
StratLearner: Learning a Strategy for
Misinformation Prevention in Social Networks

Guangmo Tong
Department of Computer and Information Sciences

University of Delaware
amotong@udel.edu

Abstract

Given a combinatorial optimization problem taking an input, can we learn a
strategy to solve it from the examples of input-solution pairs without knowing
its objective function? In this paper, we consider such a setting and study the
misinformation prevention problem. Given the examples of attacker-protector
pairs, our goal is to learn a strategy to compute protectors against future attackers,
without the need of knowing the underlying diffusion model. To this end, we
design a structured prediction framework, where the main idea is to parameterize
the scoring function using random features constructed through distance functions
on randomly sampled subgraphs, which leads to a kernelized scoring function with
weights learnable via the large margin method. Evidenced by experiments, our
method can produce near-optimal protectors without using any information of the
diffusion model, and it outperforms other possible graph-based and learning-based
methods by an evident margin.

1 Introduction

The online social network has been an indispensable part of today’s community, but it is also making
misinformation like rumor and fake news widespread [1, 2]. During COVID-19, there have been
more than 150 rumors identified by Snopes.com [3]. Misinformation prevention (MP) limits the
spread of misinformation by launching a positive cascade, assuming that the users who have received
the positive cascade will not be conceived by the misinformation. Such a strategy has been considered
as feasible [4], and now fact-checking services are trending on the web, such as Snopes.com [5] and
Factcheck.org [6]. Formally, information cascades start to spread from their seed nodes, and the
propagation process is governed by an underlying diffusion model. Given the seed nodes (attacker)
of the misinformation, the MP problem seeks the seed nodes (protector) of the positive cascade such
that the spread of misinformation can be maximally limited.

MP without Knowing the Diffusion Model. Existing works often assume that the parameters in the
diffusion model are known to us, and they focus primarily on algorithmic analysis for selecting seed
nodes [7, 8]. However, the real propagation process is often complicated, and in reality, we can only
have certain types of historical data with little to none prior knowledge of the underlying diffusion
model. In this paper, we adopt the well-known triggering model [9] to formulate the diffusion process
and assume that the parameters are unknown. Now we are given the social graph together with a
collection of historical attacker-protector pairs where the protectors were successful, and the goal is to
design a learning scheme to compute the best protector against a new attacker. Given the ground set
V of the users, the MP problem is given by a mapping arg maxP f(M,P) : 2V → 2V , where f is
the objective function determined by the underlying diffusion model to quantify the prevention effect
of the protector P ⊆ V against the attacker M ⊆ V . Therefore, our problem is nothing but to learn a
mapping from 2V (attacker) to 2V (protector) using training examples {

(
Mi, arg maxP f(Mi, P)

)
}.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

a

g

c

b

fe

a

d

g

c

b

f

e

a

d

g

c

b

f

e

a

d

g

c

b

f

e

a

d

g

c

b

f

e

({𝑎, 𝑐}, {𝑑, 𝑓})

({𝑎}, {𝑏}) ({𝑐, 𝑔}, {𝑏, 𝑑}) (𝑏 , {? })

attacker

protector

a

d

g

c

fe

({𝑎}, {𝑏})

a

d

g

c

b

fe

({𝑐, 𝑔}, {𝑏, 𝑑})

a

d

g

c

b

fe

({𝑏}, {? })

b

d

Figure 1: Learning a MP strategy. Suppose that we are given the graph and the information that when
the attackers are {a, c}, {a} and {c, g}, the best protectors are, respectively, {d, f}, {b} and {b, d}.
Which the best protector against the attacker {b}?

See Fig. 1 for an illustration. While this problem is supervised by the attacker-protector pairs, it is
somehow different from the common ones in that it attempts to learn a solution to an optimization
problem. One challenge in solving it is that the input and output are sets, while machine learning
methods often struggle to deal with objects invariant to permutation [10]. Another challenge lies in
properly integrating the graph information into the learning design. As we will see later, directly
applying existing methods like graph convolutional networks [11] cannot produce good protectors.

StratLearner. We propose a method called StratLearner to solve the considered problem.
StratLearner aims to learn a scoring function f∗(M,S) that satisfies

f
(
M, arg max

P
f∗(M,P)

)
≈ max

P
f
(
M,P

)
for each M , and if successful, the prediction arg maxP f

∗(M,P) ensures a good protector. The key
idea of StratLearner is to parameterize f∗(M,P) by f∗(M,P) = wTG(M,P) where G(M,P) ∈
RK is a feature function constructed through K ∈ Z+ random subgraphs with w ∈ RK being the
tunable weights. Our parameterization is justified by the fact that for each distribution over (M,P)
and any possible f given by a triggering model, there exists a wTG(M,P) that can be arbitrarily
close to f in the Hilbert space provided that K is sufficiently large. Therefore, StratLearner first
generates a collection of random features to obtain G(M,P), and then learns the weight w through
structural SVM, where a new loss-augmented inference method has been designed to overcome the
NP-hardness in computing the exact inference. Our experiments not only show that StratLearner can
produce high-quality protectors but also verifies that StratLearner indeed benefits from the proposed
feature construction.

2 Problem Setting

We proceed by introducing the diffusion model followed by defining the MP problem together with
the learning settings.

2.1 Model

We consider a social network given by a directed graph G = (V,E). Each node u ∈ V is associated
with a distribution N u(S) over 2N

−
u with N−u being the set of the in-neighbors of u; each edge

(u, v) ∈ E is associated with a distribution T (u,v)(x) over (0,+∞) denoting the transmission time.
Suppose that there are two cascades: misinformation M and positive cascade P, with seed sets
M ⊆ V (attacker) and P ⊆ V (protector), respectively. We speak of each node as being the state of
M-active, P-active, or inactive. Following the triggering model [9, 12], the diffusion process unfolds
as follows:

• Initialization: Each node u samples a subset Au ⊆ N−u from N u. Each edge (u, v)
samples a real number t(u,v) > 0 from T (u,v).

• Time 0: The nodes in M (resp, P) are M-active (resp,. P-active) at time 0.1

• Time t: When a node u becomes M-active (resp., P-active) at time t, each inactive node
v such that u in Av will be activated by u and become M-active (resp., P-active) at time
t+ t(u,v). Each node will be activated by the first in-neighbor attempting to activate them
and never deactivated. When a node v is activated by two or more in-neighbors with different
states at the same time, v will become M-active. 2

1Without loss generality, we assume that M ∩ P = ∅.
2This setting is not critical. See Supplementary D for a discussion.

2

Remark 1. When there is only one cascade, the above model subsumes classic models, including
Discrete-time independent cascade (DIC) model [9], Discrete-time linear threshold (DLT) model [9],
Continuous-time independent cascade (CIC) model [12]. An example for illustrating the diffusion
process is given in Supplementary A.

