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Abstract

Deep learning classifiers are susceptible to well-crafted, imperceptible variations
of their inputs, known as adversarial attacks. In this regard, the study of power-
ful attack models sheds light on the sources of vulnerability in these classifiers,
hopefully leading to more robust ones. In this paper, we introduce AdvFlow: a
novel black-box adversarial attack method on image classifiers that exploits the
power of normalizing flows to model the density of adversarial examples around a
given target image. We see that the proposed method generates adversaries that
closely follow the clean data distribution, a property which makes their detection
less likely. Also, our experimental results show competitive performance of the
proposed approach with some of the existing attack methods on defended classifiers.
The code is available at https://github.com/hmdolatabadi/AdvFlow.

1 Introduction

Deep neural networks (DNN) have been successfully applied to a wide variety of machine learning
tasks. For instance, trained neural networks can reach human-level accuracy in image classifica-
tion [46]. However, Szegedy et al. [53] showed that such classifiers can be fooled by adding an
imperceptible perturbation to the input image. Since then, there has been extensive research in this
area known as adversarial machine learning, trying to design more powerful attacks and devising
more robust neural networks. Today, this area encompasses a broader type of data than images, with
video [25], graphs [65], text [34], and other types of data classifiers being attacked.

In this regard, the design of stronger adversarial attacks plays a crucial role in understanding the
nature of possible real-world threats. The ultimate goal of such studies is to help neural networks
become more robust against such adversaries. This line of research is extremely important as even
the slightest flaw in some real-world applications of DNNs such as self-driving cars can have severe,
irreparable consequences [12].

In general, adversarial attack approaches can be classified into two broad categories: white-box
and black-box. In white-box adversarial attacks, the assumption is that the threat model has full
access to the target DNN. This way, adversaries can leverage their knowledge about the target model
to generate adversarial examples (for instance, by taking the gradient of the neural network). In
contrast, black-box attacks assume that they do not know the internal structure of the target model
a priori. Instead, they can only query the model about some inputs, and work with the labels or
confidence levels associated with them [62]. Thus, black-box attacks seem to be making more realistic
assumptions. In the beginning, black-box attacks were mostly thought of as the transferability of
white-box adversarial examples to unseen models [42]. Recently, however, there has been more
research to attack black-box models directly.
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Figure 1: Adversarial perturbations generated by AdvFlow take the structure of the original image
into account, resulting in less detectable adversaries compared to NATTACK [33] (see Section 4.1).
The classifier is a VGG19 [50] trained to detect smiles in CelebA [36] faces. (a) AdvFlow magnified
difference (b) AdvFlow adversarial example (c) clean image (d) NATTACK adversarial example (e)
NATTACK magnified difference.

In this paper, we introduce AdvFlow: a black-box adversarial attack that makes use of pre-trained
normalizing flows to generate adversarial examples. In particular, we utilize flow-based methods
pre-trained on clean data to model the probability distribution of possible adversarial examples
around a given image. Then, by exploiting the notion of search gradients from natural evolution
strategies (NES) [59, 58], we solve the black-box optimization problem associated with adversarial
example generation to adjust this distribution. At the end of this process, we wind up having a
data distribution whose realizations are likely to be adversarial. Since this density is constructed on
the top of the original data distribution estimated by normalizing flows, we see that the generated
perturbations take on the structure of data rather than an additive noise (see Figure 1). This property
impedes distinguishing AdvFlow examples from clean data for adversarial example detectors, as they
often assume that the adversaries come from a different distribution than the clean data. Moreover,
we prove a lemma to conclude that adversarial perturbations generated by the proposed approach can
be approximated by a normal distribution with dependent components. We then put our model under
test and show its effectiveness in generating adversarial examples with 1) less detectability, 2) higher
success rate, 3) lower number of queries, and 4) higher rate of transferability on defended models
compared to the similar method of NATTACK [33].

In summary, we make the following contributions:

• We introduce AdvFlow, a black-box adversarial attack that leverages the power of normaliz-
ing flows in modeling data distributions. To the best of our knowledge, this is the first work
that explores the use of flow-based models in the design of adversarial attacks.

