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Abstract

We develop a new approach to obtaining high probability regret bounds for online
learning with bandit feedback against an adaptive adversary. While existing ap-
proaches all require carefully constructing optimistic and biased loss estimators,
our approach uses standard unbiased estimators and relies on a simple increasing
learning rate schedule, together with the help of logarithmically homogeneous
self-concordant barriers and a strengthened Freedman’s inequality.
Besides its simplicity, our approach enjoys several advantages. First, the obtained
high-probability regret bounds are data-dependent and could be much smaller
than the worst-case bounds, which resolves an open problem asked by Neu [31].
Second, resolving another open problem of Bartlett et al. [12] and Abernethy and
Rakhlin [1], our approach leads to the first general and efficient algorithm with a
high-probability regret bound for adversarial linear bandits, while previous methods
are either inefficient or only applicable to specific action sets. Finally, our approach
can also be applied to learning adversarial Markov Decision Processes and provides
the first algorithm with a high-probability small-loss bound for this problem.

1 Introduction

Online learning with partial information in an adversarial environment, such as the non-stochastic
Multi-armed Bandit (MAB) problem [10], is by now a well-studied topic. However, the majority of
work in this area has been focusing on obtaining algorithms with sublinear expected regret bounds,
and these algorithms can in fact be highly instable and suffer a huge variance. For example, it is
known that the classic EXP3 algorithm [10] for MAB suffers linear regret with a constant probability
(over its internal randomness), despite having nearly optimal expected regret (see [26, Section 11.5,
Note 1]), making it a clearly undesirable choice in practice.

To address this issue, a few works develop algorithms with regret bounds that hold with high
probability, including those for MAB [10, 8, 31], linear bandits [12, 1], and even adversarial Markov
Decision Processes (MDPs) [25]. Getting high-probability regret bounds is also the standard way of
deriving guarantees against an adaptive adversary whose decisions can depend on learner’s previous
actions. This is especially important for problems such as routing in wireless networks (modeled as
linear bandits in [11]) where adversarial attacks can indeed adapt to algorithm’s decisions on the fly.

As far as we know, all existing high-probability methods (listed above) are based on carefully
constructing biased loss estimators that enjoy smaller variance compared to standard unbiased ones.
While this principle is widely applicable, the actual execution can be cumbersome; for example, the
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scheme proposed in [1] for linear bandits needs to satisfy seven conditions (see their Theorem 4), and
other than two examples with specific action sets, no general algorithm satisfying these conditions
was provided.

In this work, we develop a new and simple approach to obtaining high-probability regret bounds
that works for a wide range of bandit problems with an adaptive adversary (including MAB, linear
bandits, MDP, and more). Somewhat surprisingly, in contrast to all previous methods, our approach
uses standard unbiased loss estimators. More specifically, our algorithms are based on Online Mirror
Descent with a self-concordant barrier regularizer [2], a standard approach with expected regret
guarantees. The key difference is that we adopt an increasing learning rate schedule, inspired by
several recent works using similar ideas for completely different purposes (e.g., [5]). At a high level,
the effect of this schedule magically cancels the potentially large variance of the unbiased estimators.

Apart from its simplicity, there are several important advantages of our approach. First of all, our
algorithms all enjoy data-dependent regret bounds, which could be much smaller than the majority of
existing high-probability bounds in the form of Õ(

√
T ) where T is the number of rounds. As a key

example, we provide details for obtaining a particular kind of such bounds called “small-loss” bounds
in the form Õ(

√
L?), where L? ≤ T is the loss of the benchmark in the regret definition. For MAB

and linear bandits, our approach also obtains bounds in terms of the variation of the environment in
the vein of [23, 33, 37, 17], resolving an open problem asked by Neu [31].

Second, our approach provides the first general and efficient algorithm for adversarial linear bandits
(also known as bandit linear optimization) with a high-probability regret guarantee. As mentioned,
Abernethy and Rakhlin [1] provide a general recipe for this task but in the end only show concrete
examples for two specific action sets. The problem of obtaining a general and efficient approach with
regret Õ(

√
T ) was left open since then. The work of [12] proposes an inefficient but general approach,

while the work of [22, 13] develop efficient algorithms for polytopes but with Õ(T 2/3) regret. We
not only resolve this long-standing open problem, but also provide improved data-dependent bounds.

Third, our approach is also applicable to learning episodic MDPs with unknown transition, adversarial
losses, and bandit feedback. The algorithm is largely based on a recent work [25] on the same problem
where a high-probability Õ(

√
T ) regret bound is obtained. We again develop the first algorithm

with a high-probability small-loss bound Õ(
√
L?) in this setting. The problem in fact shares great

similarity with the simple MAB problem. However, none of the existing methods for obtaining
small-loss bounds for MAB can be generalized to the MDP setting (at least not in a direct manner) as
we argue in Section 4. Our approach, on the other hand, generalizes directly without much effort.

Techniques. Most new techniques of our work is in the algorithm for linear bandits (Section 3),
which is based on the SCRIBLE algorithm from the seminal work [2, 3]. The first difference is that
we propose to lift the problem from Rd to Rd+1 (where d is the dimension of the problem) and use a
logarithmically homogeneous self-concordant barrier of the conic hull of the action set (which always
exists) as the regularizer for Online Mirror Descent. The nice properties of such a regularizer lead
to a smaller variance of the loss estimators. Equivalently, this can be viewed as introducing a new
sampling scheme for the original SCRIBLE algorithm in the space of Rd. The second difference is
the aforementioned new learning rate schedule, where we increase the learning rate by a small factor
whenever the Hessian of the regularizer at the current point is “large” in some sense.

In addition, we also provide a strengthened version of the Freedman’s concentration inequality for
martingales [21], which is crucial to all of our analysis and might be of independent interest.

Related work. In online learning, there are subtle but important differences and connections
between the concept of pseudo-regret, expected regret, and the actual regret, in the context of either
oblivious or adaptive adversary. We refer the readers to [8] for detailed related discussions.

While getting expected small-loss regret is common [7, 32, 20, 6, 4, 27], most existing high-probability
bounds are of order Õ(

√
T ). Although not mentioned in the original paper, the idea of implicit

exploration from [31] can lead to high-probability small-loss bounds for MAB (see [26, Section
12.3, Note 4]). Lykouris et al. [29] adopt this idea together with a clipping trick to derive small-loss
bounds for more general bandit problems with graph feedback. We are not aware of other works with
high-probability small-loss bounds in the bandit literature. Note that in [8, Section 6], some high-
probability “small-reward” bounds are derived, and they are very different in nature from small-loss
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bounds (specifically, the former is equivalent to Õ(
√
T − L?) in our notation). We are also not aware

of high-probability version of other data-dependent regret bounds such as those from [23, 33, 37, 17].

The idea of increasing learning rate was first used in the seminal work of Bubeck et al. [15] for
convex bandits. Inspired by this work, Agarwal et al. [5] first combined this idea with the log-barrier
regularizer for the problem of “corralling bandits”. Since then, this particular combination has proven
fruitful for many other problems [37, 28, 27]. We also use it for MAB and MDP, but our algorithm
for linear bandits greatly generalizes this idea to any self-concordant barrier.

Structure and notation. In Section 2, we start with a warm-up example on MAB, which is the
cleanest illustration on the idea of using increasing learning rates to control the variance of unbiased
estimators. Then in Section 3 and Section 4, we greatly generalize the idea to linear bandits and
MDPs respectively. We focus on showing small-loss bounds as the main example, and only briefly
discuss how to obtain other data-dependent regret bounds, since the ideas are very similar.

We introduce the notation for each setting in the corresponding section, but will use the following
general notation throughout the paper: for a positive integer n, [n] represents the set {1, . . . , n} and
∆n represents the (n − 1)-dimensional simplex; ei stands for the i-th standard basis vector and 1
stands for the all-one vector (both in an appropriate dimension depending on the context); for a convex
function ψ, the associated Bregman divergence is Dψ(u,w) = ψ(u)− ψ(w)−∇ψ(w)>(u− w);
for a positive definite matrix M ∈ Rd×d and a vector u ∈ Rd, ‖u‖M ,

√
u>Mu is the quadratic

norm of u with respect to M ; λmax(M) denotes the largest eigenvalue of M ; Et[·] is a shorthand for
the conditional expectation given the history before round t; Õ(·) hides logarithmic terms.

2 Multi-armed bandits: an illustrating example

We start with the most basic bandit problem, namely adversarial MAB [10], to demonstrate the
core idea of using increasing learning rate to reduce the variance of standard algorithms. The MAB
problem proceeds in rounds between a learner and an adversary. For each round t = 1, . . . , T , the
learner selects one of the d available actions it ∈ [d], while simultaneously the adversary decides a
loss vector `t ∈ [0, 1]d with `t,i being the loss for arm i. An adaptive adversary can choose `t based
on the learner’s previous actions i1, . . . , it−1 in an arbitrary way, while an oblivious adversary cannot
and essentially decides all `t’s ahead of time (knowing the learner’s algorithm). At the end of round t,
the learner observes the loss of the chosen arm `t,it and nothing else. The standard measure of the
learner’s performance is the regret, defined as Reg =

∑T
t=1 `t,it −mini∈[d]

∑T
t=1 `t,i, that is, the

difference between the total loss of the learner and that of the best fixed arm in hindsight.

A standard framework to solve this problem is Online Mirror Descent (OMD), which at time t samples
it from a distribution wt, updated in the following recursive form: wt+1 = argminw∈∆d

〈
w, ̂̀t〉+

Dψt(w,wt), where ψt is the regularizer and ̂̀t is an estimator for `t. The standard estimator is the
importance-weighted estimator: ̂̀t,i = `t,i1{it = i}/wt,i, which is clearly unbiased. Together with
many possible choices of the regularizer (e.g., the entropy regularizer recovering EXP3 [10]), this
ensures (nearly) optimal expected regret bound E[Reg] = Õ(

√
dT ) against an oblivious adversary.

To obtain high-probability regret bounds (and also as a means to deal with adaptive adversary),
various more sophisticated loss estimators have been proposed. Indeed, the key challenge in obtaining
high-probability bounds lies in the potentially large variance of the unbiased estimators: Et

[̂̀2
t,i

]
=

`2t,i/wt,i is huge if wt,i is small. The idea of all existing approaches to addressing this issue is to
introduce a slight bias to the estimator, making it an optimistic underestimator of `t with lower
variance (see e.g., [10, 8, 31]). Carefully balancing the bias and variance, these algorithms achieve
Reg = Õ(

√
dT ln(d/δ)) with probability at least 1− δ against an adaptive adversary.

