|D) = / a(Ex.|D,) log (fx, [ D)) dfx, + / 4(fx,|D) log ¢(Ex, |D) dfy,

19)
Note that Z is not the same as the mutual information (i.e., information gain) between fy, and
yp, = (yx)gc,yx)eba given D,., which is equal to H (fx, |D,) — Ep(yp, |p,) [H (fx, |Dr, yp,)] with
an expensive-to-evaluate expectation term. Furthermore, the outputs/observations yp_ are known
from D,. These therefore prompt us to choose Z as the measure of how much the erased data
D, reduces the entropy of model parameters/inducing variables fy, given remaining data D,..

We investigate 4 different scenarios in the order of increasing Z:

1. Randomly selected D, (Z = 0.27): The erased data of size |D.| = 20 are randomly selected
from D. Hence, they are not necessarily near the decision boundary, i.e., D, does not reduce
the entropy of model parameters/inducing variables fy,, given D, much;

2. Partially ‘yellow’ D, (Z = 1.59): The erased data of size |D.| = 30 are labeled with the
‘yellow’ class and comprise inputs x with the largest possible first component zy. Such a
choice ensures that the erased data group together to cover a part of the decision boundary,
as shown in Fig. [TT(d;

3. Largely ‘yellow’ D, (Z = 2.06): The erased data of size |D.| = 40 are labeled with the
yellow class and comprise inputs x with the largest possible first component zy. As the
quantity of the erased data D, increases from 30 (i.e., partially ‘yellow’ D) to 40, D, covers
a larger part of the decision boundary (compare Figs. [Tl vs.[TTd); and

4. Fully ‘yellow’ D, (Z = 3.86): The erased data of size |D.| = 50 comprise all data in
the yellow class. In this case, D, reduces the entropy of the model parameters/inducing
variables fx, given D,. the most when compared to the above 3 scenarios.

As T increases, the difference between the approximate posterior belief of £y, given remaining data
D, vs. that given full data D increases. Though it is difficult to visualize such a difference directly,
Proposition[T]tells us that this difference can be alternatively understood by comparing the predictive
distributions ¢(yx = 1|D;) in Table|vs. ¢(yx = 1|D) in Fig. @p.

Fig. [11] shows results of averaged KL divergences (i.e., performance metric described in Sec. [4)
achieved by EUBO, KL, and ¢(fx,|D) over D, and D, for the 4 scenarios above. Table [3|also
analyzes the performance of our unlearning methods qualitatively by plotting the means of the
approximate posterior beliefs G, (fx|Dr; A) and ¢, (fx|D;; A) induced, respectively, by EUBO and
rKL with the corresponding predictive distributions G, (yx = 1|D,.) and g, (yx = 1|D,.), together with
the mean of the approximate posterior belief ¢( fx|D,.) with the corresponding predictive distribution
q(yx = 1|D,.) obtained using VI from retraining with remaining data D,.. The following observations
result:

e Fig.[[T|shows that as Z increases across the 4 scenarios, the averaged KL divergence between
q(yx|D) vs. q(yx|D.) over D,. and D, (i.e., baseline labeled as full) generally increases.

e In the scenario of randomly selected D, (i.e., Z is small), we expect the difference between
the predictive distributions ¢(yx|D) vs. ¢(yx|D,) over D, and D, to be small, which is
reflected in the very small averaged KL divergences of about 0.002 and 0.004 achieved by
q(fx,|D) (i.e., baseline labeled as full) in Figs.[11p and , respectively. It can also be
observed that though EUBO and rKL with A\ € {1075, 10~%} achieve smaller averaged
KL divergences than that of ¢(fx, |D) (i.e., baseline), EUBO’s averaged KL divergence
increases beyond than that of the baseline when A = 0, but remains very small. As a result,
the first row in Table [3|shows that when A = 10~ or A\ = 0, the predictive distributions
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Gu(yx = 1|D;.) and G, (yx = 1|D,) induced, respectively, by EUBO and rKL are similar
to ¢(yx = 1|D,.) obtained using VI from retraining with D,.. Hence, we can conclude that
both EUBO and rKL perform reasonably well in this scenario, even when A = 0.

o In the scenarios of partially and largely ‘yellow’ D,, Z is much larger than that in the scenario
of randomly selected D.. So, we expect an increase in the difference between the predictive
distributions ¢(yx|D) vs. ¢(yx|D;) over D, and D,. It can be observed from Figs. [[Tp-f
and [[Th-i that when A = 0, EUBO performs poorly as its averaged KL divergence is larger
than that of ¢(fx, | D) (i.e., baseline labeled as full), while rKL performs well as its averaged
KL divergence is much smaller than that of the baseline. On the other hand, when A = 1079,
both EUBO and rKL perform well, which can also be observed from the second and third
rows of Table[3] These plots also show that while the predictive distributions g, (yx = 1|D;)
induced by rKL with A\ = 10~ are not as similar to q(yx = 1|D,) as ¢.(yx = 1|D;)
induced by EUBO with A = 10, the performance of rKL with A = 0 is more robust.

o In the scenario of fully ‘yellow’ D, (i.e., Z is largest), the difference between the predictive
distributions ¢(yx|D) vs. ¢(yx|D,) over D, and D, is larger than that in the above 3
scenarios. Except for EUBO with A = 0, the predictive distributions g, (yx|D;) and
Gv(yx|D;) induced, respectively, by EUBO and rKL are closer to ¢(yx|D;-) than q(yx|D) as
they achieve smaller averaged KL divergences than that of ¢(fx, |D), as shown in Figs. -1.
However, the fourth row of Table [3| shows that both EUBO and rKL do not perform that well.
Nevertheless, it can be observed that when A = 0, the predictive distribution G, (yx = 1|D;-)
induced by rKL is still usable while ¢, (yx = 1|D,) induced by EUBO is useless.