2.2 Misinformation Prevention and Learning Settings

Given the seed sets M and P , we use f(M,P) : 2V × 2V → R to denote the expected number of
the nodes that are not activated by the misinformation and call f the prevention function. Formally,
they form a class of functions.
Definition 1 (Class FPF). Over the choices of N u and T (u,v), we use FPF to denote the class of
the prevention functions, i.e.,

FPF :=
{
f(M,P) : 2V × 2V → R | N u for each u; T (u,v) for each (u, v)

}
. (1)

When the misinformation M is detected, our goal is to launch a positive cascade such that the
misinformation can be maximally prevented [7, 13, 14].
Problem 1 (Misinformation Prevention). Under a budget constraint given by k ∈ Z+, the misin-
formation prevention problem aims to compute

F (M) := arg max
P⊆V \M, |P |≤k

f(M,P |∅) := f(M,P)− f(M, ∅). (2)

In this paper, we assume that the social graph G is known but the diffusion model (i.e., N u and
T (u,v)) is unknown, and given a new attacker M , we aim to solve Problem 1 from historical data: a
collection of samples S = {(Mi, Pi)}ni=1 where Pi is the optimal or suboptimal solution to Problem
1 associated with input Mi. That is, we aim to learn a strategy F ∗ : 2V → 2V that computes
the protector F ∗(M) for a future attacker M ⊆ V , hoping that F ∗(M) can maximize f(M,P)
with respective to P . Since f(M,P) is unknown to us, F ∗(M) is examined by the training pairs.
For a training pair (M,P), we consider a function L(P, S) that quantifies the loss for using some
S ⊆ V instead of P as the protector. Assuming that the attacker M of the misinformation follows an
unknown distributionM, we aim to learn a F ∗ such that the risk

∫
2V
L
(
F (M), F ∗(M)

)
dM(M)

is minimized, and we attempt to achieve this by minimizing the empirical risk

RS =
1

n

∑
i

L(Pi, F
∗(Mi)). (3)

3 StratLearner

The overall idea is to learn a scoring function f∗ such that arg maxP⊆V, |P |≤k f
∗(M,P) can be

a good protector. Note that the prevention function f itself is the perfect score function, but it is
not known to us and no data is available for learning it. Nevertheless, we are able to construct a
hypothesis space that not only covers the class of prevention function (Sec. 3.1) but also enables
simple and robust learning algorithm for searching a scoring function within it (Sec. 3.2).

3.1 Parameterization

To construct the desired hypothesis space, let us consider a function class derived through distance
functions on subgraphs.
Definition 2 (Class FΦ). Let Ψ be the set of the weighted subgraphs of G over all possible weights
and structures, and let Φ be the set of all distributions over Ψ. For each subgraph g ∈ Ψ and v ∈ V ,
define that fg(M,P |θ) :=

∑
v∈V f

v
g (M,P |θ) with

fvg (M,P |θ) :=

{
1 disg(P, v) < disg(M,v) and disg(M,v) 6=∞
0 otherwise

(distance function) (4)

where we have disg(S, v) := minu∈S disg(S, v) and disg(u, v) is the length of the shortest path from

u to v in g. The class FΦ is defined as FΦ :=
{∫

Ψ
φ(g) · fg(M,P |∅) dg | φ ∈ Φ

}
3

Theorem 1. FPF is a subclass of FΦ.

The above result indicates that the prevention function can be factorized as an affine combination of
the distance functions (i.e. fvg (M,P |θ)) over subgraphs with weights given by some φ(g). While the
class FΦ is still not friendly for searching as no parameterization of φ(g) is given, the function therein
can be further approximated by using the subgraphs randomly drawn from some fixed distribution in
Φ, as shown in the following.
Definition 3 (Class FG). For a subset G = {g1, ..., gK} ⊆ Ψ, let us consider the function class

FG :=
{ K∑
i=1

wi · fgi(M,P |∅) | wi ∈ R
}
. (5)

Let φ∗ be any distribution in Φ with φ∗(g) > 0 for each g ∈ Ψ, and let G = {g1, ..., gK} be a
collection of random subgraphs generated iid from φ∗. The following result shows the convergence
bound for approximating functions in FΦ via functions in FG, which is inspired by standard analysis
of random features [15].
Theorem 2. Let χ be any distribution over 2V × 2V and ε, δ > 0 be the given parameters. For each
f1 ∈ FΦ associated with certain φ1 ∈ Φ, when K is no less than

max(2 ln
1

δ
, 1) · C

2|V |2

ε2

with probability at least 1− δ over g1, ..., gK , there exists a f2 ∈ FG such that√∫
2V ×2V

(
f2(x)− f1(x)

)2

dχ(x) ≤ 2ε, (6)

where C := supg
φ1(g)
φ∗(g) measures the deviation between φ1 and φ∗.

Theorems 1 and 2 together imply that each prevention function in FPF can be well-approximated by
some function in FG provided that G had a sufficient number of random graphs and the weights
were correctly chosen. Given that the underlying prevention function is the perfect scoring function,
we now have a good reason to search a scoring function in FG, and we will do so by learning the
weights wi, guided by the empirical risk Eq. (3). Now let us assume that the subgraphs {g1, ..., gK}
have been generated, and we focus on learning the weights.

3.2 Margin-based Structured Prediction

Given the subgraphs G = {g1, ..., gK}, according to Eq. (5), our scoring function takes the form
of wTG(M,P) where we have defined G(M,P) as G(M,P) :=

(
fg1(M,P |∅), ..., fgK (M,P |∅)

)
and w ∈ RK are the parameters to learn. For a collection of training pairs {(Mi, Pi)}ni=1, the
condition of zero training error requires that wTG(M,P) identifies Pi to be the best protector
corresponding to Mi, and it is therefore given by the constrains

wTG(Mi, Pi) ≥ wTG(Mi, S), ∀i ∈ [n], ∀S : |S| ≤ k and S 6= Pi. (7)

In addition, we requires that the weights are non-negative for several reasons. First, the proof of
Theorem 2 tells that non-negative weights are sufficient to achieve the convergence bound, so such a
requirement would not invalidate the function approximation guarantees. Second, as discussed later
in this section, restricting the weights to be non-negative can simplify the inference problem. Finally,
as observed in experiments, such a constraint can lead to a fast convergence in the training process,
without scarifying the performance. In the case that Eq. (7) is feasible but the solution is not unique,
we aim at the solution with the maximum margin. The standard analysis of SVM yields the following
quadratic programming:

min
1

2
‖w‖22

s.t. wTG(Mi, Pi)−wTG(Mi, S) ≥ 1, ∀S : |S| ≤ k and S 6= Pi;

w ≥ 0.

4

Algorithm 1 Modular-Modular Procedure

1: Input: H(M,P)(S);
2: X0 = P ;
3: repeat
4: Xt+1 ← arg min|S|=kH

Xt
(M,P)(S);

5: t← t+ 1;
6: until stop criteria met;

In general, the loss function L(P, S) can be derived from the similarity functions SIM(P, S) by
L(P, S) := SIM(P, P)− SIM(P, S), where SIM(P, S) ≥ 0 has a unique maximum at S = P . For
example, the Hamming loss is given by the similarity function 1(S = P). For the MP problem, since
the graph structure is given, we can measure the similarity of two sets in terms of the overlap of their
neighborhoods. Specifically, for each S ⊆ V and j ∈ [n], we denote by Hj

S ⊆ V the set of the nodes
within j hop(s) from any node in S, including S itself, and the similarity between two sets V1 and V2

can be measured by SIMj
hop(V1, V2) := |Hj

V1
∩Hj

V2
|. We call the loss function derived from such

similarities as j-hop loss.

