DRAMSim2

Elliott Cooper-Balis
Paul Rosenfeld
Bruce Jacob
University of Maryland

dramninjas [at] gmail [dot] com

Contents
1 About DRAMSim2 1
2 Getting DRAMSim2 2
3 Building DRAMSim2 2
4 Running DRAMSim2 3
4.1 Trace-Based Simulation L 3
4.2 Library Interface oL 3
5 Example Output 15
6 Results Output 6

1 About DRAMSIim?2

DRAMSim?2 is a cycle accurate model of a DRAM memory controller, the DRAM modules which comprise
system storage, and the buses by which they communicate.

The overarching goal is to have a simulator that is small, portable, and accurate. The simulator core has a
simple interface which allows it to be CPU simulator agnostic and should to work with any simulator (see
section 4.2). This core has no external run time or build time dependencies and has been tested with g++ on
Linux as well as g+4 on Cygwin on Windows.

2 Getting DRAMSim2

DRAMSim2 is available on github. If you have git installed you can clone our repository by typing:

$ git clone git://github.com/dramninjasUMD/DRAMSim2.git

3 Building DRAMSim2

To build an optimized standalone trace-based simulator called DRAMSim simply type:
$ make

For a debug build which contains debugging symbols and verbose output, run:

$ make DEBUG=1

To build the DRAMSim2 library, type:

S make libdramsim.so

http://github.com/dramninjasUMD

4 Running DRAMSim2

4.1 Trace-Based Simulation

In standalone mode, DRAMSim2 can simulate memory system traces. While traces are not as accurate as a
real CPU model driving the memory model, they are convenient since they can be generated in a number of
different ways (instrumentation, hardware traces, CPU simulation, etc.) and reused.

We’ve provided a few small sample traces in the traces/ directory. These gzipped traces should first be pre-
processed before running through the simulator. To run the preprocessor (the preprocessor requires python):

cd traces/
./traceParse.py k6_aoe_02_short.trc.gz

This should produce the file traces/k6_ace_02_short.trc. Then, go back to the DRAMSim2 directory
and run the trace based simulator:

cd .
./DRAMSim -t traces/k6_aoe_02_short.trc -s system.ini -d ini/DDR3_micron_64M_8B_x4_sgl5.ini -c 1000

This will run a 1000 cycle simulation of the k6_aoce_02_short trace using the specified DDR3 part. The -s,
-d, and -t flags are required to run a simulation.
A full list of the command line arguments can be obtained by typing:

$./DRAMSim —--help
DRAMSim2 Usage:

DRAMSim -t tracefile -s system.ini -d ini/device.ini [-c #] [-p pwd] -g
-t, —--tracefile=FILENAME specify a tracefile to run
-s, ——-systemini=FILENAME specify an ini file that describes the memory system parameters
-d, —--deviceini=FILENAME specify an ini file that describes the device-level parameters
-c, —-—numcycles=# specify number of cycles to run the simulation for [default=30]
-q, ——-quiet flag to suppress simulation output (except final stats) [default=no]
-0, ——option=0OPTION_A=234 overwrite any ini file option from the command line

-p, ——pwd=DIRECTORY Set the working directory

Some traces include timing information, which can be used by the simulator or ignored. The benefit of ignoring
timing information is that requests will stream as fast as possible into the memory system and can serve as a good
stress test. To toggle the use of clock cycles, please change the useClockCycle flagin TraceBasedSim. cpp.
If you have a custom trace format you’d like to use, you can modify the parseTraceFileLine () function
ton add support for your own trace formats.

The prefix of the filename determines which type of trace this function will use (ex: k6_foo.trc) will use the k6
format in parseTraceFileLine ().

4.2 Library Interface

In addition to simulating memory traces, DRAMSIim2 can also be built as a dynamic shared library which
is convenient for connecting it to CPU simulators or other custom front ends. A MemorySystem object
encapsulates the functionality of the memory system (i.e., the memory controller and DIMMSs). The classes that
comprise DRAMSim2 can be seen in figure 1. A simple example application is provided in the example_app/
directory. At this time we have plans to provide code to integrate DRAMSim2 into MARSSx86, SST, and
(eventually) MS5.

http://www.marss86.org/index.php/Home
http://www.cs.sandia.gov/sst/
http://www.m5sim.org/

Memory System
Memory Controller

Rank
RO R1R2 ... etc —
TransactionQueue
addTransaction() BO|
Bl BankStates
> . B2 (for error checking)
update() addressMapping() .
A
CommandQueue write() Bank M
(structure differs by queuing policy)| pop() Rank.recv() read() L
P | m—
islssuable()
CPU Model
Trace-Based Sim
Custom model RORLR2 . olc <
MC.recv()
BO)
Bl
A B2 BankStates L T
I

Retum Transaction Queue

RetumReadDataCB()

BO, B1, B3, etc

Figure 1: Block diagram of DRAMSim2. The recv () functions are actually called receiveFromBus () but were
abbreviated to save sapce.

5 Example Output

The verbosity of the DRAMSim2 can be customized in the system.ini file by turning the various debug flags on
or off.

Below, we have provided a detailed explanation of the simulator output. With all DEBUG flags enabled, the
following output is displayed for each cycle executed.