Our algorithm. In contrast to all these existing approaches, we next show that, perhaps surprisingly,
using the standard unbiased estimator can also lead to the same (in fact, an even better) high-
probability regret bound. We start by choosing a particular regularizer called log-barrier with time-
varying and individual learning rate ηt,i: ψt(w) =

∑d
i=1

1
ηt,i

ln 1
wi

, which is a self-concordant barrier
for the positive orthant [30] and has been used for MAB in several recent works [20, 5, 16, 37, 17].
As mentioned in Section 1, the combination of log-barrier and a particular increasing learning rate
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Algorithm 1 OMD with log-barrier and increasing learning rates for Multi-armed Bandits
Input: initial learning rate η.
Define: increase factor κ = e

1
lnT , truncated simplex Ω =

{
w ∈ ∆d : wi ≥ 1

T ,∀i ∈ [d]
}

.
Initialize: for all i ∈ [d], w1,i = 1/d, ρ1,i = 2d, η1,i = η.
for t = 1, 2, . . . , T do

Sample it ∼ wt, observe `t,it , and construct estimator ̂̀t,i =
`t,i1{it=i}

wt,i
for all i ∈ [d].

Compute wt+1 = argminw∈Ω

〈
w, ̂̀t〉+Dψt (w,wt) where ψt(w) =

∑d
i=1

1
ηt,i

ln 1
wi

.
for i ∈ [d] do

if 1
wt+1,i

> ρt,i then set ρt+1,i = 2
wt+1,i

, ηt+1,i = ηt,iκ;
else set ρt+1,i = ρt,i, ηt+1,i = ηt,i.

schedule has been proven powerful for many different problems since the work of [5], which we
also apply here. Specifically, the learning rates start with a fixed value η1,i = η for all arm i ∈ [d],
and every time the probability of selecting an arm i is too small, in the sense that 1/wt+1,i > ρt,i
for some threshold ρt,i (starting with 2d), we set the new threshold to be 2/wt+1,i and increase the
corresponding learning rate ηt,i by a small factor κ.

The complete pseudocode is shown in Algorithm 1. The only slight difference compared to the
algorithm of [5] is that instead of enforcing a 1/T amount of uniform exploration explicitly (which
makes sure that each learning rate is increased by a most O(lnT ) times), we directly perform OMD
over a truncated simplex Ω = {w ∈ ∆d : wi ≥ 1/T, ∀i ∈ [d]}, making the analysis cleaner.

As explained in [5], increasing the learning rate in this way allows the algorithm to quickly realize
that some arms start to catch up even though they were underperforming in earlier rounds, which is
also the hardest case in our context of obtaining high-probability bounds because these arms have
low-quality estimators at some point. At a technical level, this effect is neatly presented through a
negative term in the regret bound, which we summarize below.

Lemma 2.1. Algorithm 1 ensures
∑T
t=1 `t,it−

∑T
t=1

〈
u, ̂̀t〉 ≤ O (d lnT

η + η
∑T
t=1 `t,it

)
− 〈ρT ,u〉10η lnT

for any u ∈ Ω.

The important part is the last negative term involving the last threshold ρT whose magnitude is large
whenever an arm has a small sampling probability at some point over the T rounds. This bound has
been proven in previous works such as [5] (see a proof in Appendix A.2), and next we use it to show
that the algorithm in fact enjoys a high-probability regret bound, which is not discovered before.

Indeed, comparing Lemma 2.1 with the definition of regret, one sees that as long as we can relate
the estimated loss of the benchmark

∑
t

〈
u, ̂̀t〉 with its true loss

∑
t

〈
u, `t

〉
, then we immediately

obtain a regret bound by setting u = (1 − d
T )ei? + 1

T 1 ∈ Ω where i? = argmini
∑
t `t,i is the

best arm. A natural approach is to apply standard concentration inequality, in particular Freedman’s
inequality [21], to the martingale difference sequence

〈
u, ̂̀t − `t〉. The deviation from Freedman’s

inequality is in terms of the variance of
〈
u, ̂̀t〉, which in turn depends on

∑
i ui/wt,i. As explained

earlier, the negative term is exactly related to this and can thus cancel the potentially large variance!

One caveat, however, is that the deviation from Freedman’s inequality also depends on a fixed
upper bound of the random variable

〈
u, ̂̀t〉 ≤ ∑i ui/wt,i, which could be as large as T (since

wt,i ≥ 1/T ) and ruin the bound. If the dependence on such a fixed upper bound could be replaced
with the (random) upper bound

∑
i ui/wt,i, then we could again use the negative term to cancel this

dependence. Fortunately, since
∑
i ui/wt,i is measurable with respect to the σ-algebra generated

by everything before round t, we are indeed able to do so. Specifically, we develop the following
strengthened version of Freedman’s inequality, which might be of independent interest.
Theorem 2.2. Let X1, . . . , XT be a martingale difference sequence with respect to a filtration
F1 ⊆ · · · ⊆ FT such that E[Xt|Ft] = 0. Suppose Bt ∈ [1, b] for a fixed constant b is Ft-
measurable and such that Xt ≤ Bt holds almost surely. Then with probability at least 1 − δ

we have
∑T
t=1Xt ≤ C

(√
8V ln (C/δ) + 2B? ln (C/δ)

)
, where V = max

{
1,
∑T
t=1 E[X2

t |Ft]
}

,
B? = maxt∈[T ]Bt, and C = dlog(b)edlog(b2T )e.
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This strengthened Freedman’s inequality essentially recovers the standard one when Bt is a fixed
quantity. In our application, Bt is exactly 〈ρt, u〉 which is Ft-measurable. With the help of this
concentration result, we are now ready to show the high-probability guarantee of Algorithm 1.

Theorem 2.3. Algorithm 1 with a suitable choice of η ensures that with probability at least 1− δ,
Reg = Õ

(√
dL? ln(d/δ) + d ln(d/δ)

)
, where L? = mini

∑T
t=1 `t,i is the loss of the best arm.

The proof is a direct combination of Lemma 2.1 and Theorem 2.2 and can be found in Appendix A.3.
Our high-probability guarantee is of the same order Õ(

√
dT ln(d/δ)) as in previous works [10, 8]

since L? = O(T ). However, as long as L? = o(T ) (that is, the best arm is of high quality), our bound
becomes much better. This kind of high-probability small-loss bounds appears before (e.g., [29]).
Nevertheless, in Section 4 we argue that only our approach can directly generalize to learning MDPs.

Finally, we remark that the same algorithm can also obtain other data-dependent regret bounds by
changing the estimator to ̂̀t,i = (`t,i −mt,i)1{it = i}/wt,i +mt,i for some optimistic prediction
mt. We refer the reader to [37] for details on how to set mt in terms of observed data and what kind
of bounds this leads to, but the idea of getting the high-probability version is completely the same as
what we have illustrated here. This resolves an open problem mentioned in [31, Section 5].

3 Generalization to adversarial linear bandits

Next, we significantly generalize our approach to adversarial linear bandits, which is the main
algorithmic contribution of this work. Linear bandits generalize MAB from the simplex decision set
∆d to an arbitrary convex body Ω ⊆ Rd. For each round t = 1, . . . , T , the learner selects an action
w̃t ∈ Ω while simultaneously the adversary decides a loss vector `t ∈ Rd, assumed to be normalized
such that maxw∈Ω | 〈w, `t〉 | ≤ 1. Again, an adaptive adversary can choose `t based on the learner’s
previous actions, while an oblivious adversary cannot. At the end of round t, the learner suffers and
only observes loss 〈w̃t, `t〉. The regret of the learner is defined as Reg = maxu∈Ω

∑T
t=1 〈w̃t − u, `t〉,

which is the difference between the total loss of the learner and that of the best fixed action within Ω.
Linear bandits subsume many other well-studied problems such as online shortest path for network
routing, online matching, and other combinatorial bandit problems (see e.g., [9, 18]).

The seminal work of Abernethy et al. [2] develops the first general and efficient linear bandit algorithm
(called SCRIBLE in its journal version [3]) with expected regret Õ(d

√
νT ) (against an oblivious

adversary), which uses a ν-self-concordant barrier as the regularizer for OMD. It is known that any
convex body in Rd admits a ν-self-concordant barrier with ν = O(d) [30]. The minimax regret
of this problem is known to be of order Õ(d

√
T ) [19, 14], but efficiently achieving this bound (in

expectation) requires a log-concave sampler and a volumetric spanner of Ω [24].

High-probability bounds for linear bandits are very scarce, especially for a general decision set Ω.
In [12], an algorithm with high-probability regret Õ(

√
d3T ln(1/δ)) was developed, but it cannot be

implement efficiently. In [1], a general recipe was provided, but seven conditions need to be satisfied
to arrive at a high-probability guarantee, and only two concrete examples were shown (when Ω is the
simplex or the Euclidean ball). We propose a new algorithm based on SCRIBLE, which is the first
general and efficient linear bandit algorithm with a high-probability regret guarantee, resolving the
problem left open since the work of [12, 1].

Issues of SCRIBLE. To introduce our algorithm, we first review SCRIBLE. As mentioned,
it is also based on OMD and maintains a sequence w1, . . . , wT ∈ Ω updated as wt+1 =

argminw∈Ω

〈
w, ̂̀t〉 + 1

ηDψ(w,wt) where ̂̀t is an estimator for `t, η is some learning rate, and
importantly, ψ is a ν-self-concordant barrier for Ω which, again, always exists. Due to space limit,
we defer the definition and properties of self-concordant barriers to Appendix B.2. To incorpo-
rate exploration, the actual point played by the algorithm at time t is w̃t = wt + H

−1/2
t st where

Ht = ∇2ψ(wt) and st is uniformly randomly sampled from the d-dimensional unit sphere Sd.1 The
point w̃t is on the boundary of the Dikin ellipsoid centered at wt (defined as {w : ‖w − wt‖Ht ≤ 1})

1In fact, st can be sampled from any orthonormal basis of Rd together with their negation. For example, in
the original SCRIBLE, the eigenbasis of Ht is used as this orthonormal basis. The version of sampling from a
unit sphere first appears in [36], which works more generally for convex bandits.
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Algorithm 2 SCRIBLE with lifting and increasing learning rates
Input: decision set Ω ⊆ Rd, a ν-self-concordant barrier ψ for Ω, initial learning rate η.
Define: increase factor κ = e

1
100d ln(νT ) , normal barrier Ψ(w) = Ψ(w, b) = 400

(
ψ
(
w
b

)
− 2ν ln b

)
.