• We prove a lemma about the adversarial perturbations generated by AdvFlow. As a result of
this lemma, we deduce that AdvFlows can generate perturbations with dependent elements,
while this is not the case for NATTACK [33].

• We show the power of the proposed approach in generating adversarial examples that have
a similar distribution to the data. As a result, our method is able to mislead adversarial
example detectors for they often assume adversaries come from a different distribution than
the clean data. We then see the performance of the proposed approach in attacking some of
the most recent adversarial training defense techniques.

2 Related Work

In this section, we review some of the most closely related work to our proposed approach. For a
complete review of (black-box) adversarial attacks, we refer the interested reader to [62, 3].

Black-box Adversarial Attacks. In one of the earliest black-box approaches, Chen et al. [5] used
the idea of Zeroth Order Optimization and came up with a method called ZOO. In particular, ZOO
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uses the target neural network queries to build up a zero-order gradient estimator. Then, it utilizes the
estimated gradient to minimize a Carlini and Wagner (C&W) loss [4] and find an adversarial image.
Later and inspired by [58, 47], Ilyas et al. [22] tried to estimate the DNN gradient using a normally
distributed search density. In particular, they estimate the gradient of the classifier C(x) with

∇xC(x) ≈ EN (z|x,σ2I)

[
C(z)∇x log

(
N (z|x, σ2I)

)]
,

which only requires querying the black-box model C(x). Having the DNN gradient estimate, Ilyas
et al. [22] then take a projected gradient descent (PGD) step to minimize their objective for generating
an adversarial example. This idea is further developed in the construction of NATTACK [33].
Specifically, instead of trying to minimize the adversarial example generation objective directly, they
aim to fit a distribution around the clean data so that its realizations are likely to be adversarial (see
Section 3.3 for more details). In another piece of work, Ilyas et al. [23] observe that the gradients
used in adversarial example generation by PGD exhibit a high correlation both in time and across
data. Thus, the number of queries to attack a black-box model can be reduced if one incorporates
this prior knowledge about the gradients. To this end, Ilyas et al. [23] uses a bandit-optimization
technique to integrate these priors into their attack, resulting in a method called Bandits & Priors.
Finally, Simple Black-box Attack (SimBA) [16] is a straightforward, intuitive approach to construct
black-box adversarial examples. It is first argued that for any particular direction q and step size ε > 0,
either x − εq or x + εq is going to decrease the probability of detecting the correct class label of
the input image x. Thus, we are likely to find an adversary by iteratively taking such steps. The
vectors q are selected from a set of orthonormal candidate vectors Q. Guo et al. [16] use Discrete
Cosine Transform (DCT) to construct such a set, exploiting the observation that “random noise in
low-frequency space is more likely to be adversarial” [15].

Adversarial Attacks using Generative Models. There has been some prior work that utilizes the
power of generative models (mostly generative adversarial networks (GAN)) to model adversarial
perturbations and attack DNNs [2, 61, 56, 20]. The target of these models is mainly white-box
attacks. They require training of their parameters to produce adversarial perturbations using a cost
function that involves taking the gradient of a target network. To adapt themselves to black-box
settings, they try to replace this target network with either a distilled version of it [61], or a substitute
source model [20]. However, as we will see in Section 3, the flow-based part of our model is only
pre-trained on some clean training data using the maximum likelihood objective of Eq. (5). Thus,
AdvFlow can be adapted to any target classifier of the same dataset, without the need to train it again.
Moreover, while prior work is mainly concerned with generating the adversarial perturbations (for
example [55]), here we use the normalizing flows output as the adversarial example directly. In this
sense, our work is more similar to [51] that generates unrestricted adversarial examples using GANs
in a white-box setting, and falls under functional adversarial attacks [31]. However, besides being
black-box, in AdvFlow we restrict the output to be in the vicinity of the original image.

