# Supplementary Material for "Online Convex Optimization Over Erdős-Rényi Random Networks" 

Jinlong Lei<br>Tongji University<br>Shanghai, China<br>leijinlong@tongji.edu.cn

Peng Yi<br>Tongji University<br>Shanghai, China<br>yipeng@tongji.edu.cn

Yiguang Hong<br>Tongji University<br>Shanghai, China<br>yghong@iss.ac.cn

Jie Chen<br>Tongji University<br>Shanghai, China<br>chenjie@bit.edu.cn

Guodong Shi,<br>The University of Sydney<br>NSW, Australia<br>guodong.shi@sydney.edu.au

## A Proofs of Section 2

## A. 1 Preliminary Lemmas

In this subsection, we present some preliminary lemmas that will be used in the subsequent for proving the regret bounds. Without loss of generality, suppose that for each $i \in \mathcal{V}$ and $t=1, \ldots, T$, $f_{i, t}$ is $\alpha_{t}$-strongly convex with $\alpha_{t} \geq 0$, where $\alpha_{t} \equiv 0$ in the convex case. We start with a general lemma concerning the regret bound.
Lemma 1. Let Assumptions 1 and 2 hold. Consider Algorithm 1. where $\left\{\eta_{t}\right\}$ is a non-increasing sequence.
(i) If $\alpha_{t} \equiv 0$, then for each $j \in \mathcal{V}$ :

$$
\begin{equation*}
\operatorname{Reg}(j, T) \leq \frac{N D_{1}^{2}}{2 \eta_{T}}+\frac{N G_{f}^{2}}{2} \sum_{t=1}^{T} \eta_{t}+G_{f} \sum_{t=1}^{T} \sum_{i=1}^{N}\left\|\mathbf{x}_{i, t}-\mathbf{x}_{j, t}\right\| \tag{A.1}
\end{equation*}
$$

(ii) If $\alpha_{t}>0$, by setting $\eta_{t}=\frac{1}{\sum_{\tau=1}^{t} \alpha_{\tau}}$ we obtain that for each $j \in \mathcal{V}$ :

$$
\begin{equation*}
\operatorname{Reg}(j, T) \leq \frac{N G_{f}^{2}}{2} \sum_{t=1}^{T} \eta_{t}+G_{f} \sum_{t=1}^{T} \sum_{i=1}^{N}\left\|\mathbf{x}_{i, t}-\mathbf{x}_{j, t}\right\| \tag{A.2}
\end{equation*}
$$

Proof. Define $a_{i j, t} \triangleq a$ if $\{i, j\} \in \mathrm{E}_{t}, a_{i i, t} \triangleq 1-a\left|\mathrm{~N}_{i, t}\right|$, and $a_{i j, t}=0$, otherwise. Thus, $\sum_{j=1}^{N} a_{i j, t}=1$ and $\sum_{i=1}^{N} a_{i j, t}=1$. By using (3), $\mathbf{x}^{*} \in \mathcal{K}$, and the non-expansive property of the projection operator, we have that

$$
\begin{align*}
& \sum_{i=1}^{N}\left\|\mathbf{x}_{i, t+1}-\mathbf{x}^{*}\right\|^{2} \leq \sum_{i=1}^{N}\left\|\sum_{j=1}^{N} a_{i j, t} \mathbf{y}_{j, t}-\mathbf{x}^{*}\right\|^{2} \stackrel{(a)}{=} \sum_{i=1}^{N}\left\|\sum_{j=1}^{N} a_{i j, t}\left(\mathbf{y}_{j, t}-\mathbf{x}^{*}\right)\right\|^{2} \\
& \stackrel{(b)}{\leq} \sum_{i=1}^{N} \sum_{j=1}^{N} a_{i j, t}\left\|\mathbf{y}_{j, t}-\mathbf{x}^{*}\right\|^{2} \stackrel{(c)}{=} \sum_{j=1}^{N}\left\|\mathbf{y}_{j, t}-\mathbf{x}^{*}\right\|^{2} \stackrel{(2)}{=} \sum_{i=1}^{N}\left\|\mathbf{x}_{i, t}-\mathbf{x}^{*}-\eta_{t} \nabla f_{i, t}\left(\mathbf{x}_{i, t}\right)\right\|^{2}  \tag{A.3}\\
& =\sum_{i=1}^{N}\left\|\mathbf{x}_{i, t}-\mathbf{x}^{*}\right\|^{2}+\eta_{t}^{2} \sum_{i=1}^{N}\left\|\nabla f_{i, t}\left(\mathbf{x}_{i, t}\right)\right\|^{2}-2 \eta_{t} \sum_{i=1}^{N}\left(\mathbf{x}_{i, t}-\mathbf{x}^{*}\right)^{T} \nabla f_{i, t}\left(\mathbf{x}_{i, t}\right)
\end{align*}
$$

where inequality (a) used $\sum_{j=1}^{N} a_{i j, t}=1$, inequality (b) used the Jensen's inequality, and equality (c) used $\sum_{i=1}^{N} a_{i j, t}=1$ for each $j \in \mathcal{V}$. It is noticed from Assumption 2 that

$$
\begin{aligned}
f_{i, t}\left(\mathbf{x}_{i, t}\right) & =f_{i, t}\left(\mathbf{x}_{j, t}\right)+f_{i, t}\left(\mathbf{x}_{i, t}\right)-f_{i, t}\left(\mathbf{x}_{j, t}\right) \\
& \geq f_{i, t}\left(\mathbf{x}_{j, t}\right)+\left(\mathbf{x}_{i, t}-\mathbf{x}_{j, t}\right)^{T} \nabla f_{i, t}\left(\mathbf{x}_{j, t}\right) \geq f_{i, t}\left(\mathbf{x}_{j, t}\right)-G_{f}\left\|\mathbf{x}_{i, t}-\mathbf{x}_{j, t}\right\|
\end{aligned}
$$

and hence

$$
\begin{equation*}
\sum_{i=1}^{N}\left(f_{i, t}\left(\mathbf{x}_{i, t}\right)-f_{i, t}\left(\mathbf{x}^{*}\right)\right) \geq \sum_{i=1}^{N}\left(f_{i, t}\left(\mathbf{x}_{j, t}\right)-f_{i, t}\left(\mathbf{x}^{*}\right)\right)-G_{f} \sum_{i=1}^{N}\left\|\mathbf{x}_{i, t}-\mathbf{x}_{j, t}\right\| \tag{A.4}
\end{equation*}
$$