NOTE : BP = Bus Packet, T = Transaction

MC = MemoryController, R# = Rank (index #)

77777777777777777 Memory System Update ——————-———————————-—

—————————— Memory Controller Update Starting ———————————-— [8]
-— RO Receiving On Bus : BP [ACT] pal[Ox5dec7f0] r[0] b[3] row[1l502] col[799]
-— MC Issuing On Data Bus : BP [DATA] pal[Ox7edc7e0] r[0] b[2] row[2029] col[799] datal0]=

++ Adding Read energy to total energy
—-— MC Issuing On Command Bus : BP [READ_P] pa[0Ox5dec7£f8] r[l] b[3] row[1502] col[799]
== New Transaction - Mapping Address [0x5dec800] (read)

Rank : 0
Bank : 0
Row : 1502
Col : 800

++ Adding IDD3N to total energy [from rank 0]
++ Adding IDD3N to total energy [from rank 1]
== Printing transaction queue
8]T [Read] [0x45bbfad]
9]T [Write] [0x55fbfal] [5439E]
10]T [Write] [O0x55fbfa8] [1111]
== Printing bank states (According to MC)
[idle] [idle] [2029] [1502]
[idle] [idle] [1502] [1502]

== Printing Per Rank, Per Bank Queue
= Rank 0
Bank O size : 2
0]BP [ACT] pal[0x5dec800] r[O0]
11BP [READ_P] pal0x5dec800] r[
Bank 1 size : 2
0]BP [ACT] pa[0x5dec810] r[0]
1]1BP [READ_P] pal[0x5dec810] r[
Bank 2 size : 2
0]BP [ACT] pal[0x5dec7e0] r[0]
1]BP [READ_P] pa[0x5dec7e0] r][

b[0] row[1502] col[800]
0] b[0] row[1502] col[800]

b[1l] row[1502] col[800]
0] b[1l] row[1502] col[800]

b[2] row[1502] col[799]
0] b[2] row[1l502] col[799]

Bank 3 size : 1
01BP [READ_P] pal[0x5dec7f0] r[0] b[3] row[1502] col[799]
= Rank 1
Bank O size : 2

0]BP [ACT] pa[0x5dec808] r[1l]

1]1BP [READ_P] pal[0x5dec808] r[
Bank 1 size : 2

0]BP [ACT] pa[0x5dec818] r[1l]

1]BP [READ_P] pa[0x5dec818] r]|

b[0] row[1502] col[800]
1] b[0] row[1502] col[800]

b[l] row[1502] col[800]
1] b[1l] row[1502] col[800]

Bank 2 size : 1
0]BP [READ_P] pal[Ox5dec7e8] r[l] b[2] row[1l502] col[799]
Bank 3 size : O

Anything sent on the bus is encapsulated in an BusPacket (BP) object. When printing, they display the
following information:

’BP [ACT] pal[0x5dec818] r[l] b[l] row[1502] col[800]

The information displayed is (in order): command type, physical address, rank #, bank #, row #, and column

#.

b

Lines beginning with ” —” indicate bus traffic, ie,

—-— RO Receiving On Bus : BP [ACT] pa[0Ox5dec7f0] r[0] b[3] row[1502] col[799]
—-— MC Issuing On Data Bus : BP [DATA] pal[Ox7edc7e0] r[0] b[2] row[2029] col[799] datal[0]=
—— MC Issuing On Command Bus : BP [READ_P] pa[0x5dec7f8] r[1l] b[3] row[1502] col[799]

Sender and receiver are indicated and the packet being sent is detailed.

Lines beginning with ” 4+ ” indicate power calculations, ie,

++ Adding Read energy to total energy
++ Adding IDD3N to total energy [from rank 0]
++ Adding IDD3N to total energy [from rank 1]

The state of the system and the actions taken determine which current draw is used. For further detail about
each current value, see Micron datasheet.

If a pending transaction is in the transaction queue, it will be printed, as seen below:

== Printing transaction queue
1]T [Read] [0x45bbfa4]
2]T [Write] [0x55fbfal] [5439E]
3]T [Write] [0x55fbfa8] [1111]

Currently, at the start of every cycle, the head of the transaction queue is removed, broken up into DRAM
commands and placed in the appropriate command queues. To do this, an address mapping scheme is applied
to the transaction’s physical address, the output of which is seen below:

== New Transaction - Mapping Address [0x5dec800] (read)

Rank : 0
Bank : O
Row : 1502
Col : 800

If there are pending commands in the command queue, they will be printed. The output is dependent on the
designated structure for the command queue. For example, per-rank/per-bank queues are shown below:

= Rank 1
Bank 0 size : 2
0]1BP [ACT] pal[0x5dec808] r[l]
1]1BP [READ_P] pal[0x5dec808] r[
Bank 1 size : 2
0]BP [ACT] pal[0x5dec818] r[1l]
1]BP [READ_P] pa[0x5dec818] r]|

b[0] row[l502] col[800]
1] b[0] row[1502] col[800]

b[1l] row[1502] col[800]
1] b[1l] row[1502] col[800]

Bank 2 size : 1
O]BP [READ_P] pa[0x5dec7e8] r[l] b[2] row[1502] col[799]
Bank 3 size : O

The state of each bank in the system is also displayed:

== Printing bank states (According to MC)
[idle] [idle] [2029] [1502]
[idle] [idle] [1502] [1502]

Banks can be in many states, including idle, row active (shown with the row that is active), refreshing, or
precharging. These states will update based on the commands being sent by the controller.

6 Results Output

In addition to printing memory statistics and debug information to standard out, DRAMSim2 also produces a
'vis’ file in the results/ directory. A vis file is essentially a summary of relevant statistics that is generated per

epoch (the number of cycles per epoch can be set by changing the EPOCH_COUNT parameter in the system.ini
file).

We are currently working on DRAMVis, which is a cross-platform viewer which parses the vis file and generates
graphs that can be used to analyze and compare results.

	About DRAMSim2
	Getting DRAMSim2
	Building DRAMSim2
	Running DRAMSim2
	Trace-Based Simulation
	Library Interface

	Example Output
	Results Output