Initialize: w1 = argminw∈Ω ψ(w), w1 = (w1, 1),H1 = ∇2Ψ(w1), η1 = η, S = {1}.
Define: shrunk lifted decision set Ω′ = {w = (w, 1) : w ∈ Ω, πw1

(w) ≤ 1− 1
T }.

1 for t = 1, 2, . . . , T do
2 Uniformly at random sample st from

(
H
− 1

2
t ed+1

)⊥ ∩ Sd+1.

3 Compute w̃t = wt +H
− 1

2
t st , (w̃t, 1).

4 Play w̃t, observe loss 〈w̃t, `t〉, and construct loss estimator ̂̀t = d〈w̃t, `t〉H
1
2
t st.

5 Compute wt+1 = argminw∈Ω′
〈
w, ̂̀t〉+DΨt(w,wt), where Ψt = 1

ηt
Ψ.

6 ComputeHt+1 = ∇2Ψ(wt+1).
7 if λmax(Ht+1 −

∑
τ∈SHτ ) > 0 then S ← S ∪ {t+ 1} and set ηt+1 = ηtκ;

8 else set ηt+1 = ηt.

and is known to be always within Ω. Finally, the estimator ̂̀t is constructed as d 〈w̃t, `t〉H1/2
t st,

which can be computed using only the feedback 〈w̃t, `t〉 and is unbiased as one can verify.

The analysis of [2] shows the following bound related to the loss estimators:
∑T
t=1

〈
wt − u, ̂̀t〉 ≤

Õ(νη + ηd2T ) for any u ∈ Ω (that is not too close to the boundary). Since Et[
〈
wt − u, ̂̀t〉] =

Et[
〈
w̃t − u, `t

〉
], this immediately yields an expected regret bound (for an oblivious adversary).

However, to obtain a high-probability bound, one needs to consider the deviation of
∑T
t=1

〈
wt−u, ̂̀t〉

from
∑T
t=1

〈
w̃t − u, `t

〉
. Applying our strengthened Freedman’s inequality (Theorem 2.2) with

Xt =
〈
w̃t − u, `t

〉
−
〈
wt − u, ̂̀t〉, with some direct calculations one can see that both the variance

term V and the range term B? from the theorem are related to maxt ‖wt‖Ht and maxt ‖u‖Ht , both
of which can be prohibitively large. We next discuss how to control each of these two terms, leading
to the two new ideas of our algorithm (see Algorithm 2).

Controlling ‖wt‖Ht . Readers who are familiar with self-concordant functions would quickly
realize that ‖wt‖Ht =

√
w>t ∇2ψ(wt)wt is simply

√
ν provided that ψ is also logarithmically

homogeneous. A logarithmically homogeneous self-concordant barrier is also called a normal barrier
(see Appendix B.2 for formal definitions and related properties). However, normal barriers are only
defined for cones instead of convex bodies.

Inspired by this fact, we propose to lift the problem to Rd+1. To make the notation clear, we use bold
letters for vectors in Rd+1 and matrices in R(d+1)×(d+1). The lifting is done by operating over a
lifted decision set Ω = {w = (w, 1) ∈ Rd+1 : w ∈ Ω}, that is, we append a dummy coordinate with
value 1 to all actions. The conic hull of this set is K = {(w, b) : w ∈ Rd, b ≥ 0, 1

bw ∈ Ω}. We then
perform OMD over the lifted decision set but with a normal barrier defined over the cone K as the
regularizer to produce the sequence w1, . . . ,wT (Line 5). In particular, using the original regularizer
ψ we construct the normal barrier as: Ψ(w, b) = 400

(
ψ
(
w
b

)
− 2ν ln b

)
.2 Indeed, Proposition 5.1.4

of [30] asserts that this is a normal barrier for K with self-concordant parameter O(ν).

So far nothing really changes since Ψ(w, 1) = 400ψ(w). However, the key difference is in the
way we sample the point w̃t. If we still follow SCRIBLE to sample from the Dikin ellipsoid
centered at wt, it is possible that the sampled point leaves Ω. To avoid this, it is natural to sample
only the intersection of the Dikin ellipsoid and Ω (again an ellipsoid). Algebraically, this means
setting w̃t = wt + H

−1/2
t st where Ht = ∇2Ψ(wt) and st is sampled uniformly at random

from (H
−1/2
t ed+1)⊥ ∩ Sd+1 (v⊥ is the space orthogonal to v). Indeed, since st is orthogonal to

H
−1/2
t ed+1, the last coordinate of H−1/2

t st is zero, making w̃t = (w̃t, 1) stay in Ω. See Line 2
and Line 3. To sample st efficiently, one can either sample a vector uniformly randomly from Sd+1,

2Our algorithm works with any normal barrier, not just this particular one. We use this particular form to
showcase that we only require a self-concordant barrier of the original set Ω, exactly the same as SCRIBLE.
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Ω

Ω

Dikin ellipsoid
w
w

Exploration region

Conic hull

Lifting

Figure 1: An illustration of the concept of lifting, the conic hull, and the Dikin ellipsoid. In this
example d is 2, and the pink disk at the bottom is the original decision set Ω. The gray dot w is a
point in Ω. In Algorithm 2, we lift the problem from R2 to R3, and obtain the lifted, orange, decision
set Ω. For example, w is lifted to the black dot w = (w, 1). Then we construct the conic hull of
the lifted decision set, that is, the gray cone, and construct a normal barrier for this conic hull. By
Lemma B.1, the Dikin ellipsoid centered atw of this normal barrier (the green ellipsoid), is alway
within the cone. In Algorithm 2, if w is the OMD iterate, we explore and play an action within the
intersection of Ω and the Dikin ellipsoid centered at w, that is, the (boundary of) the blue ellipse.

project it onto the subspace perpendicular toH−1/2
t ed+1, and then normalize; or sample a vector st

uniformly randomly from Sd, then normalizeH
1
2
t (s>t , 0)> to obtain st.

Finally, after playing w̃t and observing 〈w̃t, `t〉, we construct the loss estimator the same way as
SCRIBLE: ̂̀t = d 〈w̃t, `t〉H1/2

t st (Line 4). Lemma B.9 shows that the first d coordinates of ̂̀t is
indeed an unbiased estimator of `t. This makes the entire analysis of SCRIBLE hold in Rd+1, but
now the key term ‖wt‖Ht

we want to control is exactly 20
√

2ν (see Lemma B.5 and Lemma B.6)!

We provide an illustration of the lifting idea in Figure 1. One might ask whether this lifting is
necessary; indeed, one can also spell out the algorithm in Rd (see Appendix B.1). Importantly,
compared to SCRIBLE, the key difference is still that the sampling scheme has changed: the sampled
point is not necessarily on the Dikin ellipsoid with respect to ψ. In other words, another view of our
algorithm is that it is SCRIBLE with a new sampling scheme. We emphasize that, however, it is
important (or at least much cleaner) to perform the analysis in Rd+1. In fact, even in Algorithm 1
for MAB, similar lifting implicitly happens already since ∆d is a convex body in dimension d− 1
instead of d, and log-barrier is indeed a canonical normal barrier for the positive orthant.

Controlling ‖u‖Ht . Next, we discuss how to control the term ‖u‖Ht , or rather ‖u‖Ht
after the

lifting. This term is the analogue of
∑
i
ui
wt,i

for the case of MAB, and our goal is again to cancel
it with the negative term introduced by increasing the learning rate. Indeed, a closer look at the
OMD analysis reveals that increasing the learning rate at the end of time t brings a negative term
involving −DΨ(u,wt+1) in the regret bound. In Lemma B.13, we show that this negative term is
upper bounded by −‖u‖Ht+1

+ 800ν ln(800νT + 1), making the canceling effect possible.

It just remains to figure out when to increase the learning rate and how to make sure we only increase
it logarithmic (in T ) times as in the case for MAB. Borrowing ideas from Algorithm 1, intuitively
one should increase the learning rate only whenHt is “large” enough, but the challenge is how to
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measure this quantitatively. Only looking at the eigenvalues ofHt, a natural idea, does not work as it
does not account for the fact that the directions of eigenvectors are changing over time.

Instead, we propose the following condition: at the end of time t, increase the learning rate by a
factor of κ if λmax(Ht+1 −

∑
τ∈SHτ ) > 0, with S containing all the previous time steps prior to

time t where the learning rate was increased (Line 7). First, note that this condition makes sure that
we always have enough negative terms to cancel maxt ‖u‖Ht

. Indeed, suppose t is the time with
the largest ‖u‖Ht+1

. If we have increased the learning rate at time t, then the introduced negative
term exactly matches ‖u‖Ht+1

as mentioned above; otherwise, the condition did not hold and by

definition we have ‖u‖Ht+1
≤
√∑

τ∈S ‖u‖
2
Hs
≤
∑
τ∈S ‖u‖Hτ

, meaning that the negative terms
introduced in previous steps are already enough to cancel ‖u‖Ht+1

.

Second, in Lemma B.12 we show that this schedule indeed makes sure that the learning rate is
increased by only Õ(d) times. The key idea is to prove that det(

∑
τ∈SHτ ) is at least doubled each

time we add one more time step to S . Thus, if the eigenvalues ofHt are bounded, |S| cannot be too
large. Ensuring the last fact requires a small tweak to the OMD update (Line 5), where we constrain
the optimization over a slightly shrunk version of Ω defined as Ω′ = {w ∈ Ω : πw1

(w) ≤ 1− 1
T }.

Here, π is the Minkowsky function and we defer its formal definition to Appendix B.2, but intuitively
Ω′ is simply obtained by shrinking the lifted decision set by a small amount of 1/T with respect to
the center w1 (which is the analogue of the truncated simplex for MAB). This makes sure that wt is
never too close to the boundary, and in turn makes sure that the eigenvalues ofHt are bounded.

This concludes the two main new ideas of our algorithm; see Algorithm 2 for the complete pseudocode.
Clearly, our algorithm can be implemented as efficiently as the original SCRIBLE. The regret
guarantee is summarized below.
Theorem 3.1. Algorithm 2 with a suitable choice of η ensures that with probability at least 1− δ:

Reg =

Õ
(
d2ν
√
T ln 1

δ + d2ν ln 1
δ

)
, against an oblivious adversary;

Õ
(
d2ν
√
dT ln 1

δ + d3ν ln 1
δ

)
, against an adaptive adversary.

Moreover, if 〈w, `t〉 ≥ 0 for all w ∈ Ω and all t, then T in the bounds above can be replaced by
L? = minu∈Ω

∑T
t=1 〈u, `t〉, that is, the total loss of the best action.