Applying the definition of $\alpha_{t}$-strong convexity of $f_{i, t}$ to the pair of $\mathbf{x}_{i, t}, \mathbf{x}^{*}$, we obtain that

$$
\left(\mathbf{x}_{i, t}-\mathbf{x}^{*}\right)^{T} \nabla f_{i, t}\left(\mathbf{x}_{i, t}\right) \geq\left(f_{i, t}\left(\mathbf{x}_{i, t}\right)-f_{i, t}\left(\mathbf{x}^{*}\right)\right)+\frac{\alpha_{t}}{2}\left\|\mathbf{x}_{i, t}-\mathbf{x}^{*}\right\|^{2}
$$

It combined with A.4 produces

$$
\begin{align*}
& \sum_{i=1}^{N}\left(\mathbf{x}_{i, t}-\mathbf{x}^{*}\right)^{T} \nabla f_{i, t}\left(\mathbf{x}_{i, t}\right) \\
& \geq \sum_{i=1}^{N}\left(f_{i, t}\left(\mathbf{x}_{j, t}\right)-f_{i, t}\left(\mathbf{x}^{*}\right)\right)-G_{f} \sum_{i=1}^{N}\left\|\mathbf{x}_{i, t}-\mathbf{x}_{j, t}\right\|+\frac{\alpha_{t}}{2} \sum_{i=1}^{N}\left\|\mathbf{x}_{i, t}-\mathbf{x}^{*}\right\|^{2} \tag{A.5}
\end{align*}
$$

By substituting (A.5) into A.3 and using Assumption2, we derive

$$
\begin{align*}
& \sum_{i=1}^{N}\left\|\mathbf{x}_{i, t+1}-\mathbf{x}^{*}\right\|^{2} \leq \sum_{i=1}^{N}\left\|\mathbf{x}_{i, t}-\mathbf{x}^{*}\right\|^{2}+N \eta_{t}^{2} G_{f}^{2}-2 \eta_{t} \sum_{i=1}^{N}\left(f_{i, t}\left(\mathbf{x}_{j, t}\right)-f_{i, t}\left(\mathbf{x}^{*}\right)\right) \\
& \quad+2 G_{f} \eta_{t} \sum_{i=1}^{N}\left\|\mathbf{x}_{i, t}-\mathbf{x}_{j, t}\right\|-\alpha_{t} \eta_{t} \sum_{i=1}^{N}\left\|\mathbf{x}_{i, t}-\mathbf{x}^{*}\right\|^{2} \tag{A.6}
\end{align*}
$$

By rearranging the terms, there holds

$$
\begin{aligned}
\sum_{i=1}^{N}\left(f_{i, t}\left(\mathbf{x}_{j, t}\right)-f_{i, t}\left(\mathbf{x}^{*}\right)\right) & \leq \frac{\left(1-\alpha_{t} \eta_{t}\right) \sum_{i=1}^{N}\left\|\mathbf{x}_{i, t}-\mathbf{x}^{*}\right\|^{2}-\sum_{i=1}^{N}\left\|\mathbf{x}_{i, t+1}-\mathbf{x}^{*}\right\|^{2}}{2 \eta_{t}} \\
& +N G_{f}^{2} \eta_{t} / 2+G_{f} \sum_{i=1}^{N}\left\|\mathbf{x}_{i, t}-\mathbf{x}_{j, t}\right\|
\end{aligned}
$$

By summing up the above inequality from $t=1$ to $T$, we obtain that

$$
\begin{align*}
\sum_{t=1}^{T} \sum_{i=1}^{N}\left(f_{i, t}\left(\mathbf{x}_{j, t}\right)-f_{i, t}\left(\mathbf{x}^{*}\right)\right) & \leq \frac{1}{2} \sum_{t=1}^{T} \sum_{i=1}^{N}\left\|\mathbf{x}_{i, t}-\mathbf{x}^{*}\right\|^{2}\left(\frac{1}{\eta_{t}}-\frac{1}{\eta_{t-1}}-\alpha_{t}\right) \\
& +\frac{N G_{f}^{2}}{2} \sum_{t=1}^{T} \eta_{t}+G_{f} \sum_{t=1}^{T} \sum_{i=1}^{N}\left\|\mathbf{x}_{i, t}-\mathbf{x}_{j, t}\right\|, \frac{1}{\eta_{0}} \triangleq 0 \tag{A.7}
\end{align*}
$$

(i) By using Assumption 1 and the non-increasing of $\left\{\eta_{t}\right\}$, we obtained that

$$
\sum_{t=1}^{T} \sum_{i=1}^{N}\left\|\mathbf{x}_{i, t}-\mathbf{x}^{*}\right\|^{2}\left(\frac{1}{\eta_{t}}-\frac{1}{\eta_{t-1}}\right) \leq \sum_{t=1}^{T} \sum_{i=1}^{N} D_{1}^{2}\left(\frac{1}{\eta_{t}}-\frac{1}{\eta_{t-1}}\right)=\frac{N D_{1}^{2}}{\eta_{T}}
$$

This combined with A.7) and $\alpha_{t} \equiv 0$ proves the bound A.1.
(ii) From $\eta_{t}=\frac{1}{\sum_{\tau=1}^{t} \alpha_{\tau}}$ it follows that $\frac{1}{\eta_{t}}-\frac{1}{\eta_{t-1}}-\alpha_{t}=0$. Hence by A.7, we obtain A.2.

Let $\mathbf{I}_{N}$ denote the $N \times N$ identity matrix. Denote by $\mathbf{L}_{t}$ the Laplacian matrix of the graph $\mathrm{G}_{t}$, where $\left[\mathbf{L}_{t}\right]_{i j}=-1$ if $\{i, j\} \in \mathrm{E}_{t},\left[\mathbf{L}_{t}\right]_{i i}=\left|\mathrm{N}_{i, t}\right|$, and and $\left[\mathbf{L}_{t}\right]_{i j}=0$, otherwise. Then based on the Erdös-Rényi rule that $\{i, j\} \in \mathrm{E}_{t}$ with probability $0<p<1$ for all $\{i, j\} \in \mathcal{E}$, we have
that $\mathbb{E}\left[\mathbf{L}_{t}\right]_{i j}=-p$ if $\{i, j\} \in \mathcal{E}, \mathbb{E}\left[\mathbf{L}_{t}\right]_{i i}=p\left|\mathcal{N}_{i}\right|$, and and $\mathbb{E}\left[\mathbf{L}_{t}\right]_{i j}=0$, otherwise. Therefore, $\mathbb{E}\left[\mathbf{L}_{t}\right]=p \mathbf{L}$. We further define $\mathbf{A}_{t} \triangleq \mathbf{I}_{N}-a \mathbf{L}_{t}$,

$$
\begin{equation*}
\boldsymbol{\Phi}(t, t+1) \triangleq \mathbf{I}_{N} \text { and } \boldsymbol{\Phi}(t, s) \triangleq \mathbf{A}_{t} \cdots \mathbf{A}_{s}, \forall t \geq s \geq 1 \tag{A.8}
\end{equation*}
$$