3 Proposed Method

In this section, we propose our attack method. First, we define the problem of black-box adversarial
attacks formally. Next, we go over normalizing flows and see how we can train a flow-based
model. Then, we review the idea of Natural Evolution Strategies (NES) [59, 58] and NATTACK [33].
Afterward, we show how normalizing flows can be mixed with NES in the context of black-box
adversarial attacks, resulting in a method we call AdvFlow. Finally, we prove a lemma about the
nature of the perturbations generated by the proposed approach and show that NATTACK cannot
produce the adversarial perturbations generated by AdvFlow. Our results in Section 4 support this
lemma. There, we see that AdvFlow can generate adversarial examples that are less detectable than
the ones generated by NATTACK [33] due to its perturbation structure.

3.1 Problem Statement

Let C(·) : X d → Pk denote a DNN classifier. Assume that the classifier takes a d-dimensional input
x ∈ X d, and outputs a vector p ∈ Pk. Each element of the vector p indicates the probability of the
input belonging to one of the k classes that the classifier is trying to distinguish. Furthermore, let y
denote the correct class label of the data. In other words, if the y-th element of the classifier output p
is larger than the rest, then the input has been correctly classified. Finally, let the well-known Carlini
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and Wagner (C&W) loss [4] be defined as1

L(x′) = max
(
0, log C(x′)y −max

c 6=y
log C(x′)c

)
, (1)

where C(x′)y indicates the y-th element of the classifier output. In the C&W objective, we always
have L(x′) ≥ 0. The minimum occurs when C(x′)y ≤ maxc6=y C(x′)c, which is an indication that
our classifier has been fooled. Thus, finding an adversarial example for the input data x can be written
as [33]:

xadv = argmin
x′∈S(x)

L(x′). (2)

Here, S(x) denotes a set that contains similar data to x in an appropriate manner. For example, it is
common to define

S(x) =
{
x′ ∈ X d

∣∣ ‖x′ − x‖p ≤ εmax

}
(3)

for image data. In this paper, we define S(x) as in Eq. (3) since we deal with the application of our
attack on images.

3.2 Flow-based Modeling

Normalizing Flows. Normalizing flows (NF) [54, 7, 44] are a family of generative models that
aim at modeling the probability distribution of a given dataset. To this end, they make use of the
well-known change of variables formula. In particular, let Z ∈ Rd denote a random vector with a
straightforward, known distribution such as uniform or standard normal. The change of variables
formula states that if we apply an invertible and differentiable transformation f (·) : Rd → Rd on Z
to obtain a new random vector X ∈ Rd, the relationship between their corresponding distributions
can be written as:

p(x) = p(z)

∣∣∣∣det(∂f∂z)
∣∣∣∣−1 . (4)

Here, p(x) and p(z) denote the probability distributions of X and Z, respectively. Moreover, the
multiplicative term on the right-hand side is called the absolute value of the Jacobian determinant.
This term accounts for the changes in the volume of Z due to applying the transformation f(·). Flow-
based methods model the transformation f(·) using stacked layers of invertible neural networks (INN).
They then apply this transformation on a base random vector Z to model the data density. In this
paper, we assume that the base random vector has a standard normal distribution.

Maximum Likelihood Estimation. To fit the parameters of INNs to the i.i.d. data observations
x1,x2, . . . ,xn, NFs use the following maximum likelihood objective [44]:

θ∗ = argmax
θ

1

n

n∑
i=1

log pθ (xi) . (5)

Here, θ denotes the parameter set of the model and pθ is the density defined in Eq. (4). Note that
INNs should be modeled such that they allow for efficient computation of their Jacobian determinant.
Otherwise, this issue can impose a severe hindrance in the application of NFs to high-dimensional data
given the cubic complexity of determinant computation. For a more detailed review of normalizing
flows, we refer the interested reader to [41, 28] and the references within.

Training the Flow-based Models. We assume that we have access to some training data of the
same domain to pre-train our flow-based model. However, at the time of adversarial example
generation, we use unseen test data. Note that while in our experiments we use the same training
data as the classifier itself, we are not obliged to do so. We observed that our results remain almost
the same even if we separate the flow-based model training data from what the classifier is trained
on. We argue that using the same training data is valid since our flow-based models do not extract
discriminative features, and they are only trained on clean data. This is in contrast to other generative
approaches used for adversarial example generation [2, 61, 56, 20]. In Appendix C.5, we empirically
show that not only is this statement accurate, but we can get almost the same performance by using
similar datasets to the true one.