Our results are the first general high-probability regret guarantees achieved by an efficient algorithm
(for either oblivious or adaptive adversary). We not only achieve

√
T -type bounds, but also improve

it to
√
L?-type small-loss bounds, which does not exist before. Note that the latter holds only when

losses are nonnegative, which is a standard setup for small-loss bounds and is true, for instance,
for all combinatorial bandit problems where Ω ⊆ [0, 1]d lives in the positive orthant. Similarly to
MAB, we can also obtain other data-dependent regret bounds by only changing the estimator to
d〈w̃t, `t −mt〉H1/2

t st +mt for some predictor mt (see [33, 17]).3

Ignoring lower order terms, our bound for oblivious adversaries is d
√
ν times worse than the expected

regret of SCRIBLE. For adaptive adversary, we pay extra dependence on d, which is standard since
an extra union bound over u is needed and is discussed in [1] as well. The minimax regret for adaptive
adversary is still unknown. Reducing the dependence on d for both cases is a key future direction.

4 Generalization to adversarial MDPs

Finally, we briefly discuss how to generalize Algorithm 1 for MAB to learning adversarial Markov
Decision Processes (MDPs), leading to the first algorithm with a high-probability small-loss regret
guarantee for this problem. We consider an episodic MDP setting with finite horizon, unknown
transition kernel, bandit feedback, and adversarial losses, the exact same setting as the recent
work [25] (which is the state-of-the-art for adversarial tabular MDPs; see [25] for related work).

Specifically, the problem is parameterized by a state space X , an action space A, and an unknown
transition kernel P : X ×A×X → [0, 1] with P (x′|x, a) being the probability of reaching state x′

3One caveat is that this requires measuring the learner’s loss in terms of 〈wt, `t〉, as opposed to
〈
w̃t, `t

〉
,

since the deviation between these two is not related to mt.
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after taking action a at state x. Without loss of generality (see discussions in [25]), the state space is
assumed to be partitioned into J + 1 layers X0, . . . , XJ where X0 = {x0} and XJ = {xJ} contain
only the start and end state respectively, and transitions are only possible between consecutive layers.

The learning proceeds in T rounds/episodes. In each episode t, the learner starts from state
x0 and decides a stochastic policy πt : X × A → [0, 1], where πt(a|x) is the probabil-
ity of selecting action a at state x. Simultaneously, the adversary decides a loss function
`t : X × A → [0, 1], with `t(x, a) being the loss of selecting action a at state x. Once
again, an adaptive adversary chooses `t based on all learner’s actions in previous episodes,
while an oblivious adversary chooses `t only knowing the learner’s algorithm. Afterwards, the
learner executes the policy in the MDP for J steps and generates/observes a state-action-loss se-
quence (x0, a0, `t(x0, a0)), . . . , (xJ−1, aJ−1, `t(xJ−1, aJ−1)) before reaching the final state xJ .
With a slight abuse of notation, we use `t(π) = E

[∑J−1
k=1 `t(xk, ak) | P, π

]
to denote the ex-

pected loss of executing policy π in episode t. The regret of the learner is then defined as
Reg =

∑T
t=1 `t(πt)−minπ

∑T
t=1 `t(π), where the min is over all possible policies.

Based on several prior works [38, 35], Jin et al. [25] showed the deep connection between this
problem and adversarial MAB. In fact, with the help of the “occupancy measure” concept, this
problem can be reformulated in a way that becomes very much akin to adversarial MAB and can
be essentially solved using OMD with some importance-weighted estimators. We refer the reader
to [25] and Appendix C.1 for details. The algorithm of [25] achieves Reg = Õ(J |X|

√
|A|T ) with

high probability.

Since the problem has great similarity with MAB, the natural idea to improve the bound to a small-loss
bound is to borrow techniques from MAB. Prior to our work, obtaining high-probability small-loss
bounds for MAB can only be achieved by either the implicit exploration idea from [31] or the clipping
idea from [7, 29]. Unfortunately, in Appendix C.4, we argue that neither of them works for MDPs, at
least not in a direct way we can see, from perspectives of both the algorithm and the analysis.

On the other hand, our approach from Algorithm 1 immediately generalizes to MDPs without much
effort. Compared to the algorithm of [25], the only essential differences are to replace their regularizer
with log-barrier and to apply a similar increasing learning rate schedule. Due to space limit, we defer
the algorithm to Appendix C.2 and show the main theorem below.

Theorem 4.1. Algorithm 4 with a suitable choice of η ensures that with probability at least 1− δ,

Reg = Õ
(
|X|
√
J |A|L? ln 1

δ + |X|5|A|2 ln2 1
δ

)
, where L? = minπ

∑T
t=1 `t(π) ≤ JT is the total

loss of the best policy.

We remark that our bound holds for both oblivious and adaptive adversaries, and is the first high-
probability small-loss bounds for adversarial MDPs.4 This matches the bound of [25] in the worst
case (including the lower-order term Õ(|X|5|A|2) hidden in their proof), but could be much smaller
as long as a good policy exists with L? = o(T ). It is still open whether this bound is optimal or not.

5 Conclusions

In this work, based on the idea of increasing learning rates we develop a new technique for obtaining
high-probability regret bounds against an adaptive adversary under bandit feedback, showing that
sophisticated biased estimators used in previous approaches are not necessary. We provide three
examples (MAB, linear bandits, and MDPs) to show the versatility of our general approach, leading to
several new algorithms and results. Although not included in this work, we point out that our approach
can also be straightforwardly applied to other problems such as semi-bandits and convex bandits,
based on the algorithms from [37] and [36] respectively, since they are also based on log-barrier
OMD or SCRIBLE.

4Obtaining other data-dependent regret bounds as in MAB and linear bandits is challenging in this case,
since there are several terms in the regret bound that are naturally only related to L?.
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Broader Impact

This work is mostly theoretical, and we do not foresee any negative ethical or societal outcomes.
Researchers working on theoretical aspects of online learning, bandit problems, and Markov Decision
Processes may benefit from our results and find our techniques useful for other problems. In the
long run, our results might lead to more stable and practical learning algorithms for applications with
partial information feedback such as network routing or recommendation systems.
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A Omitted details for Section 2

A.1 Proof of Theorem 2.2

First we generalize the proof of the standard Freedman’s inequality in the following way. For any λt
that is Ft-measurable and such that λt ≤ 1/Bt, we have with Et[·] , E[·|Ft]:

Et
[
eλtXt

]
≤ Et

[
1 + λtXt + λ2

tX
2
t

]
= 1 + λ2

tEt
[
X2
t

]
≤ exp

(
λ2
tEt

[
X2
t

])
. (1)

Now for any t define random variable Zt such that Z0 = 1 and

Zt , Zt−1 · exp(λtXt − λ2
tEt

[
X2
t

]
) = exp

(
t∑

s=1

λsXs −
t∑

s=1

λ2
sEs

[
X2
s

])
.

From Eq. (1), we have

Et [Zt] = Zt−1·exp(−λ2
tEt

[
X2
t

]
)Et
[
eλtXt

]
≤ Zt−1·exp(−λ2

tEt
[
X2
t

]
) exp(λ2

tEt
[
X2
t

]
) ≤ Zt−1.

Therefore, taking the overall expectation we have

E [ZT ] ≤ E [ZT−1] ≤ · · · ≤ E [Z0] = 1.

Using Markov’s inequality, we have Pr
[
ZT ≥ 1

δ′

]
≤ δ′. In other words, we have with probability at

least 1− δ′,
T∑
t=1

λtXt ≤ ln(1/δ′) +

T∑
t=1

λ2
tEt

[
X2
t

]
. (2)

The proof of the standard Freedman’s inequality takes all λt to be the same fixed value, while in our
case it is important to apply Eq. (2) several times with different sets of values of λt. Specifically, for
each i ∈ [dlog2(b2T )e] and j ∈ [dlog2 be], set

λt = λ , min
{

2−j ,
√

ln(1/δ′)/2i
}
,

for t ∈ Tj , where

Tj ,
{
t : 2j−1 ≤ max

s≤t
Bs ≤ 2j

}
,

and λt = 0 otherwise. Clearly λt is Ft-measurable (since B1, . . . , Bt are Ft-measurable). Applying
Eq. (2) gives∑

t∈Tj

Xt ≤
ln(1/δ′)

λ
+
∑
t∈Tj

λEt
[
X2
t

]
≤ 2j ln(1/δ′) +

√
2i ln(1/δ′) + λ

T∑
t=1

Et
[
X2
t

]
( 1
λ ≤ max{2j ,

√
2i/ ln(1/δ′)})

≤ 2

(
max
s∈Tj

Bs

)
ln(1/δ′) +

√
2i ln(1/δ′) + V

√
ln(1/δ′)

2i
(2j−1 ≤ maxs∈Tj Bs)

≤ 2B? ln(1/δ′) +
√

2i ln(1/δ′) + V

√
ln(1/δ′)

2i
.

By a union bound, the above holds with probability at least 1 − Cδ′ for all i ∈ [dlog2(b2T )e] and
j ∈ [dlog2 be]. In particular, since 1 ≤ V ≤ b2T (almost surely), there exists an i? ∈ [dlog2(b2T )e]
such that 2i

?−1 ≤ V ≤ 2i
?

, and thus
T∑
t=1

Xt =
∑

j∈[dlog2 be]

∑
t∈Tj

Xt ≤ C ·

(
2B? ln(1/δ′) +

√
2i? ln(1/δ′) + V

√
ln(1/δ′)

2i?

)

≤ C ·
(

2B? ln(1/δ′) +
√

2V ln(1/δ′) +
√
V ln(1/δ′)

)
≤ C ·

(
2B? ln(1/δ′) +

√
8V ln(1/δ′)

)
.

Finally replacing δ′ with δ/C finishes the proof.
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A.2 Proof of Lemma 2.1

First note that `t,it =
〈
wt, ̂̀t〉. Using standard OMD analysis (e.g., [5, Lemma 12]), we have

`t,it −
〈
u, ̂̀t〉 ≤ Dψt(u,wt)−Dψt(u,wt+1) +

d∑
i=1

ηt,iw
2
t,i
̂̀2
t,i. (3)

Summing the first two terms on the right hand side over t shows (here h(y) = y − 1− ln y):

T∑
t=1

(Dψt(u,wt)−Dψt(u,wt+1))

≤ Dψ1
(u,w1) +

T−1∑
t=1

(
Dψt+1

(u,wt+1)−Dψt(u,wt+1)
)

(DψT (u,wT+1) ≥ 0)

=
1

η

d∑
j=1

h

(
uj
w1,j

)
+

d∑
j=1

T−1∑
t=1

(
1

ηt+1,j
− 1

ηt,j

)
h

(
uj

wt+1, j

)
. (4)

For the first term, since uj ≥ 1
T and w1,j = 1

d for each j, we have

1

η

d∑
j=1

h

(
uj
w1,j

)
=

1

η

d∑
j=1

− ln(duj) ≤
d lnT

η
.