By the definition of $\mathbf{A}_{t}$ it is seen that $\mathbf{A}_{t}$ is a positive and symmetric matrix with the sum of each row equal to 1 . Then for any $t \geq 1$ :

$$
\begin{aligned}
& \mathbb{E}\left[\mathbf{A}_{t}\right] \triangleq \overline{\mathbf{A}}=\mathbf{I}_{N}-a p \mathbf{L} \\
& \mathbb{E}\left[\mathbf{A}_{t}^{2}\right]=\mathbf{I}_{N}-2 a p \mathbf{L}+a^{2} \mathbb{E}\left[\mathbf{L}_{t}^{2}\right]
\end{aligned}
$$

Let $\overline{\mathcal{G}}=\{\mathcal{V}, \overline{\mathcal{E}}\}$ be an undirected graph generated by the matrix $\mathbb{E}\left[\mathbf{A}_{t}^{2}\right]$, where $\{i, j\} \in \overline{\mathcal{E}}$ if $(i, j)_{t h}$ entry of $\mathbb{E}\left[\mathbf{A}_{t}^{2}\right]$ satisfies $\mathbb{E}\left[\mathbf{A}_{t}^{2}\right]_{i j}>0$. Note by $0<a \leq \frac{1}{1+\max _{i}\left|\mathcal{N}_{i}\right|}$ and $0<p<1$ that for each pair $\{i, j\} \in \mathcal{E}$ :

$$
\mathbb{E}\left[\mathbf{A}_{t}^{2}\right]_{i j} \geq \mathbb{E}\left[a_{i i, t} a_{i j, t}+a_{i j, t} a_{j j, t}\right]=a p\left(2-a p\left|\mathcal{N}_{i}\right|-a p\left|\mathcal{N}_{j}\right|\right)>0
$$

Hence, $\{i, j\} \in \overline{\mathcal{E}}$ if $\{i, j\} \in \mathcal{E}$. By the fact that the base graph $\mathcal{G}$ is connected, $\overline{\mathcal{G}}$ is also an undirected and connected graph. We can similarly show that the graph associated with the matrix $\overline{\mathbf{A}}$ is undirected and connected. Then we obtain the following with $\boldsymbol{\Omega} \triangleq \frac{\mathbf{1}_{N} \mathbf{1}_{N}^{T}}{N}$ :

$$
\begin{align*}
\rho_{0} & =\|\overline{\mathbf{A}}-\boldsymbol{\Omega}\|=\operatorname{esp}(\overline{\mathbf{A}})=\max \{|\lambda|: \lambda \text { is the eigenvalue of } \overline{\mathbf{A}} \text { different from } 1\}, \\
\rho^{2} & =\left\|\mathbb{E}\left[\mathbf{A}_{t}^{2}\right]-\boldsymbol{\Omega}\right\|=\operatorname{esp}\left(\mathbf{I}_{N}-2 a p \mathbf{L}+a^{2} \mathbb{E}\left[\mathbf{L}_{t}^{2}\right]\right) \tag{A.9}
\end{align*}
$$

Next, we establish a lower bound and an upper bound on the consensus matrix, which is important for estimating the consensus error.
Lemma 2. Define $\mathcal{F}_{s} \triangleq \sigma\left\{\mathbf{e}_{1}, \mathbf{A}_{1}, \cdots, \mathbf{A}_{s-1}\right\}$ for any $s \geq 1$. Let $\mathbf{e}_{t+1} \triangleq(\boldsymbol{\Phi}(t, s)-\boldsymbol{\Omega}) \mathbf{e}_{s}$ for any nonzero vector $\mathbf{e}_{s} \in \mathbb{R}^{N}$ adapted to $\mathcal{F}_{s}$. Then the following holds:

$$
\begin{equation*}
\rho_{0}^{t-s+1} \leq \max _{\mathbf{e}_{s} \in \mathbb{R}^{N}} \frac{\mathbb{E}\left[\left\|\mathbf{e}_{t+1}\right\| \mathcal{F}_{s}\right]}{\left\|\mathbf{e}_{s}\right\|} \leq \rho^{t-s+1} \tag{A.10}
\end{equation*}
$$

Proof. Since $\mathbf{A}_{t} \boldsymbol{\Omega}=\boldsymbol{\Omega}$, by the definition of $\boldsymbol{\Phi}(t, s)$, we obtain that

$$
\left(\mathbf{A}_{t}-\boldsymbol{\Omega}\right) \cdots\left(\mathbf{A}_{s}-\boldsymbol{\Omega}\right)=\boldsymbol{\Phi}(t, s)-\boldsymbol{\Omega}, \quad \forall t \geq s \geq 1
$$

Note that $\mathbf{A}_{t}$ is independent of $\mathcal{F}_{t}=\sigma\left\{\mathbf{e}_{1}, \mathbf{A}_{1}, \cdots, \mathbf{A}_{t-1}\right\}$. Hence for any $t \geq s \geq 1$ :

$$
\begin{aligned}
& \mathbb{E}\left[\boldsymbol{\Phi}(t, s) \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[\mathbb{E}\left[\boldsymbol{\Phi}(t, s) \mid \mathcal{F}_{t}\right] \mid \mathcal{F}_{s}\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\left(\mathbf{A}_{t}-\boldsymbol{\Omega}\right) \boldsymbol{\Phi}(t-1, s) \mid \mathcal{F}_{t}\right] \mid \mathcal{F}_{s}\right]=(\overline{\mathbf{A}}-\boldsymbol{\Omega}) \mathbb{E}\left[\boldsymbol{\Phi}(t-1, s) \mid \mathcal{F}_{s}\right]
\end{aligned}
$$

where the first equality holds by [1, Chapter 7, Eqn. (14v)] because $\mathcal{F}_{s} \subset \mathcal{F}_{t}$. Then based on the above recursion and $\overline{\mathbf{A}} \boldsymbol{\Omega}=\boldsymbol{\Omega}$, we obtain that $\mathbb{E}\left[\boldsymbol{\Phi}(t, s) \mid \mathcal{F}_{s}\right]=\overline{\mathbf{A}}^{t-s+1}-\boldsymbol{\Omega}$. Then by the fact that $\mathbf{e}_{s}$ is adapted to $\mathcal{F}_{s}$, the following holds for any $t \geq s \geq 1$ :

$$
\mathbb{E}\left[\mathbf{e}_{t+1} \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[(\boldsymbol{\Phi}(t, s)-\boldsymbol{\Omega}) \mathbf{e}_{s} \mid \mathcal{F}_{s}\right]=\left(\overline{\mathbf{A}}^{t-s+1}-\boldsymbol{\Omega}\right) \mathbf{e}_{s}
$$