1Note that although we are defining our objective function L(x′) for un-targeted adversarial attacks, it can
be easily modified to targeted attacks. To this end, it suffices to replace maxc 6=y log C(x′)c in Eq. (1) with
log C(x′)t, where t shows the target class output. In this paper, we only consider un-targeted attacks.
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3.3 Natural Evolution Strategies and NATTACK

Natural Evolution Strategies (NES). Our goal is to solve the optimization problem of Eq. (2) in
a black-box setting, meaning that we only have access to the inputs and outputs of the classifier C(·).
Natural Evolution Strategies (NES) use the idea of search gradients to optimize Eq. (2) [59, 58]. To
this end, a so-called search distribution is first defined, and then the expected value of the original
objective is optimized under this distribution.

In particular, let p(x′|ψ) denote the search distribution with parameters ψ. Then, in NES we aim to
minimize

J(ψ) = Ep(x′|ψ) [L(x′)] (6)
over ψ as a surrogate for L(x′) [58]. To minimize Eq. (6) using gradient descent, one needs to
compute the Jacobian of J(ψ) with respect to ψ. To this end, NES makes use of the “log-likelihood
trick” [58] (see Appendix A.1)

∇ψJ(ψ) = Ep(x′|ψ)

[
L(x′)∇ψ log

(
p(x′|ψ)

)]
. (7)

Finally, the parameters of the model are updated using a gradient descent step with learning rate α:2

ψ ← ψ − α∇ψJ(ψ). (8)

NATTACK. To find an adversarial example for an input x,NATTACK [33] tries to find a distribution
p(x′|ψ) over the set of legitimate adversaries S(x) in Eq. (3). Therefore, it models x′ as

x′ = projS
(
1
2 (tanh(z) + 1)

)
, (9)

where z ∼ N (z|µ, σ2I) is an isometric normal distribution with mean µ and standard deviation σ.
Moreover, projS(·) projects its input back into the set of legitimate adversaries S(x). Li et al. [33]
define their model parameters as ψ = {µ, σ}. Then, they find σ using grid-search and µ by the
update rule of Eq. (8) exploiting NES.

3.4 Our Approach: AdvFlow

Recently, there has been some effort to detect adversarial examples from clean data. The primary
assumption of these methods is often that the adversaries come from a different distribution than the
data itself; for instance, see [37, 32, 64]. Thus, to come up with more powerful adversarial attacks, it
seems reasonable to construct adversaries that have a similar distribution to the clean data. To this end,
we propose AdvFlow: a black-box adversarial attack that seeks to build inconspicuous adversaries by
leveraging the power of normalizing flows (NF) in exact likelihood modeling of the data [8].

Let f(·) denote a pre-trained, invertible and differentiable NF model on the clean training data. To
reach our goal of decreasing the attack’s detectability, we propose using this pre-trained, fixed NF
transformation to model the adversaries. In an analogy with Eq. (9), we assume that our adversarial
example comes from a distribution that is modeled by

x′ = projS
(
f(z)

)
, z ∼ N (z|µ, σ2I) (10)

where projS(·) is a projection rule that keeps the generated examples in the set of legitimate
adversaries S(x). By the change of variables formula from Eq. (4), we know that f(z) in Eq. (10)
is distributed similar to the clean data distribution. The only difference is that the base density is
transformed by an affine mapping, i.e., from N (z|0, I) to N (z|µ, σ2I). This small adjustment can
result in an overall distribution for which the generated samples are likely to be adversarial.