Incorporating the loss function into the training process by re-scaling the margin [16], we have

min
1

2
‖w‖22 +

C

2n

n∑
i=1

ξi

s.t. wTG(Mi, Pi)−wTG(Mi, S) ≥ α · L(Pi, S)− ξi, ∀i ∈ [n], ∀S : |S| ≤ k, S 6= Pi; (8)
w ≥ 0.

where α is a hyperparameter to control the scale of the loss. While this programming consists of an
exponential number of constraints for each pair (Mi, Pi), these constraints are equivalent to

min
|S|≤k

α · SIM(Pi, S)−wTG(Mi, S) ≥ α · SIM(Pi, Pi)−wTG(Mi, Pi)− ξi.

Therefore, the number of constraints can be reduced to polynomial provided that

min
|S|≤k

H(M,P)(S) :=α · SIM(P, S)−wTG(M,S) (loss-augmented inference) (9)

can be easily solved, which is the loss-augmented inference (LAI) problem. Unfortunately, such a
task is not trivial, even under the Hamming loss.

Theorem 3. The loss-augmented inference problem is NP-hard under the hamming loss or j-hop
loss. Furthermore, it cannot be approximated within a constant factor under the j-hop loss unless
NP belongs to DTIME(npoly logn).

For the hamming loss, minimizing H(M,P)(S) is simply to maximize wTG(M,S), which is a
submodular function (See proof of Theorem 4), and thus we can utilize the greedy algorithm for
an (1− 1/e)-approximation [17]. For the j-hop loss, the next result reveals a useful combinatorial
property of H(M,P)(S) for solving the LAI problem.

Theorem 4. For each X ⊆ V , there exists a polynomial-time computable modular upper bound
H
X

(M,P)(S) of H(M,P)(S) that is tight at X .

This result immediately yields a heuristic algorithm for minimizing H(M,P)(S), as shown in Alg.
1. The algorithm is adapted from the modular-modular procedure for DS programming [18], and it
guarantees that H(M,P)(S) is decreased after each iteration.

Property 1. Alg. 1 guarantees that H(Xt+1) < H(Xt), and each iteration takes O(K|V |2 +
K|V ||E|).

Once the LAI problem is solved, the weights w can be learned using standard structural SVM. We
adopt the one-slack cutting plane algorithm [19]. See Alg. 2 in Supplementary C.

5

3.3 StratLearner

Putting the above modules together, we have the following learning strategy: given the social graph
and a collection of samples {(Mi, Pi)}ni=1, (a) select a distribution φ∗ in Φ and a loss function; (b)
generate K random subgraphs {g1, ..., gK} using φ∗; (c) run the one-slack cutting plane algorithm
to obtain w = {w1, ..., wK}, where the LAI problem is solved by Alg. 1. Given a new attacker M ,
the protector is computed by arg maxS⊆V, |S|≤kw

TG(M,S), which is the cardinality-constrained
submodular maximization problem and therefore can be approximated again by the greedy algorithm
[17]. Here we see that enforcing the weights w to be nonnegative can make this problem much more
tractable, as otherwise, the objective function would not be submodular.

Remark 2. Alg. 1 is conceptually simple but practically time-consuming. One can use a limit on the
iterations as a simple stop criteria. In our experiment, using only one iteration in each run of Alg. 1 is
sufficient to achieve a high training efficacy. For selecting φ∗, the requirement that φ∗(g) > 0 for
each g ∈ Ψ is more technical than practical. Given that no prior information of the diffusion model is
available, generating subgraphs uniformly at random is a natural choice, which has been effective in
our experiments.

4 Experiments

The experiment aims to explore: (a) the performance of StratLearner compared with other possible
methods in terms of maximizing f(M,P |∅); (b) the number of features and training pairs needed
by StratLearner to achieve a reasonable performance; (c) the impact of the distribution φ used for
generating random subgraphs. The implementations are maintained online [20].

4.1 Settings

Social Graph and Diffusion Model. We adopt three types of social graphs: a Kronecker graph [21]
with 1024 nodes and 2655 edges, an Erdős-Rényi graph with 512 nodes and 6638 edges, and a power-
law graph [22] with 768 nodes and 1532 edges. Following the classic triggering model [23, 24], the
transmission time T (u,v) of each edge (u, v) follows a Weibull distribution with parameters randomly

selected from {1, ..., 10}, and for each u, we have N u(S)

{
1/dv S = {v}, v ∈ N−u
0 otherwise

with dv being

the in-degree of v. For each attacker M , the budget k of the protector P is |M |.
StratLearner. Each subgraph is generated by selecting each edge independently at random with a
probability of 0.01, where each selected edge has a weight of 1.0. We denote such a distribution as
φ1.0

0.01. The number of subgraphs (i.e. features) is enumerated from {100, 400, 800, 1600}. We adopt
the one-hop loss, and the hyperparameter α in Eq. (8) is fixed as 1000.

Other Methods. To set some standards, we denote by Rand the method that randomly selects the
protector. Since the graph structure is known to us, we adopt two popular graph-based methods:
HighDegree (HD), which selects the nodes with the highest degree as the protector, and Proximity
(Pro), which selects the neighbors of the attacker as the protector. Recall that our problem can
be treated as a supervised learning problem from 2V to 2V , so off-the-shelf learning methods are
also applicable. In particular, we have implemented Naive Bayes (NB), MLP, Graph Convolutional
Network (GCN) [11], and Deep Set Prediction Networks (DSPN) [10]. GCN can make use of graph
information, and DSPN is designed to process set inputs.

Training and Evaluation. The size of each attacker M is randomly generated following the power-
law distribution with parameter 2.5, and the nodes in M are selected uniformly at random from V .
The best protector Ptrue is computed using the method in [25] which is one of the algorithms for
Problem 1 that gives the best possible approximation ratio. In each run, the training and testing
set, given their sizes, are randomly selected from a pool of 2500 pairs, where the training size is
enumerated in {270, 540, 1080, 2160} and the testing size is 270. The subgraphs used in StratLearner
are also randomly generated in each run. For each method, the whole training and testing process is
repeated five times, and we report the average results with standard deviations. For each predicted
protector Ppred , its quality is measured by the performance ratio f(M,Ppred|∅)

f(M,Ptrue|∅) ∈ [0, 1], where
f(M,P |∅) is computed using 10000 simulations. Higher is better.

6

Table 1: Main Result. Each cell shows the mean of performance ratio with the standard deviation.