Then by the Jensen's inequality for conditional expectations, the following holds

$$
\begin{equation*}
\mathbb{E}\left[\left\|\mathbf{e}_{t+1}\right\| \mid \mathcal{F}_{s}\right] \geq\left\|\mathbb{E}\left[\mathbf{e}_{t+1} \mid \mathcal{F}_{s}\right]\right\|=\left\|\left(\overline{\mathbf{A}}^{t-s+1}-\boldsymbol{\Omega}\right) \mathbf{e}_{s}\right\|, \quad \forall t \geq s \geq 1 \tag{A.11}
\end{equation*}
$$

Note that $\mathbf{A}_{t} \boldsymbol{\Omega}=\mathbf{A}_{t}^{T} \boldsymbol{\Omega}=\boldsymbol{\Omega}$ and $\mathbf{A}_{t}^{T} \mathbf{A}_{t}=\mathbf{A}_{t}^{2}$. Then for any $t \geq s \geq 1$ :

$$
\begin{aligned}
& \mathbb{E}\left[\mathbf{e}_{t+1}^{T} \mathbf{e}_{t+1} \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[\mathbb{E}\left[\mathbf{e}_{t+1}^{T} \mathbf{e}_{t+1} \mid \mathcal{F}_{t}\right] \mid \mathcal{F}_{s}\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\mathbf{e}_{t}^{T}\left(\mathbf{A}_{t}-\boldsymbol{\Omega}\right)^{T}\left(\mathbf{A}_{t}-\boldsymbol{\Omega}\right) \mathbf{e}_{t} \mid \mathcal{F}_{t}\right] \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[\mathbf{e}_{t}^{T} \mathbb{E}\left[\mathbf{A}_{t}^{2}-\boldsymbol{\Omega}\right] \mathbf{e}_{t} \mid \mathcal{F}_{s}\right] \\
& \leq \mathbb{E}\left[\mathbf{e}_{t}^{T} \mathbf{e}_{t} \mid \mathcal{F}_{s}\right]\left\|\mathbb{E}\left[\mathbf{A}_{1}^{2}\right]-\boldsymbol{\Omega}\right\| \leq \ldots \leq \mathbf{e}_{s}^{T} \mathbf{e}_{s}\left\|\mathbb{E}\left[\mathbf{A}_{1}^{2}\right]-\boldsymbol{\Omega}\right\|^{t-s+1}
\end{aligned}
$$

where the third equality holds because $\mathbf{e}_{t}$ is adapted to $\mathcal{F}_{t}$ and $\mathbf{A}_{t}$ is independent of $\mathcal{F}_{t}$. Then by the Jensen's inequality for conditional expectations, we obtain that

$$
\begin{equation*}
\mathbb{E}\left[\left\|\mathbf{e}_{t+1}\right\| \mid \mathcal{F}_{s}\right] \leq \sqrt{\mathbb{E}\left[\mathbf{e}_{t+1}^{T} \mathbf{e}_{t+1} \mid \mathcal{F}_{s}\right]} \leq \sqrt{\mathbf{e}_{s}^{T} \mathbf{e}_{s}}\left\|\mathbb{E}\left[\mathbf{A}_{1}^{2}\right]-\boldsymbol{\Omega}\right\|^{(t-s+1) / 2} \tag{A.12}
\end{equation*}
$$

Therefore, by combing A.11) with A.12, we obtain that for any $t \geq s \geq 1$ :

$$
\left\|\left(\overline{\mathbf{A}}^{t-s+1}-\boldsymbol{\Omega}\right) \frac{\mathbf{e}_{s}}{\left\|\mathbf{e}_{s}\right\|}\right\| \leq \frac{\mathbb{E}\left[\left\|\mathbf{e}_{t+1}\right\| \mid \mathcal{F}_{s}\right]}{\left\|\mathbf{e}_{s}\right\|} \leq\left\|\mathbb{E}\left[\mathbf{A}_{1}^{2}\right]-\boldsymbol{\Omega}\right\|^{(t-s+1) / 2}
$$

Thus, by maximizing the above equation with respect to $\mathbf{e}_{s}$, using (A.9) and recalling the definition of the matrix two-norm $\|\mathbf{A}\|=\max _{\mathbf{x} \text { s.t. }\|\mathbf{x}\|=1}\|\mathbf{A x}\|$, we proves A.10].
Remark 1. The upper bound established in Lemma 2 might be obtained by some specific selection of Erdốs-Rényi random graphs. For example [2] Example 4.7], the priori graph $\mathcal{G}=\{\mathcal{V}, \mathcal{E}\}$ is a complete graph and $a=\frac{1}{N}$.

Then based on Lemma 2, we can establish the following lemma concerning the consensus error.
Lemma 3. Suppose Assumptions 1] and 2 hold. Let the local estimates $\left\{\mathbf{x}_{i, t}\right\}_{t=1}^{T}$ for each node $i \in \mathcal{V}$ be generated by Algorithm 1. Then the following hold with $\overline{\mathbf{x}}_{t}=\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i, t}$ :

$$
\begin{align*}
& \sum_{i=1}^{N} \mathbb{E}\left[\left\|\mathbf{x}_{i, t}-\overline{\mathbf{x}}_{t}\right\|\right] \leq 3 N G_{f} \sum_{s=1}^{t-1} \eta_{s} \rho^{t-s}, \text { and } \\
& \max _{j \in \mathcal{V}} \mathbb{E}\left[\left\|\mathbf{x}_{i, t}-\overline{\mathbf{x}}_{t}\right\|\right] \leq 3 \sqrt{N} G_{f} \sum_{s=1}^{t-1} \eta_{s} \rho^{t-s} \tag{A.13}
\end{align*}
$$

Proof. Note by (3) and the definition of $a_{i j, t}$ that $\mathbf{x}_{i, t+1}=\Pi_{\mathcal{K}}\left(\sum_{j=1}^{N} a_{i j, t} \mathbf{y}_{j, t}\right)$. Define

$$
\begin{equation*}
\mathbf{r}_{i, t+1}=\mathbf{x}_{i, t+1}-\sum_{j=1}^{N} a_{i j, t} \mathbf{y}_{j, t}=\Pi_{\mathcal{K}}\left(\sum_{j=1}^{N} a_{i j, t} \mathbf{y}_{j, t}\right)-\sum_{j=1}^{N} a_{i j, t} \mathbf{y}_{j, t} \tag{A.14}
\end{equation*}
$$