Putting the rule of the lazy statistician [57] together with our attack definition in Eq. (10), we can
write down the objective function of Eq. (6) as

J(µ, σ) = Ep(x′|µ,σ) [L(x′)] = EN (z|µ,σ2I)

[
L
(
projS

(
f(z)

))]
. (11)

2Note that this update procedure is not what NES precisely stands for. It is rather a canonical gradient
search algorithm as is called by Wierstra et al. [58], which only makes use of a vanilla gradient [59] for
evolution strategies. In fact, the natural term in natural evolution strategies represents an update of the form
ψ ← ψ − α∇̃ψJ(ψ), where ∇̃ψJ(ψ) = F−1∇ψJ(ψ) is called the natural gradient. Here, the matrix F
is the Fischer information matrix of the search distribution p(x′|ψ). However, since NES in the adversarial
learning literature [22, 23, 33] points to Eq. (8), we use the same convention here.
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As in NATTACK [33], we will consider σ to be a hyperparameter.3 Thus, we are only required to
minimize J(µ, σ) with respect to µ. Using the “log-likelihood trick” of Eq. (7), we can derive the
Jacobian of J(µ, σ) as

∇µJ(µ, σ) = EN (z|µ,σ2I)

[
L
(
projS

(
f(z)

))
∇µ logN (z|µ, σ2I)

]
.

This expectation can then be estimated by sampling from a distribution N (z|µ, σ2I) and forming
their sample average. Next, we update the parameter µ by performing a gradient descent step

µ← µ− α∇µJ(µ, σ).

In the end, we generate our adversarial example by sampling from Eq. (10).

Practical Considerations. To help our model to start its search from an appropriate point, we first
transform the clean data to its latent space representation. Then, we aim to find a small additive latent
space perturbation in the form of a normal distribution. Moreover, as suggested in [33], instead of
working with L

(
projS

(
f(z)

))
directly, we normalize them so that they have zero mean and unit

variance to help AdvFlows convergence faster. Finally, among different flow-based models, it is
preferable to choose those that have a straightforward inverse, such as [8, 27, 11, 10]. This way, we
can efficiently go back and forth between the original data and their base distribution representation.
Algorithm 1 in Appendix D.1 summarizes our black-box attack method. Other variations of AdvFlow
can also be found in Appendix D. These variations include our solution to high-resolution images
and investigation of un-trained AdvFlow.

3.4.1 AdvFlow Interpretation

We can interpret AdvFlow from two different perspectives.

First, there exists a probabilistic view: we use the flow-based model transformation of the original
data, and then try to adjust it using an affine transformation on its base distribution. The amount of
this change is determined by our urge to minimize the C&W cost of Eq. (1) such that we get the
minimum value on average. Thus, if it is successful, we will end up having a distribution whose
samples are likely to be adversarial. Meanwhile, since this distribution is initialized with that of clean
data, it resembles the clean data density closely.

Second, we can think of AdvFlow as a search over the latent space of flow-based models. We map
the clean image to the latent space and then try to search in the vicinity of that point to find an
adversarial example. This search is ruled by the objective of Eq. (11). Since our approach exploits a
fully invertible, pre-trained flow-based model, we would expect to get an adversarial example that
resembles the original image in the structure and look less noisy. This adjustment gives our model the
flexibility to produce perturbations that take the structure of clean data into account (see Figure 1).

3.4.2 Uniqueness of AdvFlow Perturbations

In this section, we present a lemma about the nature of perturbations generated by AdvFlow and
NATTACK [33]. As a direct result of this lemma, we can easily deduce that the adversaries generated
by AdvFlow can be approximated by a normal distribution whose components are dependent. How-
ever, this is not the case for NATTACK as they always have independent elements. In this sense, we
can then rigorously conclude that the AdvFlow perturbations are unique and cannot be generated by
NATTACK. Thus, we cannot expect NATTACK to be able to generate perturbations that look like the
original data. This result can also be generalized to many other attack methods as they often use an
additive, independent perturbation. Proofs can be found in Appendix A.2.

Lemma 3.1. Let f(x) be an invertible, differentiable function. For a small perturbation δz we have

δ = f
(
f−1(x) + δz

)
− x ≈

(
∇f−1(x)

)−1
δz.

Corollary 3.1.1. The adversarial perturbations generated by AdvFlow have dependent components.
In contrast, NATTACK perturbation components are independent.