Now we analyze the second term for each j. Note that ηT,j = κnjη1,j where nj is the number
of times Algorithm 1 increases the learning rate for arm j. Let tj be the time step such that
ηT,j = ηtj+1,j = κηtj ,j , that is, the last time step where the learning rate for arm j is increased.
Then we have

(
1

ηtj+1,j
− 1

ηtj ,j

)
h

(
uj

wtj+1, j

)
=

1− κ
κnjη

h

(
uj

wtj+1,j

)
≤
−h
(

uj
wtj+1,j

)
5η lnT

=
−h
(ujρT,j

2

)
5η lnT

,

where we use the facts 1− κ ≤ − 1
lnT and κnj ≤ 5. The term −h

(ujρT,j
2

)
is bounded by

−h
(ujρT,j

2

)
= ln

(ujρT,j
2

)
− ujρT,j

2
+ 1 ≤ 1 + lnT − ujρT,j

2
,

where the inequality is because ujρT,j
2 ≤ 1

wtj+1,j
≤ T . Plugging this result for every j back to Eq.

(4), we get

T∑
t=1

Dψt(u,wt)−Dψt(u,wt+1) ≤ d lnT

η
+

d∑
j=1

2 + 2 lnT − ujρT,j
10η lnT

= O
(
d lnT

η

)
− 〈ρT , u〉

10η lnT
.

Finally, since ηt,iw2
t,i
̂̀2
t,i ≤ ηt,it`t,it ≤ ηT,it`t,it ≤ 5η`t,it , summing Eq. (3) over t gives:

T∑
t=1

(
`t,it −

〈
u, ̂̀t〉) ≤ T∑

t=1

(Dψt(u,wt)−Dψt(u,wt+1)) +

T∑
t=1

d∑
i=1

ηt,iw
2
t,i
̂̀2
t,i

≤ O
(
d lnT

η

)
− 〈ρT , u〉

10η lnT
+ 5η

T∑
t=1

`t,it

= O

(
d lnT

η
+ η

T∑
t=1

`t,it

)
− 〈ρT , u〉

10η lnT
.
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A.3 Proof of Theorem 2.3

Fix any i? ∈ [d] and let u = (1− d
T )e? + 1

T 1, where e? is the one-hot vector for i?. First note that

T∑
t=1

(`t,it − `t,i?) =

T∑
t=1

(
`t,it −

〈
u, ˆ̀

t

〉)
+

T∑
t=1

〈
u, ̂̀t − `t〉+

T∑
t=1

〈u− e?, `t〉

≤
T∑
t=1

(
`t,it −

〈
u, ˆ̀

t

〉)
+

T∑
t=1

〈
u, ̂̀t − `t〉+ d.

For the first term, using Lemma 2.1, we have
T∑
t=1

(
`t,it −

〈
u, ˆ̀

t

〉)
≤ O

(
d lnT

η
+ ηLT

)
− 〈ρT , u〉

10η lnT
, (5)

where LT =
∑T
t=1 `t,it .

For the second term above, we use Theorem 2.2 with Xt =
〈
u, ̂̀t − `t〉, Bt = 〈ρt, u〉 ∈ [1, T ],

b = T , and the fact

Et[X2
t ] ≤ Et

[〈
u, ̂̀t〉2

]
= Et

[
u2
it
`2t,it

p2
t,it

]
≤

d∑
i=1

u2
i `t,iρT,i ≤ 〈ρT , u〉 〈u, `t〉 ,

showing that with probability at least 1− δ′,
T∑
t=1

〈
u, ̂̀t − `t〉 ≤ C (√8Lu 〈ρT , u〉 ln (C/δ′) + 2 〈ρT , u〉 ln (C/δ′)

)
, (6)

where Lu =
〈
u,
∑T
t=1 `t

〉
and C = dlog(b)edlog(b2T )e = dlog(T )ed3 log(T )e. With η ≤

1
40C lnT ln(C/δ′) , we then have with probability at least 1− δ′,

T∑
t=1

`t,it − `t,i?

≤ Õ
(
d

η
+ ηLT

)
− 〈ρT , u〉

10η lnT
+ C

(√
8Lu 〈ρT , u〉 ln (C/δ′) + 2 〈ρT , u〉 ln (C/δ′)

)
(Eq. (5) and Eq. (6))

≤ Õ
(
d

η
+ ηLT

)
+ η40C2Lu ln(C/δ′) lnT − 〈ρT , u〉

20η lnT
+ 2C 〈ρT , u〉 ln(C/δ′)

(AM-GM inequality)

≤ Õ
(
d

η
+ ηLT ln(1/δ′) + ηLu ln(1/δ′)

)
. (η < 1

40C lnT ln(C/δ) )

Therefore, rearranging the terms, using the fact Lu ≤ L? + d, and choosing η =

min

{√
d
L? ln(1/δ′), 1

40C lnT ln(C/δ′) ,
1
2

}
, we have with probability 1− δ′,

T∑
t=1

`t,it − `t,i? = Õ
(√

dL? ln(1/δ′) + d ln(1/δ′)
)
,

where L? =
∑T
t=1 `t,i? . This finishes the proof when the adversary is oblivious. For adaptive

adversaries, taking a union bound over all possible best arms i? ∈ [d] and setting δ′ = δ/d, we have
with probability 1− δ, Reg = Õ

(√
dL? ln(d/δ) + d ln(d/δ)

)
, finishing the proof.

Remark 1. Although the proof above requires tuning the initial learning rate η in terms of the
unknown quantity L?, standard doubling trick can remove this restriction (even in the bandit setting).
We refer the reader to a recent work by Lee et al. [27] for detailed exposition on how to achieve so.
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Algorithm 3 d-dimensional version of Algorithm 2
Input: decision set Ω ⊆ Rd, a ν-self-concordant barrier ψ(w) for Ω, initial learning rate η.
Define: increase factor κ = e

1
100d ln(νT ) , Ψ(w, b) = 400

(
ψ
(
w
b

)
− 2ν ln b

)
.

Initialize: w1 = argminw∈Ω ψ(w),H1 = ∇2Ψ(w1, 1), η1 = η, S = {1}.
Define: shrunk decision set Ω′ = {w ∈ Ω: πw1

(w) ≤ 1− 1
T }, J = [Id,0d] ∈ Rd×(d+1).

for t = 1, 2, . . . , T do

1 Uniformly at random sample st from
(
H
− 1

2
t ed+1

)⊥
∩ Sd+1.

2 Compute w̃t = wt + JH
− 1

2
t st.

3 Play w̃t, observe loss 〈w̃t, `t〉, and construct loss estimator ̂̀t = d〈w̃t, `t〉JH1/2
t st.

4 Compute wt+1 = argminw∈Ω′

{〈
w, ̂̀t〉+Dψt (w,wt)

}
, where ψt = 1

ηt
ψ.

5 ComputeHt+1 = ∇2Ψ(wt+1, 1).
6 if λmax(Ht+1 −

∑
τ∈SHτ ) > 0 then S ← S ∪ {t+ 1} and set ηt+1 = ηtκ;

7 else set ηt+1 = ηt.

B Omitted details for Section 3

B.1 More explanation on Algorithm 2

Here, we provide a d-dimensional version of Algorithm 2 by removing the explicit lifting and
performing OMD in Rd; see Algorithm 3. It is clear that this version is exactly the same as
Algorithm 2. Compared to the original SCRIBLE, one can see that besides the increasing learning
rate schedule, the only difference is how the point w̃t is computed. In particular, one can verify
that w̃t does not necessarily satisfy ‖w̃t − wt‖∇2ψ(wt) = 1, meaning that w̃t is not necessarily on
the boundary of the Dikin ellipsoid centered at wt with respect to ψ. In other words, our algorithm
provides a new sampling scheme for SCRIBLE.

B.2 Preliminary for analysis

In this section, we introduce the preliminary of self-concordant barriers and normal-barriers, including
the definitions and some useful properties that will be used frequently in later analysis.

Self-concordant barriers. Let ψ : int(Ω) → R be a C3 smooth convex function. ψ is called a
self-concordant barrier on Ω if it satisfies:

• ψ(xi) → ∞ as i → ∞ for any sequence x1, x2, · · · ∈ int(Ω) ⊂ Rd converging to the
boundary of Ω;

• for all w ∈ int(Ω) and h ∈ Rd, the following inequality always holds:
d∑
i=1

d∑
j=1

d∑
k=1

∂3ψ(w)

∂wi∂wj∂wk
hihjhk ≤ 2‖h‖3∇2ψ(w).

We further call ψ is a ν-self-concordant barrier if it satisfies the conditions above and also

〈∇ψ(w), h〉 ≤
√
ν‖h‖∇2ψ(w)

for all w ∈ int(Ω) and h ∈ Rd.
Lemma B.1 (Theorem 2.1.1 in [30]). If ψ is a self-concordant barrier on Ω, then the Dikin ellipsoid
centered at w ∈ int(Ω), defined as {v : ‖v − w‖∇2ψ(w) ≤ 1}, is always within Ω. Moreover,

‖h‖∇2ψ(v) ≥ ‖h‖∇2ψ(w)

(
1− ‖v − w‖

∇2ψ(w)

)
holds for any h ∈ Rd and any v with ‖v − w‖∇2ψ(w) ≤ 1.

Lemma B.2 (Theorem 2.5.1 in [30]). For any closed convex body Ω ⊂ Rd, there exists anO(d)-self-
concordant barrier on Ω.
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Lemma B.3 (Corollary 2.3.1 in [30]). Let ψ be a self-concordant barrier for Ω ⊂ Rd. Then for any
w ∈ int(Ω) and any h ∈ Ω such that w + bh ∈ Ω for all b ≥ 0, we have

‖h‖∇2ψ(w) ≤ −〈∇ψ(w), h〉 .

Normal Barriers. Let K ⊆ Rd be a closed and proper convex cone and let θ ≥ 1. A function
ψ : int(K) → R is called a θ-logarithmically homogeneous self-concordant barrier (or simply a
θ-normal barrier) on K if it is self-concordant on int(K) and is logarithmically homogeneous with
parameter θ, which means

ψ(tw) = ψ(w)− θ ln t, ∀w ∈ int(K), t > 0.

The following two lemmas show the relationship between θ-normal barriers and θ-self-concordant
barriers.

Lemma B.4 (Corollary 2.3.2 in [30]). A θ-normal barrier on K is a θ-self-concordant barrier on K.