To summarize, when only an approximate posterior belief ¢(6|D) of model parameters 6 = fx,
given full data D (i.e., obtained in model training with VI) is available, both EUBO and rKL can
perform well if the difference between the approximate posterior belief of model parameters given
remaining data D,. vs. that given full data D is sufficiently small. In practice, this is expected due to
the small quantity of erased data and redundancy in real-world datasets. In the case where the erased
data is highly informative, the approximate posterior belief G, (6|D,-; A = 0) induced by rKL remains
usable by being close to ¢(8|D) and hence sacrificing its unlearning performance. On the other hand,
EUBO may suffer from poor unlearning performance when A is too small.

The above remark highlights the limitation of our unlearning methods when the erased data D, is
informative and only the approximate posterior belief ¢(@|D) is available. Such a limitation is due
to the lack of information about the difference between the exact posterior belief p(8|D) vs. the
approximate one ¢(8|D) (Sec. , which motivates future investigation into maintaining additional
information about this difference during the model training with VI to improve the unlearning
performance. In practice, an ML application may require an unlearning method to be time-efficient in
order to satisfy the constraint on the response time to a user’s request for her data to be erased while
not rendering the model useless (e.g., due to catastrophic unlearning). After processing the user’s
request, the ML application can continue to improve the approximate posterior belief recovered by
unlearning from erased data (i.e., using our proposed EUBO or rKL) by retraining with the remaining
data at the expense of parsimony (i.e., in terms of time and space costs).

One may wonder how our unlearning methods can handle multiple users’ request arriving sequentially
over time. To avoid approximation errors from accumulating, we can adopt the approach of lazy
unlearning by aggregating all the (past and new) users’ erased data into D, and performing unlearning
(i.e., using only ¢(8|D) and D.) as and when necessary. As expected, our unlearning methods can
perform well, provided that the aggregated erased data D, remains sufficiently small or contains
enough redundancy.

G Logistic Regression with Fashion MNIST Dataset: Additional
Experimental Results

In this section, we will present the following:

e Additional visualizations of the class probabilities for images in D,. evaluated at the mean of
the approximate posterior beliefs obtained using EUBO and rKL with A = 0 in Fig. and
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Figure 11: Plots of (a,d,g,j) synthetic moon dataset with erased data D, (crosses) and remaining
data D,. (dots) in 4 different scenarios. Graphs of averaged KL divergence vs. A achieved by EUBO,
reverse KL (rKL), and ¢(0|D) (i.e., baseline labeled as full) over D, and D, in the following 4

scenarios: (b-c) randomly selected D, (e-f) partially ‘yellow’ D, (h-i) largely ‘yellow’ D, and (k-1)
fully ‘yellow’ D..
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Table 3: Plots of the mean of approximate posterior belief ¢( fx|D,) with the corresponding predictive
distribution g(yx = 1|D,.) obtained using VI from retraining with remaining data D,., and also the
means of approximate posterior beliefs G, (fx|D;; A) and G, (fx|D,; A) induced, respectively, by
EUBO and rKL with the corresponding predictive distributions G, (yx = 1|D;) and G, (yx = 1|D;)
for A € [1079,0]. The 1-st, 2-nd, 3-rd, and 4-th rows correspond to the following 4 respective
scenarios: randomly selected D., partially ‘yellow’ D, largely ‘yellow’ D, and fully ‘yellow’ D..
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Figure 12: Graphs of averaged KL divergence vs. A achieved by EUBO, KL, and ¢(8|D) (i.e.,
baseline labeled as fill) over D,. and D, for the fashion MNIST dataset. The approximate posterior
beliefs of the model parameters/weights are represented by (a-b) independent Gaussians (i.e., diagonal
covariance matrices) and (c-d) multivariate Gaussians (i.e., full covariance matrices).

e Comparison of the unlearning performance obtained using approximate posterior beliefs
modeled with independent Gaussians (i.e., diagonal covariance matrices) vs. that modeled
with multivariate Gaussians (i.e., full covariance matrices).

Fig. [T3|shows the class probabilities for the images in D, evaluated at the mean of the approximate
posterior beliefs with A\ = 0. Figs.[[3h-d and[I3}z show that rKL induces the highest class probablhty
for the same class as that of ¢(0|D;). In Flg‘ f and . the class probabilities obtained using
optimized G, (0|D,-; A = 0) resemble that obtained using ¢ D), though the probability of the correct
class is reduced due to unlearning.

Fig. [12| shows the averaged KL divergences of EUBO, rKL, and ¢(6|D) where the approximate
posterior beliefs are modeled with independent Gaussians (i.e., diagonal covariance matrices) in
Figs. [[Zh-b and multivariate Gaussians (i.e., full covariance matrices) in Figs. [[2c-d. It can be
observed that the averaged KL divergences between q(yx|D) vs. ¢(yx|D,) over D, and D, (i.e.,
baselines labeled as full) decrease when multivariate Gaussians with full covariance matrices are
used to model the approximate posterior beliefs instead (compare the baselines labeled as full in
Figs.[T2k-d vs. that in Figs. [[2h-b). Furthermore, in such a case, the unlearning performance of both
EUBO and rKL improve as their averaged KL divergences are not as large (relative to the baselines)
as that using independent Gaussians.
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Figure 13: Plots of class probabilities for images in D, obtained using ¢(0|D), ¢(0|D;-), optimized
Gv(8|Dy; X = 0) and G,,(0|D,; A = 0). 23