3Indeed, we can also optimize σ alongside µ to enhance the attack strength. However, sinceNATTACK [33]
only optimizes µ, we also stick with the same setting.
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Table 1: Area under the receiver operating characteristic curve (AUROC) and accuracy of detecting
adversarial examples generated by NATTACK [33] and AdvFlow (un. for un-trained and tr. for
pre-trained NF) using LID [37], Mahalanobis [32], and Res-Flow [64] adversarial attack detectors.
In each case, the classifier has a ResNet-34 [18] architecture.

D
at

a Metric AUROC(%) ↑ Detection Acc.(%) ↑
Method NATTACK AdvFlow (un.) AdvFlow (tr.) NATTACK AdvFlow (un.) AdvFlow (tr.)

C
IF

A
R

-1
0 LID [37] 78.69 84.39 57.59 72.12 77.11 55.74

Mahalanobis [32] 97.95 99.50 66.85 95.59 97.46 62.21
Res-Flow [64] 97.90 99.40 67.03 94.55 97.21 62.60

SV
H

N LID [37] 57.70 58.92 61.11 55.60 56.43 58.21
Mahalanobis [32] 73.17 74.67 64.72 68.20 69.46 60.88

Res-Flow [64] 69.70 74.86 64.68 64.53 68.41 61.13

4 Experimental Results

In this section, we present our experimental results. First, we see how the adversarial examples
generated by the proposed model can successfully mislead adversarial example detectors. Then, we
show the attack success rate and the number of queries required to attack both vanilla and defended
models. Finally, we examine the transferability of the generated attacks between defended classifiers.
To see the details of the experiments, please refer to Appendix B. Also, more simulation results can
be found in Appendices C and D.

For each dataset, we pre-train a flow-based model and fix it across the experiments. To this end,
we use a modified version of Real NVP [8] as introduced in [1], the details of which can be found
in Appendix B.1. Once trained, we then try to attack target classifiers in a black-box setting using
AdvFlow (Algorithm 1).

4.1 Detectability

One approach to defend pre-trained classifiers is to employ adversarial example detectors. This way, a
detector is trained and put on top of the classifier. Before feeding inputs to the un-defended classifier,
every input has to be checked whether it is adversarial or not. One common assumption among such
detectors is that the adversaries come from a different distribution than the clean data [37, 32]. Thus,
the performance of these detectors seems to be a suitable measure to quantify the success of our
model in generating adversarial examples that have the same distribution as the original data. To this
end, we choose LID [37], Mahalanobis [32], and Res-Flow [64] adversarial attack detectors to assess
the performance of the proposed approach. We compare our results with NATTACK [33] that also
approaches the black-box adversarial attack from a distributional perspective for a fair comparison.
As an ablation study, we also consider the un-trained version of AdvFlows where the weights of
the NF models are set randomly. This way, we can observe the effect of the clean data distribution
in misleading adversarial example detectors more precisely. We first generate a set of adversarial
examples alongside some noisy ones using the test set. Then, we use 10% of the adversarial, noisy,
and clean image data to train adversarial attack detectors. Details of our experiments in this section
can be found in Appendix B.2.

We report the area under the receiver operating characteristic curve (AUROC) and the detection
accuracy for each case in Table 1. As seen, in almost all the cases the selected adversarial detectors
struggle to detect the attacks generated by AdvFlow in contrast to NATTACK. These results support
our statement earlier about the distribution of the attacks being more similar to that of data, hence the
failure of adversarial example detectors. Also, we see that pre-training the AdvFlow using clean data
is crucial in fooling adversarial example detectors.

Finally, Figure 2 shows the relative change in the base distribution of the flow-based model for
adversarial examples of Table 1. Interestingly, we see that AdvFlow adversaries are distinctively
closer to the clean data compared to NATTACK [33]. These results highlight the need to reconsider
the underlying assumption that adversaries come from a different distribution than the clean data.
Also, it can motivate training classifiers that learn data distributions, as our results reveal this is not
currently the case.
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Figure 2: Relative change in the base distribution of the flow-based model for adversarial examples
generated by AdvFlow and NATTACK for CIFAR-10 [30] (left) and SVHN [40] (right) classifiers of
Table 1.