Lemma B.5 (Proposition 5.1.4 in [30]). Suppose f is a θ-self-concordant barrier on K ⊆ Rd. Then
the function

F (w, b) = 400
(
f
(w
b

)
− 2θ ln b

)
,

is a 800θ-normal barrier for con(K) ⊆ Rd+1, where con(K) = {0} ∪ {(w, b) : w
b ∈ K,w ∈

Rd, b > 0} is the conic hull of K lifted to Rd+1 (by appending 1 to the last coordinate).

Note that our regularizer Ψ defined in Algorithm 2 is exactly based on this formula. We point out that,
however, our entire analysis works for any O(ν)-normal barrier Ψ, as we will only use the following
general properties of normal barriers, instead of the concrete form of Ψ. As mentioned in Footnote 2,
we use this concrete formula only to emphasize that, just as SCRIBLE, our algorithm requires only a
self-concordant barrier of the original set Ω.

Lemma B.6 (Proposition 2.3.4 in [30]). If ψ is a θ-normal barrier on K, then we have for all
w, u ∈ int(K),

1. ‖w‖2∇2ψ(w) = w>∇2ψ(w)w = θ,

2. ∇2ψ(w)w = −∇ψ(w),

3. ψ(u) ≥ ψ(w)− θ ln −〈∇ψ(w),u〉
θ .

Next, we show the definition of Minkowsky functions, which is used to define the shrunk decision
domain similar to the clipped simplex in multi-armed bandit setting.

Minkowsky functions. The Minkowsky function of a convex body Ω with the pole at w ∈ int(Ω)
is a function πw : Ω→ R defined as

πw(u) = inf

{
t > 0

∣∣∣∣w +
u− w
t
∈ Ω

}
.

The last lemma shows several useful properties using the Minkowsky function.

Lemma B.7 (Proposition 2.3.2 in [30]). Let ψ be a ν-self-concordant barrier on Ω ⊆ Rd and
u,w ∈ int(Ω). Then for any h ∈ Rd, we have

‖h‖∇2ψ(u) ≤
(

1 + 3ν

1− πw(u)

)
‖h‖∇2ψ(w),

| 〈∇ψ(u), h〉 | ≤
(

ν

1− πw(u)

)
‖h‖∇2ψ(w),

ψ(u)− ψ(w) ≤ ν ln

(
1

1− πw(u)

)
.
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B.3 Proof of Theorem 3.1

To prove the theorem, we decompose the regret against any fixed u? ∈ Ω (with u? = (u?, 1) ∈ Ω)
into the following three terms:

T∑
t=1

〈w̃t − u?, `t〉

=

T∑
t=1

〈w̃t − u?, `t〉 (define `t = (`t, 0))

=

T∑
t=1

(
〈w̃t, `t〉 −

〈
wt, ̂̀t〉+

〈
u, ̂̀t − `t〉)︸ ︷︷ ︸

DEVIATION

+

T∑
t=1

〈
wt − u, ̂̀t〉︸ ︷︷ ︸

REG-TERM

+

T∑
t=1

〈u− u?, `t〉 , (7)

where u =
(
1− 1

T

)
· u? + 1

T · w1 ∈ Ω′. Note that the last term is trivially bounded by 2 as∑T
t=1 〈u− u?, `t〉 =

∑T
t=1 〈u− u?, `t〉 = 1

T

∑T
t=1 〈u? − w1, `t〉 ≤ 2, where the last inequality is

because | 〈w, `t〉 | ≤ 1 for all w ∈ Ω. In the following sections, we show how to bound other terms.
Specifically, we bound DEVIATION in Section B.3.1 and REG-TERM in Section B.3.2. Finally we
prove Theorem 3.1 in Section B.3.3.

We will use the following notations in the remaining of this section (the first two are mentioned above
already):

`t , (`t, 0), u , (u, 1) ,

(
1− 1

T

)
· u? +

1

T
·w1 ∈ Ω′, ρ , max

t∈[T ]
‖u‖Ht , (8)

LT ,
T∑
t=1

〈w̃t, `t〉 , LT ,
T∑
t=1

|〈w̃t, `t〉| , (9)

L̊T ,
T∑
t=1

Et [|〈w̃t, `t〉|] , Lu ,
T∑
t=1

|〈u, `t〉| . (10)

Before proceeding, we provide one useful lemma.

Lemma B.8. We have ‖u‖H1 ≤ 800ν.

Proof. Clearly, for any b > 0, we havew1 +bu still in the conic hull of Ω. According to Lemma B.3,
we thus have ‖u‖H1 ≤ 〈−∇Ψ(w1),u〉. Note that Ψ is a 800ν-normal barrier by Lemma B.5. By
the first order optimality condition of w1 and Lemma B.6, we then have

0 ≤ 〈∇Ψ(w1),u−w1〉 = 〈∇Ψ(w1),u〉+ 800ν.

Combining the above gives ‖u‖H1 ≤ 〈−∇Ψ(w1),u〉 ≤ 800ν.

B.3.1 Bounding DEVIATION

We first show that ̂̀t is an unbiased estimator of `t for the first d coordinates.

Lemma B.9. We have Et
[̂̀
t,i

]
= `t,i for i ∈ [d].

Proof. Let v =
H
−1/2
t ed+1∥∥∥H−1/2
t ed+1

∥∥∥
2

. First note that

Et[sts>t ] =
1

d

(
I − vv>

)
(11)
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by the definition of st. Then by the definition of ̂̀t, we have

Et
[̂̀
t

]
= Et

[
d
〈
wt +H

− 1
2

t st, `t

〉
·H

1
2
t st

]
= Et

[
d 〈wt, `t〉 ·H

1
2
t st + d ·H

1
2
t st

〈
H
− 1

2
t st, `t

〉]
= d 〈wt, `t〉 ·H

1
2
t Et [st] + Et

[
d ·H

1
2
t sts

>
t H

− 1
2

t `t

]
= d ·H

1
2
t Et

[
sts
>
t

]
H
− 1

2
t `t (Et [st] = 0 by symmetry)

= H
1
2
t

(
I − vv>

)
H
− 1

2
t `t (Eq. (11))

= `t −
ed+1e

>
d+1H

−1
t `t∥∥∥H−1/2

t ed+1

∥∥∥2

2

.

Noticing that the first d coordinates of ed+1e
>
d+1H

−1
t `t are all zeros concludes the proof.

Now we are ready to bound DEVIATION.

Lemma B.10. With probability at least 1− δ, we have

DEVIATION ≤ 161Cd

√
(ν + ρ2) L̊T ln(C/δ) + C

√
32Lu ln(C/δ) + 64Cd

(√
ν + ρ

)
ln(C/δ),

where C = Θ(ln2(dνT )).

Proof. Define Xt , 〈w̃t, `t〉 −
〈
wt, ̂̀t〉 +

〈
u, ̂̀t − `t〉 and we have DEVIATION =

∑T
t=1Xt.

The goal is to apply our strengthened Freedman’s inequality Theorem 2.2. To this end, first we show
Et[Xt] = 0. Indeed, we have Et[w̃t] = wt and

Et [Xt] = 〈wt, `t〉 − 〈wt, `t〉+ 〈u, `t − `t〉 − Et
[
(wt,d+1 − ut,d+1) ̂̀t,d+1

]
(Lemma B.9)

= 0. (wt,d+1 = ut,d+1 = 1)

Next, we bound Xt by a Ft-measurable random variable Bt , 32d
√
ν + d‖u‖Ht . This can be

shown using the properties of a normal barrier:

Xt = 〈w̃t, `t〉 −
〈
wt, ̂̀t〉+

〈
u, ̂̀t − `t〉

= 〈w̃t, `t〉 −
〈
wt, d · 〈w̃t, `t〉 ·H

1
2
t st

〉
+
〈
u, d · 〈w̃t, `t〉H

1
2
t st − `t

〉
= 〈w̃t, `t〉

(
1− dw>t H

1
2
t st

)
+ d 〈w̃t, `t〉u>H

1
2
t st − 〈u, `t〉

≤ 2 + d
∣∣∣w>t H 1

2
t st

∣∣∣+ d
∣∣∣u>H 1

2
t st

∣∣∣ (| 〈w, `t〉 | ≤ 1 for any w ∈ Ω)

≤ 2 + d‖wt‖Ht
+ d‖u‖Ht

(by Cauchy-Schwarz inequality and s>t st = 1)

≤ 2 + 20d
√

2ν + d‖u‖Ht (Lemma B.5 and Lemma B.6)

≤ 32d
√
ν + d‖u‖Ht . (ν ≥ 1)

Then, we show that Bt is bounded by a constant b , 2× 106dν2T for all t:

Bt ≤ 32d
√
ν + d‖u‖H1 ·

(
1 + 2400ν

1− πw1(wt)

)
(Lemma B.7)

≤ 32d
√
ν + d‖u‖H1(1 + 2400ν)T (wt ∈ Ω′)

≤ 32d
√
ν + 800dν(1 + 2400ν)T (Lemma B.8)

≤ 2× 106dν2T. (ν ≥ 1)
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The last step before applying Theorem 2.2 is to calculate Et[X2
t ]. We first write

Et[X2
t ] = Et

[(
〈w̃t, `t〉 −

〈
wt, ̂̀t〉+

〈
u, ̂̀t − `t〉)2

]
≤ 2Et

[(
〈w̃t, `t〉 −

〈
wt, ̂̀t〉)2

]
+ 2Et

[〈
u, ̂̀t − `t〉2

]
. (12)

The first term is bounded by:

Et
[(
〈w̃t, `t〉 −

〈
wt, ̂̀t〉)2

]
= Et

[
〈w̃t, `t〉2

(
1−

〈
wt, d ·H

1
2
t st

〉)2
]

≤ Et
[
〈w̃t, `t〉2

(
2d2

(
w>t H

1
2
t st

)2

+ 2

)]
≤ Et

[
|〈w̃t, `t〉|

(
2d2

(
w>t H

1
2
t st

)2

+ 2

)]
(〈w̃t, `t〉 ≤ 1)

≤ Et
[
|〈w̃t, `t〉|

(
2d2‖wt‖2Ht

‖st‖22 + 2
)]

(Cauchy-Schwarz inequality)

≤ Et
[
|〈w̃t, `t〉|

(
1600d2ν + 2

)]
(‖st‖22 = 1 and Lemma B.6)

≤ 1602d2νEt [|〈w̃t, `t〉|] .