Then by substituting (2) into (A.14), we obtain that

$$
\begin{align*}
\left\|\mathbf{r}_{i, t+1}\right\| & =\left\|\Pi_{\mathcal{K}}\left(\sum_{j=1}^{N} a_{i j, t}\left(\mathbf{x}_{j, t}-\eta_{t} \nabla f_{j, t}\left(\mathbf{x}_{j, t}\right)\right)\right)-\sum_{j=1}^{N} a_{i j, t}\left(\mathbf{x}_{j, t}-\eta_{t} \nabla f_{j, t}\left(\mathbf{x}_{j, t}\right)\right)\right\| \\
& \stackrel{(a)}{\leq}\left\|\Pi_{\mathcal{K}}\left(\sum_{j=1}^{N} a_{i j, t}\left(\mathbf{x}_{j, t}-\eta_{t} \nabla f_{j, t}\left(\mathbf{x}_{j, t}\right)\right)\right)-\sum_{j=1}^{N} a_{i j, t} \mathbf{x}_{j, t}\right\|+\eta_{t}\left\|\sum_{j=1}^{N} a_{i j, t} \nabla f_{j, t}\left(\mathbf{x}_{j, t}\right)\right\| \\
& \stackrel{(b)}{=} 2 \eta_{t} \sum_{j=1}^{N} a_{i j, t}\left\|\nabla f_{j, t}\left(\mathbf{x}_{j, t}\right)\right\| \stackrel{(c)}{\leq} 2 \eta_{t} G_{f}, \forall i \in \mathcal{V}, \tag{A.15}
\end{align*}
$$

where (a) used the triangle inequality, (b) used the non-expansive property of the projection operator and the fact that $\sum_{j=1}^{N} a_{i j, t} \mathbf{x}_{j, t} \in \mathcal{K}$ by $\sum_{j=1}^{N} a_{i j, t}=1$, and (c) holds by Assumption 2 and $\sum_{j=1}^{N} a_{i j, t}=1$. By combing (2) with A.14) and A.8), there holds

$$
\mathbf{x}_{i, t+1}=\sum_{j=1}^{N} a_{i j, t} \mathbf{y}_{j, t}+\mathbf{r}_{i, t+1}=\sum_{j=1}^{N} a_{i j, t}\left(\mathbf{x}_{i, t}-\eta_{t} \nabla f_{i, t}\left(\mathbf{x}_{i, t}\right)\right)+\mathbf{r}_{i, t+1} .
$$

Then by stacking the above equation for each $i \in \mathcal{V}$, and using $\mathbf{x}_{i, 1}=\mathbf{0}$ for each $i \in \mathcal{V}$, there holds

$$
\begin{gathered}
\mathbf{x}_{t+1} \triangleq\left(\begin{array}{c}
\mathbf{x}_{1, t+1} \\
\vdots \\
\mathbf{x}_{N, t+1}
\end{array}\right)=\mathbf{A}_{t} \otimes \mathbf{I}_{d}\left(\mathbf{x}_{t+1}-\eta_{t}\left(\begin{array}{c}
\nabla f_{1, s}\left(\mathbf{x}_{1, t}\right) \\
\vdots \\
\nabla f_{N, s}\left(\mathbf{x}_{N, t}\right)
\end{array}\right)\right)+\left(\begin{array}{c}
\mathbf{r}_{1, t+1} \\
\vdots \\
\mathbf{r}_{N, t+1}
\end{array}\right) \\
\stackrel{\text { A. } 8}{-}-\sum_{s=1}^{t} \eta_{s} \boldsymbol{\Phi}(t, s) \otimes \mathbf{I}_{d}\left(\begin{array}{c}
\nabla f_{1, s}\left(\mathbf{x}_{1, s}\right) \\
\vdots \\
\nabla f_{N, s}\left(\mathbf{x}_{N, s}\right)
\end{array}\right)+\sum_{s=1}^{t} \boldsymbol{\Phi}(t, s) \otimes \mathbf{I}_{d}\left(\begin{array}{c}
\mathbf{r}_{1, s+1} \\
\vdots \\
\mathbf{r}_{N, s+1}
\end{array}\right) .
\end{gathered}
$$

Thus by the definition of $\overline{\mathbf{x}}_{t}$, and using the doubly stochastic of $\boldsymbol{\Phi}(t, s)$, we obtain that

$$
\overline{\mathbf{x}}_{t+1}=\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i, t+1}=-\sum_{s=1}^{t} \eta_{s} \frac{1}{N} \sum_{j=1}^{N} \nabla f_{j, s}\left(\mathbf{x}_{j, s}\right)+\sum_{s=1}^{t} \frac{1}{N} \sum_{j=1}^{N} \mathbf{r}_{j, s+1}
$$

Then we obtain the following

$$
\begin{aligned}
\widetilde{\mathbf{x}}_{t+1} \triangleq\left(\begin{array}{c}
\mathbf{x}_{1, t+1}-\overline{\mathbf{x}}_{t+1} \\
\vdots \\
\mathbf{x}_{N, t+1}-\overline{\mathbf{x}}_{t+1}
\end{array}\right) & =-\sum_{s=1}^{t} \eta_{s}(\boldsymbol{\Phi}(t, s)-\boldsymbol{\Omega}) \otimes \mathbf{I}_{d}\left(\begin{array}{c}
\nabla f_{1, s}\left(\mathbf{x}_{1, s}\right) \\
\vdots \\
\nabla f_{N, s}\left(\mathbf{x}_{N, s}\right)
\end{array}\right) \\
& +\sum_{s=1}^{t}(\mathbf{\Phi}(t, s)-\boldsymbol{\Omega}) \otimes \mathbf{I}_{d}\left(\begin{array}{c}
\mathbf{r}_{1, s+1} \\
\vdots \\
\mathbf{r}_{N, s+1}
\end{array}\right)
\end{aligned}
$$

Thus, from A.10, A.15, and Assumption 2 it follows that

$$
\begin{aligned}
\mathbb{E}\left[\left\|\widetilde{\mathbf{x}}_{t+1}\right\| \mid \mathcal{F}_{s}\right] & \leq \sum_{s=1}^{t} \rho^{t-s+1}\left(\eta_{s}\left\|\left(\begin{array}{c}
\nabla f_{1, s}\left(\mathbf{x}_{1, s}\right) \\
\vdots \\
\nabla f_{N, s}\left(\mathbf{x}_{N, s}\right)
\end{array}\right)\right\|+\left\|\left(\begin{array}{c}
\mathbf{r}_{1, s+1} \\
\vdots \\
\mathbf{r}_{N, s+1}
\end{array}\right)\right\|\right) \\
& \leq 3 \sqrt{N} G_{f} \sum_{s=1}^{t} \eta_{s} \rho^{t-s+1} .
\end{aligned}
$$