Dataset
StratLearner (φ1.0

0.01) ML Methods
100 400 800 1600 NB MLP GCN DSPN

270 0.699 (8E-3) 0.759 (7E-3) 0.785 (1E-2) 0.810 (9E-3) 0.643 (3E-2) 0.607(2E-2) 0.650(2E-3) 0.659(9E-3)

540 0.707 (5E-3) 0.743 (8E-3) 0.780 (9E-3) 0.813 (7E-3) 0.657(5E-3) 0.602 (9E-3) 0.653 (1E-3) 0.650(1E-2)

Kro-
necker

1080 0.708 (2E-2) 0.760 (1E-2) 0.782 (8E-3) 0.817 (5E-3) 0.658(5E-3) 0.632 (2E-2) 0.657 (1E-3) 0.650(1E-2)

2160 0.701 (1E-2) 0.756 (1E-2) 0.792 (5E-3) 0.821 (8E-3) 0.655 (3E-3) 0.661 (1E-2) 0.648 (1E-3) 0.666(6E-3)

Other Methods: Rand: 0.190 (5E-3) HD : 0.639 (4E-3) Pro: 0.670 (6E-3)

270 0.707 (1E-2) 0.839 (6E-3) 0.881 (1E-2) 0.902 (8E-3) 0.272 (1E-2) 0.271 (2E-3) 0.271 (1E-3) 0.242 (3E-2)

540 0.686 (2E-2) 0.858 (8E-3) 0.878 (2E-2) 0.909 (9E-3) 0.294 (1E-2) 0.327 (2E-3) 0.279 (6E-4) 0.247 (1E-2)

Power-
law

1080 0.680 (4E-2) 0.823 (2E-2) 0.890 (4E-3) 0.920 (7E-3) 0.294 (1E-2) 0.418 (2E-2) 0.281 (8E-4) 0.242 (2E-2)

2160 0.682 (1E-2) 0.853 (2E-2) 0.889 (1E-2) 0.911 (3E-3) 0.302 (3E-3) 0.489 (1E-2) 0.275 (6E-4) 0.235 (1E-2)

Other Methods: Rand: 0.047 (4E-3) HD: 0.318 (1E-3) ; Pro: 0.770 (8E-3)

270 0.661 (2E-2) 0.853 (6E-3) 0.873 (1E-2) 0.892(3E-3) 0.106 (5E-2) 0.246 (2E-2) 0.085 (6E-4) 0.088 (1E-2)

540 0.673 (2E-2) 0.861 (1E-2) 0.876 (6E-3) 0.897(1E-2) 0.104 (5E-3) 0.340 (2E-2) 0.088 (1E-3) 0.095 (7E-3)

Erdős-
Rényi

1080 0.688 (3E-2) 0.844 (9E-3) 0.870 (1E-2) 0.899 (8E-3) 0.111 (6E-3) 0.410 (2E-2) 0.091 (5E-4) 0.090 (4E-3)

2160 0.674 (2E-2) 0.857 (2E-2) 0.873 (5E-3) 0.903 (3E-3) 0.115 (2E-3) 0.484 (2E-2) 0.101 (8E-4) 0.090 (8E-3)

Other Methods: Rand: 0.052 (2E-2) HD : 0.102 (5E-3) Pro: 0.776 (5E-3)

The details of data generation and the implementations of the tested methods can be found in
Supplementary E, which also includes the result on a Facebook graph.

4.2 Observations

On StratLearner. The main results are given in Table 1. We see that StratLearner performs better
when more training examples or more features are given, and it is pretty robust in terms of deviation.
In addition, StratLearner is more sensitive to the number of features than to the number of training
examples - the performance ratio does not increase much when more training examples are given but
increases significantly with more features.

Comparison between Different Methods. With 400 features from φ1.0
0.01, StratLearner has already

outperformed all other methods, regardless of the types of the social graph. Plausibly, DSPN and
NB are unable to utilize the information of the social graph; GCN is unable to process set structures;
HD and Pro ignore the training data. While GCN can make use of the social graph, it merely uses
the adjacency between nodes without considering the triggering model. In contrast, StratLearner
samples subgraphs and seeks the best combination of them through learning the weights, which,
according to Theorem 2, is essentially to approximate the diffusion process under the triggering
model. This enables StratLearner to leverage the social graph to learn the unknown parameter in a
more explicit way. In another issue, StratLearner, with a moderate number of features, can achieve
a performance ratio no less than 0.7 on all the three graphs, but other learning methods (i.e., NB,
MLP, GCN) are quite sensitive to the graph structure. In particular, they perform relatively well
on Kronecker but poorly on Power-law and Erdős-Rényi. For example, MLP can achieve a ratio
comparable to that of HD and Pro on Kronecker, but it is not much better than Rand on Erdős-Rényi.
For graph-based methods, HD is also sensitive to the graph structure, while Pro can consistently offer
moderate performance, though worse than StratLearner. Overall, the performance of StratLearner is
exciting.

The Impact of φ. One interesting question is how the distribution used for generating random
subgraphs may affect the performance of StratLearner. First, to test the density of the subgraphs, we
consider two distributions φ1.0

0.005 and φ1.0
0.1, where each edge is selected with probability, respectively,

0.005 (less dense) and 0.1 (more dense), with edge weights remaining as 1.0. The results of this part
are given in Fig. 2. Comparing φ1.0

0.005 and φ1.0
0.1 to φ1.0

0.01, on Power-law and Erdős-Rényi, we observe
an increased performance ratio when the subgraphs become denser, but on Kronecker, decreasing the
density also results in a better performance ratio. We can imagine that increasing the subgraph density

7

0 400 800 1200 1600
0.6

0.7

0.8

0.9

1

0.005
1.0

0.01
1.0

0.1
1.0

1.0
1.0

+
+

(a) Kronecker
0 400 800 1200 1600

0.4

0.5

0.6

0.7

0.8

0.9

1
0.005
1.0

0.01
1.0

0.1
1.0

1.0
1.0

+
+

(b) Power-law
0 400 800 1200 1600

0.4

0.5

0.6

0.7

0.8

0.9

1
0.005
1.0

0.01
1.0

0.1
1.0

1.0
1.0

+
+

(c) Erdős-Rényi

Figure 2: StratLearner with different φ. The y-axis denotes the performance ratio and the x-axis
denotes the number of features. Each graph plots five curves for φ1.0

0.005, φ1.0
0.01, φ1.0

0.1, φ1.0
1.0 and φ+

+,
respectively. The precise values are given in Table 2 in Supplementary E.

does not necessarily increase the performance. Considering the extreme setting φ1.0
1.0 where each edge

is always selected, since there is only one feature, StratLearner reduces to simply maximizing the
distance function over the entire graph with uniform weight. As we can see from Fig. 2, StratLearner
does not perform well under φ1.0

1.0. This is very intuitive as the searching space is too simple to find
a good scoring function. Second, we leak some information of the underlying model to φ1.0

0.1 and
construct φ+

+ where the edge is selected with a probability of 1/dv, exactly the same as that in the
underlying model, with edge weights sampled from their associated Weibull distributions. While φ+

+
is not obtainable under our learning setting, the goal here is to verify that StratLearner can benefit
more from such cheat subgraphs. Indeed, as shown in Fig. 2, StratLearner can produce the protector
that is almost as good as the optimal one. With only 100 features from φ+

+, the performance ratio is no
less than 0.95 on all three graphs. This confirms that StratLearner does work the way it is supposed
to, and it also suggests that such prior knowledge, if any, can be easily handled by StratLearner.