4.2 Success Rate and Number of Queries

Next, we investigate the performance of the proposed model in attacking vanilla and defended image
classifiers. It was shown previously that NATTACK struggles to break into adversarially trained
models more than any other defense [33]. Thus, we select some of the most recent defense techniques
that are built upon adversarial training [38]. This selection also helps us in quantifying the attack
transferability in our next experiment. Therefore, we select Free [48] and Fast [60] adversarial
training, alongside adversarial training with auxiliary rotations [19] as the defense mechanisms that
our classifiers employ. Note that these models are the most recent defenses built upon adversarial
training. For a brief explanation of each one of these methods, please refer to Appendix B.3. We
then train target classifiers on CIFAR-10 [30] and SVHN [40] datasets. The architecture that we use
here is the well-known Wide-ResNet-32 [63] with width 10. We then try to attack these classifiers
by generating adversarial examples on the test set. We compare our proposed model with bandits
with time and data-dependent priors [23], NATTACK [33], and SimBA [16]. 4 To simulate a realistic
environment, we set the maximum number of queries to 10, 000. Moreover, for NATTACK and
AdvFlow we use a population size of 20. More details on the defense methods as well as attack
hyperparameters can be found in Appendices B.3 and B.4.

Tables 2 and 3 show the success rate as well as the average and median number of queries required
to successfully attack a vanilla/defended classifier. Also, Figure 3 in Appendix C shows the attack
success rate for AdvFlow and NATTACK [33] versus the maximum number of queries for defended
models. As can be seen, AdvFlows can improve upon the performance of NATTACK [33] in all of
the defended models in terms of the number of queries and attack success rate. Also, it should be
noted that although our performance on vanilla classifiers is worse than NATTACK [33], we are still
generating adversaries that are not easily detectable by adversarial example detectors and come from
a similar distribution to the clean data.

4.3 Transferability

Finally, we examine the transferability of the generated attacks for each of the classifiers in Table 2.
In other words, we generate attacks using a substitute classifier, and then try to attack another target
model. The results of this experiment are shown in Figure 4 of Appendix C. As seen, the generated
attacks by AdvFlow transfer to other defended models easier than the vanilla one. This observation
precisely matches our intuition about the mechanics of AdvFlow. More specifically, we know that in
AdvFlow the model is learning a distribution that is more expressive than the one used byNATTACK.
Also, we have seen in Section 3.4.2 that the perturbations generated by AdvFlow have dependent
elements in contrast toNATTACK. As a result, AdvFlow learns to attack classifiers using higher-level
features (Figure 1). Thus, since vanilla classifiers use different features for classification than the
defended ones, AdvFlows are less transferable from defended models to vanilla ones. In contrast,

4Note that SimBA [16] is originally designed for efficient `2 attacks, and it may not use the entire 10, 000
query quota for small images. Anyways, we included SimBA [16] in the paper as per one of the reviewers’
suggestions.
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Table 2: Attack success rate of black-box adversarial attacks on CIFAR-10 [30] and SVHN [40]
Wide-ResNet-32 [63] classifiers. All attacks are with respect to `∞ norm with εmax = 8/255.

D
at

a Success Rate(%) ↑
Defense Acc.(%) Bandits[23] NATTACK [33] SimBA [16] AdvFlow

C
IF

A
R

-1
0 Vanilla [63] 91.77 98.81 100 99.99 99.42

FreeAdv [48] 81.29 37.12 38.97 35.52 41.21
FastAdv [60] 86.33 36.60 36.90 35.07 40.22

RotNetAdv [19] 86.58 37.73 38.04 35.63 40.67

SV
H

N

Vanilla [63] 96.45 87.84 98.76 97.26 90.31
FreeAdv [48] 86.47 49.64 50.28 46.28 50.76
FastAdv [60] 93.90 40.43 35.42 36.19 41.49

RotNetAdv [19] 90.33 43.47 41.49 39.01 44.22

Table 3: Average (median) of the number of queries needed to generate an adversarial example for
CIFAR-10 [30] and SVHN [40] Wide-ResNet-32 [63] classifiers of Table 2. For a fair comparison,
we first find the samples where all the attack methods are successful, and then compute the average
(median) of queries for these samples. Note that for NATTACK and AdvFlow we check whether we
arrived at an adversarial point every 200 queries, and hence, the medians are a multiples of 200.