Similarly, the second term is bounded by:

Et
[〈
u, ̂̀t − `t〉2

]
≤ Et

[(
−〈u, `t〉+ d 〈w̃t, `t〉u>H

1
2
t st

)2
]

≤ Et
[
2 |〈u, `t〉|+ 2d2 |〈w̃t, `t〉| ·

(
u>H

1
2
t st

)2
]

(〈w̃t, `t〉 ≤ 1)

≤ Et
[
2 |〈u, `t〉|+ 2d2 |〈w̃t, `t〉| · ‖u‖2Ht

]
.

Plugging these bounds to Eq. (12), we have

Et[X2
t ] ≤ 3204d2νEt [|〈w̃t, `t〉|] + 4 |〈u, `t〉|+ 4d2Et [|〈w̃t, `t〉|] ‖u‖2Ht

.

Summing over t gives

T∑
t=1

Et[X2
t ] ≤ 3204d2

T∑
t=1

(
ν + ‖u‖2Ht

)
Et [|〈w̃t, `t〉|] + 4

T∑
t=1

|〈u, `t〉|

≤ 3204d2

(
ν + max

t∈[T ]
‖u‖2Ht

) T∑
t=1

Et [|〈w̃t, `t〉|] + 4

T∑
t=1

|〈u, `t〉|

= 3204d2
(
ν + ρ2

)
L̊T + 4Lu.

Therefore, choosingB? = 32d(
√
ν+ρ), b = 2×106dν2T ,C = dlog2 bedlog2 b

2T e = Θ(ln2(dνT ))
and using Theorem 2.2, we obtain with probability 1− δ,

T∑
t=1

Xt =

T∑
t=1

(
〈w̃t, `t〉 −

〈
wt, ̂̀t〉+

〈
u, ̂̀t − `t〉)

≤ C
√

25632d2 (ν + ρ2) L̊T ln(C/δ) + 32Lu ln(C/δ) + 64Cd
(√
ν + ρ

)
ln(C/δ).

Finally, using
√
a+ b ≤

√
a+
√
b, the first term above is bounded by

161C

√
d2 (ν + ρ2) L̊T ln(C/δ) + C

√
32Lu ln(C/δ),

which finishes the proof.
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B.3.2 Bounding REG-TERM

The goal of this section is to prove the following bound on REG-TERM.
Lemma B.11. Let S be its final value after running Algorithm 2 for T rounds and S ′ = S\{1, T+1}.
Then as long as η ≤ 1

80d , we have

REG-TERM ≤ Õ
(
ν

η

)
−
∑
s∈S′ ‖u‖Hs

5ηad ln(νT )
+ 40ηd2LT .

for a = 100.

To prove this lemma, we first prove three useful lemmas. The first one shows that the number of
times Algorithm 2 increases the learning rate is upper bounded by O(d log2(dνT )).
Lemma B.12. Assume that T ≥ 8. Let n be the number of times Algorithm 2 increases the learning
rate. Then n ≤ ad log2(νT ) for a = 100. Consequently, we have ηt ≤ 5η for all t ∈ [T ].

Proof. Let S = {t1, . . . , tn+1} be its final value after running Algorithm 2 for T rounds, which means
n is the number of times the algorithm has increased the learning rate, t1 = 1, and for i = 2, . . . , n+1,
ηti = ηti−1κ holds. Let Ai =

∑i
j=1Htj . Then for any i > 1, according to the update rule, there

exists a vector p ∈ Rd+1 such that p>Htip ≥ p>Ai−1p and thus p>Aip ≥ 2p>Ai−1p. Since
a self-concordant function is strictly convex, Ai is positive definite for all i ∈ [n]. Therefore, let

q = A
1
2
i−1p and we have q>A−

1
2

i−1AiA
− 1

2
i−1q ≥ 2‖q‖22. This implies that the largest eigenvalue of

A
− 1

2
i−1AiA

− 1
2

i−1 is at least 2. Furthermore, the smallest eigenvalue ofA−
1
2

i−1AiA
− 1

2
i−1 is at least 1 since

A
− 1

2
i−1AiA

− 1
2

i−1 = A
− 1

2
i−1 (Ai−1 +Hti)A

− 1
2

i−1 = I +A
− 1

2
i−1HtiA

− 1
2

i−1 � I.

Therefore, we have

2 ≤ det(A
− 1

2
i−1AiA

− 1
2

i−1) =
det(Ai)

det(Ai−1)
,

which implies that det(An+1) ≥ 2n det(A1).

Next we show an upper bound for det(An+1)
det(A1) . Consider any (d+ 1)-dimensional unit vector r. For

each i ∈ [n+ 1], applying Lemma B.7 with h = H
− 1

2
1 r, u = wti and w = w1, we have ,

‖h‖2Hti
= r>H

− 1
2

1 HtiH
− 1

2
1 r ≤

(
1 + 2400ν

1− πw1
(wti)

)2

‖h‖2H1
≤ (1 + 2400ν)2T 2.

Taking a summation over all i ∈ [n+ 1], we obtain

r>A
− 1

2
1 An+1A

− 1
2

1 r ≤ (n+ 1)(1 + 2400ν)2T 2,

which means that

λmax

(
A
− 1

2
1 An+1A

− 1
2

1

)
≤ (n+ 1)(1 + 2400ν)2T 2,

and thus
det(An+1)

det(A1)
= det

(
A
− 1

2
1 An+1A

− 1
2

1

)
≤
(
(n+ 1)(1 + 2400ν)2T 2

)d+1
.

Combining with det(An+1)
det(A1) ≥ 2n, we have

n ≤ (d+ 1) log2(n+ 1) + 2(d+ 1) log2 ((1 + 2400ν)T ) ≤ ad log2(νT ),

for a = 100. To show that ηt ≤ 5η for t, notice that exp(log2(νT )/ln(νT )) ≤ 5. Therefore,

ηt ≤ κnη = exp

(
n

ad ln(νT )

)
η ≤ 5η,

finishing the proof.
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The second lemma gives a lower bound of the Bregman divergence between u andwt, which contains
an important term to cancel DEVIATION in later analysis.

Lemma B.13. For all t ∈ [T ], DΨ(u,wt) ≥ −800ν ln (800νT )− 800ν + ‖u‖Ht
.

Proof. Note again that Ψ is a 800ν-normal barrier of Ω by Lemma B.5. By the definition of Bregman
divergence, we have

DΨ(u,wt) = Ψ(u)−Ψ(wt)− 〈∇Ψ(wt),u−wt〉

≥ −800ν ln
−u>∇Ψ(wt)

800ν
− 〈∇Ψ(wt),u〉 − 800ν. (Lemma B.6 and Lemma B.8)

According to Lemma B.7 and Lemma B.8, we know that∣∣u>∇Ψ(wt)
∣∣ ≤ ( 800ν

1− πw1
(wt)

)
‖u‖H1

≤ 800νT‖u‖H1
≤ 640000ν2T.

On the other hand, according to Lemma B.3, we have

−∇Ψ(wt)
>u ≥ ‖u‖Ht

.

Combining everything, we have

DΨ(u,wt) ≥ −800ν (ln(800νT ) + 1) + ‖u‖Ht
,

finishing the proof.

The third lemma gives a bound for the so-called stability term.

Lemma B.14. If η ≤ 1
80d , then Algorithm 2 guarantees ‖wt − wt+1‖Ht ≤ 40η‖ ̂̀t‖H−1

t
for all

t ∈ [T ].

Proof. Let Ft(w) =
〈
w, ̂̀t〉+ 1

ηt
DΨ(w,wt). We have

Ft(wt)− Ft(wt+1) = (wt −wt+1)> ̂̀t − 1

ηt
DΨ(wt+1,wt)

≤ (wt −wt+1)> ̂̀t ≤ ‖wt −wt+1‖Ht
· ‖ ̂̀t‖H−1

t
, (13)

where the last line uses the nonnegativity of Bregman divergence and also Hölder’s inequality. On
the other hand, by Taylor’s theorem, there exists a point ξ on the segment connectingwt and wt+1

such that

Ft(wt)− Ft(wt+1)

= ∇Ft(wt+1)>(wt −wt+1) +
1

2
(wt −wt+1)∇2Ft(ξ)(wt −wt+1)

≥ 1

2
(wt −wt+1)∇2Ft(ξ)(wt −wt+1)

(by first order optimality of wt+1 = argminw∈Ω′ Ft(w))

=
1

2ηt
‖wt −wt+1‖2∇2Ψ(ξ). (14)

Next we will prove ‖wt − wt+1‖∇2Ψ(ξ) ≥ 1
2‖wt − wt+1‖Ht . To do so, we first show ‖wt −

wt+1‖Ht
≤ 1

2 . It is in turn sufficient to show

Ft(w
′) ≥ Ft(wt), for all w′ such that ‖w′ −wt‖Ht

=
1

2
,
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since wt+1 is the minimizer of the convex function Ft. Indeed, using Taylor’s theorem again and
denoting w′ −wt by h, we have a point ξ′ on the segment between w′ and wt such that

Ft (w′) = Ft (wt) +∇Ft (wt)
>
h+

1

2
h>∇2Ft(ξ

′)h

= Ft (wt) + ̂̀>
t h+

1

2ηt
‖h‖2∇2Ψ(ξ′)

≥ Ft (wt) + ̂̀>
t h+

1

2ηt
‖h‖2Ht

(
1− ‖wt − ξ′‖Ht

)2
(Lemma B.1)

≥ Ft (wt) + ̂̀>
t h+

1

160η
(‖h‖Ht

= 1
2 , ‖wt − ξ′‖Ht

≤ 1
2 , and Lemma B.12)

≥ Ft (wt)− ‖ ̂̀t‖H−1
t
‖h‖Ht

+
1

160η
(Hölder’s inequality)

≥ Ft (wt)−
d

2
+

1

160η
. (‖ ̂̀t‖H−1

t
≤ d |〈w̃t, `t〉| ≤ d)

Under the condition η ≤ 1
80d we have thus shown Ft(w′) ≥ Ft(wt) and consequently ‖wt −

wt+1‖Ht
≤ 1

2 and ‖wt − ξ‖Ht
≤ 1

2 . Now according to Lemma B.1 again, we have

‖wt −wt+1‖∇2Ψ(ξ) ≥ ‖wt −wt+1‖Ht(1− ‖wt − ξ‖Ht) ≥
1

2
‖wt −wt+1‖Ht .

Plugging it into Eq. (14) and combining Eq. (13) give

‖ ̂̀t‖H−1
t
≥ 1

8ηt
‖wt −wt+1‖Ht

≥ 1

40η
‖wt −wt+1‖Ht

,

where the last inequality uses Lemma B.12. Rearranging finishes the proof.

Now we are ready to prove the bound for REG-TERM stated in Lemma B.11.