5 Further Discussions and Related Work

Random Features. Our parameterization method is inspired by the technique of random Fourier
features [15, 26], which is an effective method for many learning problems (e.g., [27, 28, 29]). In
particular, we show that subgraph sampling can be used to generate random features, and a subtle
combination of them can give a kernel function w

T

G(M,P) that coincides with the triggering model.
This suggests a new way of putting graphs into a learning process, and it is different from other
methods like graph neural networks or attentions that often use the entire graph.

Set Function Learning. Our problem can be taken as a set function learning problem with sets as
input and output. A learning method to solve such problems should respect the set structure invariant
to permutation, but neural networks often take vectors as input and their output is sensitive to the
positions of the input values. One possible method is to use operations like sum or max that are
permutation-invariant [30], and another idea is to enforce the network to learn permutation-invariant
representations [10]. Our method is different. StratLearner is invariant to permuting the input set
because the constructed kernel function G(M,P) is combinatorial as it is a set function; it is also
invariant to permuting the output set because the inference method is also a combinatorial algorithm
that directly outputs a set. In fact, set algorithms are conceptually permutation-invariant operations
that generalize sum, avg or max.

Misinformation Prevention and Learning Diffusion Models. Kempe et al. [9] formulate the
discrete triggering model, and Du et al. [12] later propose the continuous model for modeling
information diffusion. The MP problem is first formulated by Budak et al. [7]. Even if the diffusion
model is given, the MP problem is still challenging because it is NP-hard [7] and its objective function
is #P-hard to compute [31]. Later in [32], the authors study the problem of identifying the best
intervention period based on the Hawkes process. Learning the diffusion model from real data is
another relevant research branch [33, 34, 35, 36]. Du et al. [23] design an algorithm to learn the
diffusion function without knowing the type of the diffusion models; He et al. [24] study the same
problem but assuming the information is incomplete; Kalimeris et al. [37] propose a method that
parameterizes each edge using the same hyperparameter. Different from the above works, this paper
aims to learn a solution to the MP problem, and it does not attempt to learn the diffusion model.

8

Broader Impact

The work in this paper focuses on operational diffusion models without specifying a particular social
network platform. Our work proposes a framework for computing protectors, but more importantly
and broadly, it suggests a new method for solving learning problems by integrating graph input into
the structured prediction. In addition, we do not anticipate any bias in the data used for experiments
because the involved subgraphs, underlying triggering model, training examples, and training-testing
partition were all randomly determined with enough repetitions. One exception is that we have
considered only three graph types, Kronecker, Power-law, and Erdős-Rényi, which may lead to the
bias on the graph structure. However, given that the results of StratLearner are robust over these
graphs, we believe the observations can be generalized to other graph structures.

References
[1] S. Kumar and N. Shah, “False information on web and social media: A survey,” arXiv preprint

arXiv:1804.08559, 2018.

[2] S. Zannettou, M. Sirivianos, J. Blackburn, and N. Kourtellis, “The web of false information: Rumors, fake
news, hoaxes, clickbait, and various other shenanigans,” Journal of Data and Information Quality (JDIQ),
vol. 11, no. 3, pp. 1–37, 2019.

[3] COVID Rumors on Snopes, https://github.com/cdslabamotong/coronavirus_rumor_collection, (Retrieved:
May 30, 2020).

[4] K. K. Kumar and G. Geethakumari, “Detecting misinformation in online social networks using cognitive
psychology,” Human-centric Computing and Information Sciences, vol. 4, no. 1, pp. 1–22, 2014.

[5] Snopes.com, https://www.snopes.com/.

[6] Factcheck.org, https://www.factcheck.org/.

[7] C. Budak, D. Agrawal, and A. El Abbadi, “Limiting the spread of misinformation in social networks,” in
WWW, 2011, pp. 665–674.

[8] G. Tong, D.-Z. Du, and W. Wu, “On misinformation containment in online social networks,” in NeurIPS,
2018, pp. 341–351.

[9] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of influence through a social network,” in
SIGKDD, 2003, pp. 137–146.

[10] Y. Zhang, J. Hare, and A. Prugel-Bennett, “Deep set prediction networks,” in NeurIPS, 2019, pp. 3207–
3217.

[11] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” arXiv
preprint arXiv:1609.02907, 2016.

[12] N. Du, L. Song, M. G. Rodriguez, and H. Zha, “Scalable influence estimation in continuous-time diffusion
networks,” in NIPS, 2013, pp. 3147–3155.

[13] X. He, G. Song, W. Chen, and Q. Jiang, “Influence blocking maximization in social networks under the
competitive linear threshold model,” in ICDM. SIAM, 2012, pp. 463–474.

[14] G. Tong, W. Wu, L. Guo, D. Li, C. Liu, B. Liu, and D.-Z. Du, “An efficient randomized algorithm for
rumor blocking in online social networks,” IEEE Transactions on Network Science and Engineering, 2017.

[15] A. Rahimi and B. Recht, “Uniform approximation of functions with random bases,” in Annual Allerton
Conference on Communication, Control, and Computing. IEEE, 2008, pp. 555–561.

[16] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large margin methods for structured and
interdependent output variables,” Journal of machine learning research, vol. 6, no. Sep, pp. 1453–1484,
2005.

[17] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approximations for maximizing
submodular set functions—i,” Mathematical programming, vol. 14, no. 1, pp. 265–294, 1978.

[18] R. Iyer and J. Bilmes, “Algorithms for approximate minimization of the difference between submodular
functions, with applications,” arXiv preprint arXiv:1207.0560, 2012.

[19] T. Joachims, T. Finley, and C.-N. J. Yu, “Cutting-plane training of structural svms,” Machine learning,
vol. 77, no. 1, pp. 27–59, 2009.

[20] G. Tong, “Experiments implementation.” https://github.com/cdslabamotong/stratLearner.

[21] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani, “Kronecker graphs: An
approach to modeling networks,” Journal of Machine Learning Research, vol. 11, no. Feb, pp. 985–1042,
2010.

9

https://github.com/cdslabamotong/coronavirus_rumor_collection
https://github.com/cdslabamotong/coronavirus_rumor_collection
https://www.snopes.com/
https://www.snopes.com/
https://www.factcheck.org/
https://www.factcheck.org/
https://github.com/cdslabamotong/stratLearner
https://github.com/cdslabamotong/stratLearner

[22] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman, “Search in power-law networks,”
Physical review E, vol. 64, no. 4, p. 046135, 2001.

[23] N. Du, Y. Liang, M. Balcan, and L. Song, “Influence function learning in information diffusion networks,”
in ICML, 2014, pp. 2016–2024.

[24] X. He, K. Xu, D. Kempe, and Y. Liu, “Learning influence functions from incomplete observations,” in
NIPS, 2016, pp. 2073–2081.

[25] G. Tong and D.-Z. Du, “Beyond uniform reverse sampling: A hybrid sampling technique for misinformation
prevention,” in INFOCOM. IEEE, 2019, pp. 1711–1719.

[26] A. Rahimi and B. Recht, “Weighted sums of random kitchen sinks: Replacing minimization with random-
ization in learning,” in NIPS, 2009, pp. 1313–1320.