D
at

a Query Average (Median) on Mutually Successful Attacks ↓
Defense Bandits[23] NATTACK [33] SimBA [16] AdvFlow

C
IF

A
R

-1
0 Vanilla [63] 552.69 (182) 237.58 (200) 237.70 (126) 949.31 (400)

FreeAdv [48] 1062.7 (354) 874.91 (400) 463.09 (244) 421.63 (200)
FastAdv [60] 1065.92 (358) 973.05 (400) 428.81 (234) 436.8 (200)

RotNetAdv [19] 1085.43 (408) 941.67 (400) 471.99 (259) 424.95 (200)

SV
H

N

Vanilla [63] 1750.65 (1128) 408.75 (200) 202.07 (107) 1572.24 (600)
FreeAdv [48] 819.98 (250) 903.12 (400) 365.42 (216) 692.73 (200)
FastAdv [60] 755.23 (284) 1243.38 (600) 307.73 (216) 526.37 (200)

RotNetAdv [19] 663.07 (202) 756.48 (400) 319.93 (186) 480.02 (200)

the expressiveness of AdvFlows enables the attacks to be transferred more successfully between
adversarially trained classifiers, and from vanilla to defended ones.

5 Conclusion and Future Directions

In this paper, we introduced AdvFlow: a novel adversarial attack model that utilizes the capacity
of normalizing flows in representing data distributions. We saw that the adversarial perturbations
generated by the proposed approach can be approximated using normal distributions with dependent
components. In this sense, NATTACK [33] cannot generate such adversaries. As a result, AdvFlows
are less conspicuous to adversarial example detectors in contrast to their NATTACK [33] counterpart.
This success is due to AdvFlow being pre-trained on the data distribution, resulting in adversaries
that look like the clean data. We also saw the capability of the proposed method in improving the
performance of bandits [23], NATTACK [33], and SimBA [16] on adversarially trained classifiers.
This improvement is in terms of both attack success rate and the number of queries.

Flow-based modeling is an active area of research. There are numerous extensions to the current
work that can be investigated upon successful expansion of normalizing flow models in their range
and power. For example, while NATTACK [33] and other similar approaches [22, 23] are specifically
designed for use on image data, the current work can potentially be expanded to entail other forms
of data such as graphs [35, 49]. Also, since normalizing flows can effectively model probability
distributions, finding the distribution of well-known perturbations may lead to increasing classifier
robustness against adversarial examples. We hope that this work can provide a stepping stone to
exploiting such powerful models for adversarial machine learning.
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Broader Impact

In this paper, we introduce a novel adversarial attack algorithm called AdvFlow. It uses pre-trained
normalizing flows to generate adversarial examples. This study is crucial as it indicates the vulnera-
bility of deep neural network (DNN) classifiers to adversarial attacks.

More precisely, our study reveals that the common assumption made by adversarial example detectors
(such as the Mahalanobis detector [32]) that the adversaries come from a different distribution than
the data may not be an accurate one. In particular, we show that we can generate adversaries that
come from a close distribution to the data, yet they intend to mislead the classifier decision. Thus, we
emphasize that adversarial example detectors need to adjust their assumption about the distribution
of adversaries before being deployed in real-world situations.

Furthermore, since our adversarial examples are closely related to the data distribution, our method
shows that DNN classifiers are not learning to classify the data based on their underlying distribution.
Otherwise, they would have resisted the attacks generated by AdvFlow. Thus, it can bring the
attention of the machine learning community to training their DNN classifiers in a distributional
sense.

All in all, we pinpoint a failure of DNN classifiers to the rest of the community so that they can become
familiar with the limitations of the status-quo. This study, and similar ones, could raise awareness
among researchers about the real-world pitfalls of DNN classifiers, with the aim of consolidating
them against such threats in the future.
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