By taking unconditional expectation with respect to the above equation, there holds

$$
\begin{equation*}
\mathbb{E}\left[\left\|\widetilde{\mathbf{x}}_{t+1}\right\|\right] \leq 3 \sqrt{N} G_{f} \sum_{s=1}^{t} \eta_{s} \rho^{t-s+1} \tag{A.16}
\end{equation*}
$$

Thus, $\mathbb{E}\left[\left\|\mathbf{x}_{j, t}-\overline{\mathbf{x}}_{t}\right\|\right] \leq 3 \sqrt{N} G_{f} \sum_{s=1}^{t-1} \eta_{s} \rho^{t-s}$ for each $j \in \mathcal{V}$. Note by the Jensen's inequality that $\left(\sum_{i=1}^{N} x_{i} / N\right)^{2} \leq \sum_{i=1}^{N} x_{i}^{2} / N$, which implies that $\sum_{i=1}^{N} x_{i} \leq \sqrt{N \sum_{i=1}^{N} x_{i}^{2}}$. This incorporating with A.16 produces

$$
\mathbb{E}\left[\sum_{i=1}^{N}\left\|\mathbf{x}_{i, t}-\overline{\mathbf{x}}_{t}\right\|\right] \leq \mathbb{E}\left[\sqrt{N \sum_{i=1}^{N}\left\|\mathbf{x}_{i, t}-\overline{\mathbf{x}}_{t}\right\|^{2}}\right]=\sqrt{N} \mathbb{E}\left[\left\|\widetilde{\mathbf{x}}_{t}\right\|\right] \leq 3 N G_{f} \sum_{s=1}^{t-1} \eta_{s} \rho^{t-s}
$$

Thus, the lemma is proved.

## A. 2 Proof of Theorem 1

Note that

$$
\sum_{i=1}^{N}\left\|\mathbf{x}_{i, t}-\mathbf{x}_{j, t}\right\|=\sum_{i=1}^{N}\left\|\mathbf{x}_{i, t}-\overline{\mathbf{x}}_{t}-\left(\mathbf{x}_{j, t}-\overline{\mathbf{x}}_{t}\right)\right\| \leq \sum_{i=1}^{N}\left\|\mathbf{x}_{i, t}-\overline{\mathbf{x}}_{t}\right\|+N\left\|\mathbf{x}_{j, t}-\overline{\mathbf{x}}_{t}\right\|
$$

Then from A.13 it follows that

$$
\begin{align*}
\mathbb{E}\left[\sum_{i=1}^{N}\left\|\mathbf{x}_{i, t}-\mathbf{x}_{j, t}\right\|\right] & \leq \sum_{i=1}^{N} \mathbb{E}\left[\left\|\mathbf{x}_{i, t}-\overline{\mathbf{x}}_{t}\right\|\right]+N \mathbb{E}\left[\left\|\mathbf{x}_{j, t}-\overline{\mathbf{x}}_{t}\right\|\right] \\
& \leq\left(3 N+3 N^{3 / 2}\right) G_{f} \sum_{s=1}^{t-1} \eta_{s} \rho^{t-s} \tag{A.17}
\end{align*}
$$

It is noticed that

$$
\sum_{t=1}^{T} \sum_{s=1}^{t-1} \eta_{s} \rho^{t-s}=\sum_{t=1}^{T-1} \sum_{s=t+1}^{T} \eta_{t-s} \rho^{t}=\sum_{t=1}^{T-1} \rho^{t} \sum_{s=t+1}^{T} \eta_{t-s} \leq \frac{\rho}{1-\rho} \sum_{s=1}^{T} \eta_{s}=\frac{\rho}{1-\rho} \sum_{t=1}^{T} \eta_{t} .
$$

This combined with A.17) produces

$$
\begin{equation*}
\sum_{t=1}^{T} \mathbb{E}\left[\sum_{i=1}^{N}\left\|\mathbf{x}_{i, t}-\mathbf{x}_{j, t}\right\|\right] \leq \frac{\rho\left(3 N+3 N^{3 / 2}\right) G_{f}}{1-\rho} \sum_{s=1}^{T} \eta_{s} \tag{A.18}
\end{equation*}
$$

Note that $\sum_{t=1}^{T} \frac{1}{\sqrt{t}} \leq \int_{0}^{T} \frac{1}{\sqrt{x}} d x=\left.2 \sqrt{x}\right|_{0} ^{T}=2 \sqrt{T}$. Then by recalling that $\eta_{t}=\frac{D_{1}}{G_{f} \sqrt{t}}$, taking the unconditional expectation on both sides of A.1) and using A.18), we obtain that

$$
\mathbb{E}[\operatorname{Reg}(j, T)] \leq \frac{N D_{1} G_{f} \sqrt{T}}{2}+N D_{1} G_{f} \sqrt{T}+\frac{6 \rho N(1+\sqrt{N}) D_{1} G_{f} \sqrt{T}}{1-\rho}
$$

Then the theorem is proved.

## A. 3 Proof of Theorem 2

By taking the unconditional expectation on both sides of A.2 and using A.18, we obtain

$$
\begin{equation*}
\mathbb{E}[\operatorname{Reg}(j, T)] \leq \frac{N G_{f}^{2}}{2}\left(1+\frac{6 \rho(1+\sqrt{N})}{1-\rho}\right) \sum_{t=1}^{T} \eta_{t} \tag{A.19}
\end{equation*}
$$

Note from $\eta_{t}=\frac{1}{\alpha t}$ that

$$
\sum_{t=1}^{T} \eta_{t}=\frac{1}{\alpha}+\frac{1}{\alpha} \sum_{t=2}^{T} \frac{1}{t} \leq \frac{1}{\alpha}+\frac{1}{\alpha} \int_{1}^{T} \frac{1}{x} d x=\frac{1}{\alpha}+\left.\frac{1}{\alpha} \ln (x)\right|_{1} ^{T}=\frac{1}{\alpha}(1+\ln (T))
$$

This combined with A.19 proves the theorem.