[27] Y. Cho and L. K. Saul, “Kernel methods for deep learning,” in Advances in neural information processing
systems, 2009, pp. 342–350.

[28] A. M. Saxe, P. W. Koh, Z. Chen, M. Bhand, B. Suresh, and A. Y. Ng, “On random weights and unsupervised
feature learning.” in ICML, vol. 2, no. 3, 2011, p. 6.

[29] Z. Yang, A. Wilson, A. Smola, and L. Song, “A la carte–learning fast kernels,” in Artificial Intelligence
and Statistics, 2015, pp. 1098–1106.

[30] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola, “Deep sets,” in
NIPS, 2017, pp. 3391–3401.

[31] W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization for prevalent viral marketing in
large-scale social networks,” in SIGKDD, 2010, pp. 1029–1038.

[32] M. Farajtabar, J. Yang, X. Ye, H. Xu, R. Trivedi, E. Khalil, S. Li, L. Song, and H. Zha, “Fake news
mitigation via point process based intervention,” in ICML. JMLR. org, 2017, pp. 1097–1106.

[33] A. Goyal, F. Bonchi, and L. V. Lakshmanan, “Learning influence probabilities in social networks,” in
WSDM, 2010, pp. 241–250.

[34] X. Fang, P. J.-H. Hu, Z. Li, and W. Tsai, “Predicting adoption probabilities in social networks,” Information
Systems Research, vol. 24, no. 1, pp. 128–145, 2013.

[35] K. Saito, M. Kimura, K. Ohara, and H. Motoda, “Selecting information diffusion models over social
networks for behavioral analysis,” in Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, 2010, pp. 180–195.

[36] F. Bonchi, “Influence propagation in social networks: A data mining perspective.” IEEE Intelligent
Informatics Bulletin, vol. 12, no. 1, pp. 8–16, 2011.

[37] D. Kalimeris, Y. Singer, K. Subbian, and U. Weinsberg, “Learning diffusion using hyperparameters,” in
ICML, 2018, pp. 2420–2428.

[38] C. McDiarmid, “On the method of bounded differences,” Surveys in combinatorics, vol. 141, no. 1, pp.
148–188, 1989.

[39] P. Miettinen, “On the positive–negative partial set cover problem,” Information Processing Letters, vol.
108, no. 4, pp. 219–221, 2008.

[40] M. Gomez-Rodriguez, L. Song, N. Du, H. Zha, and B. Schölkopf, “Influence estimation and maximization
in continuous-time diffusion networks,” ACM Transactions on Information Systems (TOIS), vol. 34, no. 2,
pp. 1–33, 2016.

[41] S. Fujishige, Submodular functions and optimization. Elsevier, 2005.

[42] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dynamics, and function using
networkx,” Los Alamos National Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

[43] A. C. Müller and S. Behnke, “Pystruct: learning structured prediction in python,” The Journal of Machine
Learning Research, vol. 15, no. 1, pp. 2055–2060, 2014.

10

StratLearner: Learning a Strategy for Misinformation Prevention
in Social Networks
(Supplementary Material)

A Diffusion Process

The first graph in Fig. 3 shows a triggering model where each node is associated with a distribution over its
in-neighbors and each edge holds a distribution showing the activation time. The second graph shows one
possible scenario after initialization, a weighted subgraph where (u, v) is in the graph iff u ∈ Av . Based on the
initialization in the second graph, the third graph shows the diffusion results under M = {a} and P = {b}; the
fourth graph shows the case when M = {a} and P = {f}.

a

g

c

b

fe

a

d

g

c

b

f

e

a

d

g

c

b

f

e

a

d

g

c

b

f

e

a

d

g

c

b

f

e

({𝑎}, {𝑏}) ({𝑐, 𝑔}, {𝑏, 𝑑}) (𝑏 , {? })

attacker protector

d

a

g

c

b

fe

d

a

g

c

b

fe

d

a

g

c

b

fe

d

1.0

1.5
5.0

0.1

2.0

1.0

1.5
5.0

0.1

2.0

1.0

1.5
5.0

0.1

2.0
M-active P-active

Figure 3: Diffusion Process.

B Proofs

B.1 Proof of Theorem 1

Note that the initialization step in the diffusion process is equivalent to generating a weighted subgraph with
edges ∪u∈V {(v, u)|v ∈ Au} in which each edge e has a weight of te. Therefore, each diffusion model defines
a distribution φ over Ψ, and it suffices to prove f(M,P |∅) =

∫
g

∑
v∈V φ(g) · fvg (M,P |∅)dg. Exchanging the

summation with integration and using the linearity of expectation, it suffices to prove that
∫
ψ
φ(g)·fvg (M,P |∅)dg

is equal to the probability that v will not be M-active with P but would have beenM-active without P . Since
the rest of the diffusion is determined after realization, it is left to prove that for each v∗ ∈ V , fv

∗
g (M,P |∅) = 1

iff, under the initialization corresponding to g, (a) v∗ will not be M-active with P and (b) v∗ will be M-active
without P . This can be easily established from the facts: (a) a node v can be activated by one cascade only if
there is a path from the seed nodes to v; (b) the node will be activated by the first cascade arriving them; (c)
the arrival time each of cascade depends on the length of the shortest path from the source node to v. A formal
argument can be obtained using a reduction from the arg minu∈M∪P dis(u, v) to v along the shortest path.

B.2 Proof of Theorem 2

The proof uses the McDiarmid’s Inequality.

Definition 4 (McDiarmid’s Inequality [38]). Let X1,..., Xm be independent random variables with domain X .
Let f : Xm → R be a function that satisfies |f(x1, ..., xi, ..., xm)− f(x1, ..., x

′
i, ..., xm)| ≤ ci for each i and

x1, ..., xm, x
′
i ∈ X . The for each ε > 0, we have Pr[f − E[f] ≥ ε] ≤ exp

(−2ε2∑
c2i

)
.

Consider the function hi = φ1(gi)
φ∗(gi)

fgi(M,P) for i ∈ [K], and the average function

f2 =

K∑
i=1

φ1(gi)

K · φ∗(gi)
fgi(M,P).