## B Proofs of Section 3

Proof of Theorem 3. By Assumption 4 and $\xi=\delta / r$ that for any $\mathbf{x} \in(1-\xi) \mathcal{K}: \mathbf{x}+\delta \mathbf{u} \subseteq$ $(1-\xi) \mathcal{K}+\xi r \mathcal{B} \subseteq(1-\xi) \mathcal{K}+\xi \mathcal{K} \subseteq \mathcal{K}$. Then from (6) and (8) it follows that for each $i \in \mathcal{V}$ :

$$
\begin{equation*}
\left\|\mathbf{g}_{i, t}\right\| \leq \frac{d}{\delta}\left\|f_{i, t}\left(\mathbf{x}_{i, t}+\delta \mathbf{u}_{i, t}\right)\right\|\left\|\mathbf{u}_{i, t}\right\| \leq \frac{d C}{\delta}, \quad t=1, \cdots, T \tag{B.1}
\end{equation*}
$$

Then by $\nabla \hat{f}_{i, t}\left(\mathbf{x}_{i, t}\right)=\mathbb{E}\left[\mathbf{g}_{i, t}\right],\left\|\nabla \hat{f}_{i, t}\left(\mathbf{x}_{i, t}\right)\right\| \leq \frac{d C}{\delta} \triangleq G_{f}$ holds for each $i \in \mathcal{V}$ and any $t=$ $1, \cdots, T$. Note by Assumption 4 that $\|\mathbf{x}-\mathbf{y}\| \leq 2 R \triangleq D_{1}$ for any $\mathbf{x}, \mathbf{y} \in(1-\xi) \mathcal{K}$. By recalling the definition (1), similarly to Theorem 1, we can show that for each $j \in \mathcal{V}$ :

$$
\begin{equation*}
\mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} \hat{f}_{i, t}\left(\mathbf{x}_{j, t}\right)\right]-\min _{\mathbf{x} \in(1-\xi) \mathcal{K}} \sum_{t=1}^{T} \sum_{i=1}^{N} \hat{f}_{i, t}(\mathbf{x}) \leq \frac{3 d N R C}{\delta}\left(1+\frac{4 \rho(1+\sqrt{N})}{1-\rho}\right) \sqrt{T} \tag{B.2}
\end{equation*}
$$

Since $\mathbf{x} \in(1-\xi) \mathcal{K} \subseteq \mathcal{K}$ and $\mathbf{x}+\delta \mathbf{u} \in \mathcal{K}$, by Assumption 5 and the definition of $\hat{f}_{i, t}$ that

$$
\begin{aligned}
\left\|\hat{f}_{i, t}(\mathbf{x})-f_{i, t}(\mathbf{x})\right\| & =\left\|\mathbb{E}_{\mathbf{u} \in \mathcal{B}}\left[f_{i, t}(\mathbf{x}+\delta \mathbf{u})\right]-f_{i, t}(\mathbf{x})\right\| \\
& \leq \mathbb{E}_{\mathbf{u} \in \mathcal{B}}\left\|f_{i, t}(\mathbf{x}+\delta \mathbf{u})-f_{i, t}(\mathbf{x})\right\| \leq \delta L_{f}, \quad \forall \mathbf{x} \in(1-\xi) \mathcal{K}
\end{aligned}
$$

Therefore, we obtain that $\hat{f}_{i, t}\left(\mathbf{x}_{j, t}\right) \geq f_{i, t}\left(\mathbf{x}_{j, t}\right)-\delta L_{f}$ and $\hat{f}_{i, t}(\mathbf{x}) \leq f_{i, t}(\mathbf{x})+\delta L_{f}$. This combined with $\triangle \bar{B} .2$ produces

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} f_{i, t}\left(\mathbf{x}_{j, t}\right)-\delta L_{f}\right]-\min _{\mathbf{x} \in(1-\xi) \mathcal{K}} \sum_{t=1}^{T} \sum_{i=1}^{N}\left(f_{i, t}(\mathbf{x})+\delta L_{f}\right) \\
& \leq \frac{3 d N R C}{\delta}\left(1+\frac{4 \rho(1+\sqrt{N})}{1-\rho}\right) \sqrt{T}
\end{aligned}
$$

By rearranging the terms, we obtain that

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} f_{i, t}\left(\mathbf{x}_{j, t}\right)\right]-\min _{\mathbf{x} \in(1-\xi) \mathcal{K}} \sum_{t=1}^{T} \sum_{i=1}^{N} f_{i, t}(\mathbf{x}) \\
& \leq \frac{3 d N R C}{\delta}\left(1+\frac{4 \rho(1+\sqrt{N})}{1-\rho}\right) \sqrt{T}+2 \delta N L_{f} T .
\end{aligned}
$$

Note by [3, Observation 1] that

$$
\begin{equation*}
\min _{\mathbf{x} \in(1-\xi) \mathcal{K}} \sum_{t=1}^{T} \sum_{i=1}^{N} f_{i, t}(\mathbf{x}) \leq 2 \xi C T N+\min _{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} \sum_{i=1}^{N} f_{i, t}(\mathbf{x}) . \tag{B.3}
\end{equation*}
$$

Hence by the definition (1) and $\xi=\delta / r$, there holds

$$
\mathbb{E}[\operatorname{Reg}(j, T)] \leq \frac{3 N d R C}{\delta}\left(1+\frac{4 \rho(1+\sqrt{N})}{1-\rho}\right) \sqrt{T}+2 \delta N L_{f} T+2 \delta C T N / r
$$

Hence, by the definitions of $c_{1}$ and $c_{2}$ that $\mathbb{E}[\operatorname{Reg}(j, T)] \leq N\left(\frac{c_{1} \sqrt{T}}{\delta}+c_{2} \delta T\right)$. Thus, we complete the proof by using $\delta=\left(c_{1} / c_{2}\right)^{0.5} T^{-0.25}$.
Proof of Theorem 4 Recall by (B.1) that $G_{f}=\frac{d C}{\delta}$. We can obtain from Theorem 2 and the definition (1) that for each $\jmath \in \mathcal{V}$ :

$$
\mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} \hat{f}_{i, t}\left(\mathbf{x}_{j, t}\right)\right]-\min _{\mathbf{x} \in(1-\xi) \mathcal{K}} \sum_{t=1}^{T} \sum_{i=1}^{N} \hat{f}_{i, t}(\mathbf{x}) \leq \frac{N d^{2} C^{2}}{2 \alpha \delta^{2}}\left(1+\frac{6 \rho(1+\sqrt{N})}{1-\rho}\right)(1+\ln (T)) .
$$

Then by taking a similar procedure as the proof of Theorem 3 after $\bar{B} .2$, we have that

$$
\begin{aligned}
\mathbb{E}[\operatorname{Reg}(j, T)] & \leq \frac{N d^{2} C^{2}}{2 \alpha \delta^{2}}\left(1+\frac{6 \rho(1+\sqrt{N})}{1-\rho}\right)(1+\ln (T))+2 \delta N L_{f} T+2 \delta C T N / r \\
& =N\left(\frac{c_{3}}{\delta^{2}}(1+\ln (T))+c_{2} \delta T\right)
\end{aligned}
$$

Then we obtain the result by the definitions of $c_{2}, c_{3}$ and $\delta$.

## C Proofs of Section 4

Proof of Theorem 5. By recalling that $\mathbf{x} \in(1-\xi) \mathcal{K} \subseteq \mathcal{K}$ and $\mathbf{x}+\delta \mathbf{u} \in \mathcal{K}$, from (9) and Assumption 5 that for each $i \in \mathcal{V}$ and any $t=1, \cdots, T$ :

$$
\left\|\tilde{\mathbf{g}}_{i, t}\right\| \leq \frac{d}{2 \delta}\left\|f_{i, t}\left(\mathbf{x}_{i, t}+\delta \mathbf{u}_{i, t}\right)-f_{i, t}\left(\mathbf{x}_{i, t}-\delta \mathbf{u}_{i, t}\right)\right\|\left\|\mathbf{u}_{i, t}\right\| \leq \frac{d}{2 \delta} 2 L_{f} \delta\left\|\mathbf{u}_{i, t}\right\|^{2} \leq d L_{f}
$$

Then by $\nabla \hat{f}_{i, t}\left(\mathbf{x}_{i, t}\right)=\mathbb{E}\left[\mathbf{g}_{i, t}\right],\left\|\nabla \hat{f}_{i, t}\left(\mathbf{x}_{i, t}\right)\right\| \leq d L_{f} \triangleq G_{f}$. Note by Assumption 4 that for any $\mathbf{x}, \mathbf{y} \in(1-\xi) \mathcal{K}:\|\mathbf{x}-\mathbf{y}\| \leq 2 R \triangleq D_{1}$. We then obtain from Theorem 1 and the definition (1) that for each $j \in \mathcal{V}$ :

$$
\begin{equation*}
\mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} \hat{f}_{i, t}\left(\mathbf{x}_{j, t}\right)\right]-\min _{\mathbf{x} \in(1-\xi) \mathcal{K}} \sum_{t=1}^{T} \sum_{i=1}^{N} \hat{f}_{i, t}(\mathbf{x}) \leq 3 d N L_{f} R\left(1+\frac{4 \rho(1+\sqrt{N})}{1-\rho}\right) \sqrt{T} \tag{C.1}
\end{equation*}
$$

By $\xi=\delta / r$ and a similar procedure as that of [4] Lemma 2], we can show that for any $\mathbf{x} \in \mathcal{K}$ :

$$
\begin{align*}
& \sum_{t=1}^{T} \sum_{i=1}^{N} \frac{f_{i, t}\left(\mathbf{y}_{j, t}^{1}\right)+f_{i, t}\left(\mathbf{y}_{j, t}^{2}\right)}{2}-\sum_{t=1}^{T} \sum_{i=1}^{N} f_{i, t}(\mathbf{x}) \\
& \leq \sum_{t=1}^{T} \sum_{i=1}^{N} \hat{f}_{i, t}\left(\mathbf{x}_{j, t}\right)-\sum_{t=1}^{T} \sum_{i=1}^{N} \hat{f}_{i, t}\left((1-\xi) \mathbf{x}+N T L_{f} \delta(3+R / r)\right. \tag{C.2}
\end{align*}
$$

This combined with (C.1) produces that

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} \frac{f_{i, t}\left(\mathbf{y}_{j, t}^{1}\right)+f_{i, t}\left(\mathbf{y}_{j, t}^{2}\right)}{2}\right]-\sum_{t=1}^{T} \sum_{i=1}^{N} f_{i, t}\left(\mathbf{x}^{*}\right) \\
& \leq 3 d N L_{f} R\left(1+\frac{4 \rho(1+\sqrt{N})}{1-\rho}\right) \sqrt{T}+N T L_{f} \delta(3+R / r)
\end{aligned}
$$

Then we obtain the result by the selection of $\delta$.
Proof of Theorem 6. Recall that $\left\|\tilde{\mathbf{g}}_{i, t}\right\| \leq d L_{f}$ and $\left\|\nabla \hat{f}_{i, t}\left(\mathbf{x}_{i, t}\right)\right\| \leq d L_{f} \triangleq G_{f}$. We can obtain from Theorem 2and the definition (1) that for each $j \in \mathcal{V}$ :

$$
\mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} \hat{f}_{i, t}\left(\mathbf{x}_{j, t}\right)\right]-\min _{\mathbf{x} \in(1-\xi) \mathcal{K}} \sum_{t=1}^{T} \sum_{i=1}^{N} \hat{f}_{i, t}(\mathbf{x}) \leq \frac{N d^{2} L_{f}^{2}}{2 \alpha}\left(1+\frac{6 \rho(1+\sqrt{N})}{1-\rho}\right)(1+\ln (T)) .
$$

This combined with (C.2) produces that

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} \frac{f_{i, t}\left(\mathbf{y}_{j, t}^{1}\right)+f_{i, t}\left(\mathbf{y}_{j, t}^{2}\right)}{2}\right]-\sum_{t=1}^{T} \sum_{i=1}^{N} f_{i, t}\left(\mathbf{x}^{*}\right) \\
& \leq \frac{N d^{2} L_{f}^{2}}{2 \alpha}\left(1+\frac{6 \rho(1+\sqrt{N})}{1-\rho}\right)(1+\ln (T))+N T L_{f} \delta(3+R / r)
\end{aligned}
$$

We then obtain the result by the selection of $\delta$.

## References

[1] Yuan Shih Chow and Henry Teicher. Probability theory: independence, interchangeability, martingales. Springer Science \& Business Media, 2003.
[2] Fabio Fagnani and Sandro Zampieri. Randomized consensus algorithms over large scale networks. IEEE Journal on Selected Areas in Communications, 26(4):634-649, 2008.
[3] Abraham D Flaxman, Adam Tauman Kalai, Adam Tauman Kalai, and H Brendan McMahan. Online convex optimization in the bandit setting: gradient descent without a gradient. In Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages 385-394. Society for Industrial and Applied Mathematics, 2005.
[4] Alekh Agarwal, Ofer Dekel, and Lin Xiao. Optimal algorithms for online convex optimization with multipoint bandit feedback. In Proceedings of the 23rd Annual Conference on Learning Theory (COLT), pages 28-40, 2010.