Note that f2 ∈ FG and E[hi(M,P)] = f1(M,P) for each (M,P). Let us denote the interested quantity as

∆K(g1, ..., gK) =

√∫
2V ×2V

(
f2(x)− f1(x)

)2

dχ(x) = ‖f2 − f1‖

11

where the norm is taken under the Lebesgue measure associated to measure χ (the distribution over the pairs
(M,P)). Now let us consider E[∆K(g1, ..., gK)]. The upper bound of E[∆K(g1, ..., gK)] is found by

E[∆K(g1, ..., gK)] ≤

√
E
[∫

2V ×2V

(
f2(x)− f1(x)

)2

dχ(x)
]

=

√∫
2V ×2V

E
[(
f2(x)− f1(x)

)2]
dχ(x)

=

√∫
2V ×2V

E
[(
f2(x)

)2]− E
[
f1(x)

]2
dχ(x)

≤
√∫

2V ×2V

1

K2

∑
i

E
[(φ1(gi)

φ∗(gi)
fgi(x)

)2]
dχ(x) ≤ C · |V |√

K

To show the stability of ∆K(g1, ..., gK), for each g1, ..., gK , g∗ ∈ Ψ and i ∈ [K], replacing gi by g∗, the
change is bounded by

|∆K(g1, ..., gi, ...gK)−∆K(g1, ..., g∗, ...gK)|
{by the reverse triangle inequality}
≤ ‖f2(g1, ..., gi, ...gK)− f2(g1, ..., g∗, ...gK)‖

=

√∫
2V ×2V

(φ1(gi)

K · φ∗(gi)
fgi(M,P)− φ1(g∗)

K · φ∗(g∗)
fg∗(M,P)

)2

dχ(x) ≤ 2 · C · |V |
K

By Eq. (6), we have

Pr[∆K(g1, ..., gK)− ε ≥ ε] ≤ Pr[∆K(g1, ..., gK)− C · |V |√
K
≥ ε]

≤ Pr[∆K(g1, ..., gK)− E[∆K(g1, ..., gK)] ≥ ε]
{McDiarmid’s inequality}

≤ exp(
−2Kε2

(2 · C · |V |)2
) ≤ δ.

B.3 Theorem 3

An instance of this problem is given by the social graph G = (V,E), a collection {g1, ..., gK} of subgraphs,
a weight vector w, the budget k, and two node sets M and P . Recall that the objective function is α ·
H(M,P)(S) := SIM(P, S)−wTG(M,S).

The NP-hardness can be easily established through a reduction from the max k-coverage problem. The max
k-coverage problem is given by an element set P = {p1, ..., pN} and a collection Q = {q1, ..., qM} ⊆ 2P , and
it asks for l sets in Q with the largest union. Setting K = 1, w1 = 1 , let us consider the g1 given in Figure 4
where one node is created for each pi and qj with an extra node z added to the graph. There is an edge from
node qj to node pi if and only if element pi is in set qj , with a weight of 0.5; there is an edge from z to each pi
with a weight of 1. The social graph G can be any supergraph of g1 and P can be any node set that does not
contain any node in g1. Setting k = l and M = {z}, we see that the S ⊆ Q that can minimize H(M,P)(S)
corresponds to the one that has the largest union in the max k-coverage problem.

𝑝!

𝑞!

𝑞"

𝑝!

𝑝#

𝑧

0.5

1

… …

Figure 4: Reduction for NP-hardness.

To prove the approximation hardness, we seek a reduction from the positive-negative set cover (k±PSC) problem.

12

Problem 2 (k±PSC problem). An instance of k±PSC is a triplet (X,Y,Φ) with an integer l ∈ Z+, where
X and Y are two sets of elements with X ∩ Y = ∅, and Φ = {φ1, ..., φq} ⊆ 2X∪Y is a collection of
q ∈ Z+subsets over X ∪ Y . For each Φ∗ ⊆ Φ, its cost is defined as

cost(Φ∗) = |X \ (∪φ∈Φ∗φ)|+ |Y ∩ (∪φ∈Φ∗φ)|.
The k±PSC problem seeks for a Φ∗ ⊆ Φ with |Φ∗| = l such that the cost is minimized.

The following hardness of k±PSC follows fairly directly from Miettinen [39].
Lemma 1 ([39]). Unless NP ⊆ DTIME(npoly logn), there exists no polynomial-time approximation algo-
rithm for the k±PSC problem with a ratio of Ω(2log1−ε q) for each ε > 0.

Given an instance (X,Y,Φ) of k±PSC, we construct an instance of LAI, as follows. The social graph is show
in Fig. 5a composed of the following parts:

• Nodes: There are four groups of nodes X,X∗, Y and Φ, where each node in X , Y and Φ corresponds
to their counterpart in the k±PSC instance, and X∗ is a copy of X . In addition, there are two extra
nodes z1 and z2;

• Edges: edges can be grouped into several parts:
– There is an edge from z2 to each node in X∗ ∪ Y , and an edge from z1 to each node in X;
– There is an edge from each node in Φ to each node in X∗;
– There is an edge from each node in X to each node in X∗ ∪ Y .
– There is an edge (u, v) for each pair of the nodes in X∗ ∪ Y . This part is not shown in the graph.
– There is an edge from φi to yj if and only if yj ∈ φi.
– There is an edge from φi to xj if and only if xj ∈ φi.

𝜙$

𝑥!

𝑥|"|

𝑧!

…

…

…
𝑦!

𝑦|&|

𝑧'

𝑃 = {𝑧"}

𝑀 = {𝑧!}

𝑥!∗

𝑥 "
∗

…

𝜙!

Group 𝑋∗ Group Φ

Group 𝑋

Group 𝑌

(a) Social Graph G

𝜙$

𝑥!

𝑥|"|

𝑧!

…

…

𝑃 = {𝑧"}

𝑀 = {𝑧!}

𝜙!

Group Φ

Group 𝑋

0.5 1

(b) The subgraph g1

Figure 5: Reduction for Approximation Hardness.
We again set K = 1, w1 = 1, α = 1, and g1 is a subgraph of G which includes nodes Φ, X and z1 and the
edges between them, as shown in Fig. 5b. In g1, each edge between Φ and X has a weight of 0.5; each edge
between X and z1 has a weight of 1.0. We set P as {z2} and M as {z1}. We consider the one-hop loss and set
l = k. Due to the edge within Y and those from Y to X , to minimize SIM(P, S) (i.e., the overlap of one-hop
neighbors), only the nodes in Φ should be selected. To maximize wTG(M,S) = g1(M,S), according to the
construction of g1, we see again that the optimal solution must the nodes in Φ. Therefore, for the LAI problem, it
suffices to restrict the node selection in Φ. For each subset Φ∗ ⊆ Φ, SIM(P, S) is exactly |X∗| plus the number
of the nodes in Y that are connected from some node in Φ∗, and wTG(M,S) is the number of the nodes in X
that are connected from some node in Φ∗. Therefore, we have

H(M,P)(Φ
∗) = SIM(P,Φ∗)−wTG(M,Φ∗)

= |X∗|+ |Y ∩ (∪φ∈Φ∗φ)| − |X ∩ (∪φ∈Φ∗φ)|
= |Y ∩ (∪φ∈Φ∗φ)|+ |X \ (∪φ∈Φ∗φ)| = cost(Φ∗),

which completes the reduction. The reduction yields the hardness result immediately.

13

B.4 Proof of Theorem 4

A set function h over a ground setU is submodular if it has a diminishing marginal return, i.e., h(A+v)−h(A) ≤
h(B + v)− h(B) for each B ⊆ A and v /∈ A. SIMj

hop is submodular as it is a coverage function [40]. We can
easily verified that fgv (M,S|∅) is also submodular for each subgraph g and v, and therefore, wTG(M,Φ∗) is
submodular as well since it is a sum of submodular functions. It is well-known that submodular functions have
both tight modular upper bound and tight modular lower bound. A modular upper bound of SIMj

hop together
with a modular lower bound of wTG(M,Φ∗) would give a modular upper bound of H(M,P)(S). In particular,
for a general submodular function h over U , the constructions can be found in [18], as summarized below.

Modular Lower Bound [41]. For a permutation σ(i) over U = [n], let us define that
Siσ :={σ(1), ..., σ(i)} and define a mapping U → R:

∆σ(σ(i)) :=

{
h(S1

σ) i = 1

h(Siσ)− h(Si−1
σ) otherwise

.

Since h is submodular, for each X and a permutation σX such that X = S
|X|
σ , the modular function

hσX (S) =
∑
v∈S

∆σ(v) (10)

satisfies hσX (S) ≤ h(S) for each S ⊆ V , and hσX (X) = h(X).

Modular Upper Bound [17, 18]. For each X ⊆ U , a modular upper bound of h(S) is found by

h
X

(S) :=h(X)−
∑

v∈X\S

(
h(X)− h(X \ {v})

)
+
∑

v∈S\X

(
h(X ∩ S)− h(X ∩ S \ {v})

)
,

satisfying h
X

(X) = h(X) and h
X

(S) ≥ h(S) for each S ⊆ V .

B.5 Proof of Property 1

The first part follows from the fact that H(Xt+1) ≥ H
′
Xt(Xt+1) ≥ H

′
Xt(Xt) = H(Xt). Evaluating the

function takes K(|E|+ |V |) and thus each iteration takes K|V |(|E|+ |V |).

C Cutting Plane Algorithm

We adopt the one-slack cutting plane algorithm (Alg. 2) in [19] for training our structural SVM, with the only
modification that a nonnegative constraint on w is added.

Algorithm 2 One-slack Cutting Plane

1: Input: (M1, P1), ..., (Mn, Pn), C, ε, α;
2: W ← ∅;
3: repeat
4: Solve the QP over constraintsW:

(w, ξ)← arg min
1

2
‖w‖22 + C · ξi

s.t. ∀(P 1, ...Pn) ∈ W :

1

n
wT

n∑
i=1

(
G(Mi, Pi)−G(Mi, P i)

)
≥ α

n
·
n∑
i=1

L(Pi, P i)− ξ;

w ≥ 0.

5: for i = 1, ..., n do
6: P̂i ← arg min|S|≤k SIM(Pi, S)−wTG(Mi, S);

7: W ←W ∪ {(P̂1, ...P̂n)};
8: until αn ·

∑n
i=1 L(Pi, P̂i)− 1

nw
T
∑n
i=1

(
G(Mi, Pi)−G(Mi, P̂i

)
≤ ξ + ε

14

D Tie Breaking

The tie breaking in Sec. 2.1 is done by always giving the misinformation a higher priority. If we would do the
reverse, the only modification to StratLearner is to replace Eq. (4) with

fvg (M,P |∅) :=

{
1 disg(v,P) ≤ disg(v,M) and disg(v,M) 6=∞
0 otherwise

.

E Experiments

The used data and source code are available in the supplementary files.

E.1 Data Generation

The Kronecker graph is generated using SNAP3 with parameters [0.9, 0.6; 0.6, 0.1]. The power-law graph
and the Erdős-Rényi graph are generated using NetworkX [42]. Each edge follows the Weibull distribution
β
α

(t
α

)β−1 exp(−(t
α

)β) where α and β are selected from {1, ..., 10} uniformly at random.

To generate one pair of attacker and protector, we first sample the size of the attacker from the power-law
distribution with a parameter 2.5. Given the size of the attacker M , the nodes in M are randomly selected from
V . Given the attacker M , the protector P is computed using the method in [25]. Repeating this process, we
generate a pool of 2500 pairs for each graph.

E.2 Method Implementations

StratLearner. The one-slack cutting plane algorithm is implemented based on Pystruct [43] with hyperparame-
ters ε = 0.001 and C = 0.01.

MLP and GCN. For MLP, we adopt three hidden layers of size (512, 512, 256) with ReLU as the activation
function. The node sets are encoded as one-hot vectors, and the loss function is the pointwise cross-entropy
between the output layer and the truth vector, plus the L2 regularizer. We use Adam optimizer with drop rate
0.5, and the learning rate is 0.001 with exponential decay. We adopt the valina GCN model [11] with two GCN
layers followed by our MLP. Since the model in [11] was for semi-supervised learning, we slightly modify the
flow to make it work for supervised learning. Other settings are the same as those in MLP.

DSPN. Dspn is proposed in [30] where the main modules are input encoder, set encoder, and set decoder. Given
an attacker, we encode it as a set of elements where the feature of each element is the associated one-hot vector.
The input encoder and set encoder are MLP with three hidden layers of size 512. The inner optimization is
performed 10 steps with rate 1, 000, 000 in each round, and the outer loop is optimized with Adam with a
learning rate of 0.01.

E.3 Detailed Results of Fig. 2.

The precise results in Fig. 2 are given in Table 2.

Table 2: Testing φ. 1080 training pairs are used in each experiment.
Kronecker Power-law Erdős-Rényi

φ 100 400 800 1600 100 400 800 1600 100 400 800 1600

φ1.0
0.005 0.759 0.795 0.813 0.827 0.532 0.840 0.870 0.887 0.461 0.830 0.857 0.893

φ1.0
0.01 (base) 0.708 0.760 0.782 0.817 0.725 0.823 0.890 0.924 0.714 0.846 0.852 0.904

φ1.0
0.1 0.806 0.821 0.827 0.834 0.931 0.969 0.977 0.986 0.866 0.898 0.914 0.933

φ1.0
1.0 0.775 0.763 0.748

φ+
+ 0.961 0.986 0.986 0.986 0.996 0.998 0.999 0.999 0.996 0.998 0.998 0.998

3https://github.com/snap-stanford/snap/tree/master/examples/krongen

15

Table 3: Result on Facebook.

StratL NB MLP GCN DSPN HD Pro Rand
0.725 (1E-2) 0.662 (6E-3) 0.651 (5E-3) 0.625 (2E-3) 0.446 (2E-3) 0.656 (8E-3) 0.170 (1E-2) 0.011 (8E-3)

E.4 Experimental Results on Facebook.

We also tested a Facebook graph with 4, 039 nodes from SNAP4, where StratLearner is trained with 100
subgraphs from distribution φ1.0

0.1 and 270 training examples are used in each learning-based method. Other
settings are the same as the experiments in the main paper. The results are given in Table 3. Overall, similar
to Table 1 in the main paper, we have the observation that StratLearner outperforms other competitors by an
evident margin.

4Leskovec, Jure, and Andrej Krevl. "SNAP datasets: stanford large network dataset collection; 2014."

16

	Introduction
	Problem Setting
	Model
	Misinformation Prevention and Learning Settings

	StratLearner
	Parameterization
	Margin-based Structured Prediction
	StratLearner

	Experiments
	Settings
	Observations

	Further Discussions and Related Work
	Diffusion Process
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Theorem 3
	Proof of Theorem 4
	Proof of Property 1

	Cutting Plane Algorithm
	Tie Breaking
	Experiments
	Data Generation
	Method Implementations
	Detailed Results of Fig. 2.
	Experimental Results on Facebook.