Proof of Lemma B.11. We first verify that u is in Ω′. Indeed, according to the definition of u, we
have

w1 +
1

1− 1
T

· (u−w1) = u? ∈ Ω,

which by the definition of Minkowsky function shows that πw1
(u) ≤ 1 − 1/T and thus u ∈ Ω′.

According to the standard analysis of Online Mirror Descent, for example, Lemma 6 of [37], we then
have 〈

wt, ̂̀t〉− 〈u, ̂̀t〉 ≤ DΨt(u,wt)−DΨt(u,wt+1) +
〈
wt −wt+1, ̂̀t〉 . (15)

We first focus on the term DΨt(u,wt)−DΨt(u,wt+1). Taking a summation over t = 1, 2, . . . , T ,
we have

T∑
t=1

DΨt(u,wt)−DΨt(u,wt+1) ≤ DΨ1(u,w1) +

T−1∑
t=1

(
DΨt+1(u,wt+1)−DΨt(u,wt+1)

)
≤ DΨ1

(u,w1) +

n∑
i=2

(
1

ηti
− 1

ηti−1

)
DΨ(u,wti),

where we recall the definition of t1, . . . , tn defined in the beginning of the proof of Lemma B.12.
The first term can be bounded by

DΨ1(u,w1) =
1

η
DΨ(u,w1) =

Ψ(u)−Ψ(w1)

η
− 1

η
· 〈∇Ψ(w1),u−w1〉

≤ Ψ(u)−Ψ(w1)

η
(by first order optimality of w1)

≤ 800ν lnT

η
. (Lemma B.7)
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For the second term, using 1− κ ≤ − 1
ad ln(νT ) for a = 100 and Lemma B.12, we have

1

ηti
− 1

ηti−1
≤ 1− κ

ηti
≤ − 1

5ηad ln(νT )
.

Therefore,

T∑
t=1

DΨt(u,wt)−DΨt(u,wt+1)

≤ 800ν lnT

η
−

n∑
i=2

1

5ηad ln(νT )
·DΨ(u,wti)

≤ Õ
(
ν

η

)
− 1

5ηad ln(νT )
·
n∑
i=2

(
‖u‖Hti

− 800ν − 800ν ln(800νT )
)

(Lemma B.13)

= Õ
(
ν

η

)
− 1

5ηad ln(νT )

n∑
i=2

‖u‖Hti
.

For the second term in Eq. (15), that is,
〈
wt −wt+1, ̂̀t〉, taking summation over t ∈ [T ] we have

T∑
t=1

〈
wt −wt+1, ̂̀t〉 ≤ T∑

t=1

‖wt −wt+1‖Ht
‖ ̂̀t‖H−1

t
(Hölder’s inequality)

≤ 40η

T∑
t=1

‖ ̂̀t‖2H−1
t

(Lemma B.14)

= 40η

T∑
t=1

d2 〈w̃t, `t〉2 s>t H
1/2
t H−1

t H
1/2
t st

≤ 40η

T∑
t=1

d2 |〈w̃t, `t〉| = 40ηd2LT .

Combining everything finishes the proof.

B.3.3 Proof of Theorem 3.1

To prove Theorem 3.1, we first prove the following main lemma.

Lemma B.15. Algorithm 2 with η ≤ 1
640aCd2 ln(νT ) ln(C/δ) guarantees that with probability at least

1− δ,

T∑
t=1

〈w̃t − u?, `t〉

≤ Õ
(
ν

η
+ ηd2LT +

√
Lu ln(1/δ)

)
+ (
√
ν + ρ)

(
161Cd

√
ln(C/δ)L̊T −

1

10ηad ln(νT )

)
,

where a = 100, C = Θ(ln2(dνT )) is defined in Lemma B.9, and we recall all other notations defined
in Equations (8)-(10).
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Proof. Recall the decomposition of regret shown in Eq. (7). Combining the result of Lemma B.10
and Lemma B.11, we have when η ≤ 1

80d ,

T∑
t=1

〈w̃t − u?, `t〉 ≤ Õ
(
ν

η

)
−
∑
s∈S′ ‖u‖Hs

5ηad ln(νT )
+ 40ηd2LT + 64Cd

(√
ν + ρ

)
ln(C/δ)

+ 161Cd

√
(ν + ρ2) L̊T ln(C/δ) + C

√
32Lu ln(C/δ).

= Õ
(
ν

η
+ ηd2LT +

√
Lu ln(C/δ)

)
−
∑
s∈S′ ‖u‖Hs

5ηad ln(νT )

+ 64Cd
(√
ν + ρ

)
ln(C/δ) + 161C

√
d2 (ν + ρ2) L̊T ln(C/δ). (16)

Now consider the value of ρ = ‖u‖Ht?
where t? ∈ argmaxt∈[T ] ‖u‖Ht , compared to the negative

term above. Suppose t? ∈ S, then we have

ρ ≤ max

{
‖u‖H1

,
∑
s∈S′
‖u‖Hs

}
≤ 800ν +

∑
s∈S′
‖u‖Hs

,

where we use Lemma B.8 again to bound ‖u‖H1 . On the other hand, if t? /∈ S , then according to the
update rule of S in Algorithm 2, we haveHt? �H1 +

∑
s∈S′Hs, which means

ρ =
√
‖u‖2Ht?

≤
√
‖u‖2H1

+
∑
s∈S′
‖u‖2Hs

≤ 800ν +
∑
s∈S′
‖u‖Hs

.

Therefore, we continue to bound the last three terms in Eq. (16) as

800ν − ρ
5ηad ln(νT )

+ 64Cd
(√
ν + ρ

)
ln(C/δ) + 161Cd

√
(ν + ρ2) L̊T ln(C/δ)

≤ O
(
ν

η

)
−

√
ν + ρ

5ηad ln(νT )
+ 64Cd

(√
ν + ρ

)
ln(C/δ) + 161Cd

√
(ν + ρ2) L̊T ln(C/δ)

≤ O
(
ν

η

)
−

√
ν + ρ

10ηad ln(νT )
+ 161Cd

√
(ν + ρ2) L̊T ln(C/δ) (η ≤ 1

640aCd2 ln(νT ) ln(C/δ) )

≤ O
(
ν

η

)
+ (
√
ν + ρ)

(
161Cd

√
ln(C/δ)L̊T −

1

10ηad ln(νT )

)
.

Plugging this back into Eq. (16) finishes the proof.

Now we are ready to prove the main theorem. For convenience, we restate the theorem below.

Theorem B.16. Algorithm 2 with an appropriate choice of η ensures that with probability at least
1− δ:

Reg =

Õ(d2ν
√
T ln 1

δ + d2ν ln 1
δ ), against an oblivious adversary;

Õ(d2ν
√
dT ln 1

δ + d3ν ln 1
δ ), against an adaptive adversary.

Moreover, if 〈w, `t〉 ≥ 0 for all w ∈ Ω and all t, then T in the bounds above can be replaced by
L? = minu∈Ω

∑T
t=1 〈u, `t〉, that is, the total loss of the best action.

Proof. Using Lemma B.15 and the fact that |〈w̃t, `t〉| ≤ 1 and |〈u, `t〉| ≤ 1 for all t ∈ [T ], we have

T∑
t=1

〈w̃t − u?, `t〉 ≤ Õ

(
ν

η
+ ηd2T +

√
T ln

1

δ

)
+ (
√
ν + ρ)

(
161Cd

√
T ln(C/δ)− 1

10ηad ln(νT )

)
.

With

η = min

{
1

640aCd2 ln(νT ) ln(C/δ)
,

1

1610aCd2 ln(νT )
√
T ln(C/δ)

}
,
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the last term becomes nonpositive, and we arrive at
T∑
t=1

〈w̃t − u?, `t〉 ≤ Õ

(
d2ν

√
T ln

1

δ
+ d2ν ln

1

δ

)
, (17)

for any fixed u? ∈ Ω, which completes the proof for the oblivious case. To obtain a bound for an
adaptive adversary, we discrete the feasible set Ω and then take a union bound. Specifically, define
BΩ as follows:

BΩ , dαedβe, α , max
w,w′∈Ω

‖w − w′‖∞ , β , max
`∈Ω◦

‖`‖∞,

where Ω◦ , {` : | 〈w, `〉 | ≤ 1, ∀w ∈ Ω} is the set of feasible loss vectors. Then we discretize
Ω into a finite set Ω of (BΩT )d points, such that for any u? ∈ Ω, there exists u ∈ Ω, such that
‖u− u?‖∞ ≤ 1

dβeT . This means that∣∣∣∣∣
T∑
t=1

〈u− u?, `t〉

∣∣∣∣∣ ≤
T∑
t=1

d

dβeT
·max

i
`t,i ≤ d.

Therefore, it suffices to only consider regret against the points in Ω. Taking a union bound and
replacing δ with δ

(BΩT )d
in Eq. (17) finish the proof for the worst-case bound for adaptive adversaries.

In the remaining of the proof, we show that if 〈w, `t〉 ∈ [0, 1] for all w ∈ Ω and t ∈ [T ], T can be
replaced byL? in both bounds. As 〈w, `t〉 is always positive, we have Et [|〈w̃t, `t〉|] = Et [〈w̃t, `t〉] =

〈wt, `t〉, Lu =
∑T
t=1 〈u, `t〉 ≤ L? + 2, and LT = LT =

∑T
t=1 〈w̃t, `t〉. Using standard Freedman’s

inequality, we have with probability at least 1− δ,

L̊T − LT ≤
L̊T
2

+ 3 ln(1/δ).

Rearranging gives
L̊T ≤ 2LT + 6 ln(1/δ).

Using Lemma B.15 again, we have
T∑
t=1

〈w̃t − u?, `t〉 ≤ Õ

(
ν

η
+ ηd2LT +

√
L? ln

1

δ

)

+ (
√
ν + ρ)

(
161Cd

√
ln(C/δ)

(
2LT + 6 ln

1

δ

)
− 1

10ηad ln(νT )

)
.

With η = min

{
1

640aCd2 ln(νT ) ln(C/δ) ,
1

1610aCd2 ln(νT )
√

(2LT+6 ln(1/δ)) ln(C/δ)

}
, the last term be-

comes nonpositive, and we arrive at
T∑
t=1

〈w̃t − u?, `t〉 ≤ Õ

(
d2ν

√
LT ln

1

δ
+

√
L? ln

1

δ
+ d2ν ln

1

δ

)
Solving the quadratic inequality in terms of

√
LT gives the following high probability regret bound

T∑
t=1

〈w̃t − u?, `t〉 ≤ Õ

(
d2ν

√
L? ln

1

δ
+ d2ν ln

1

δ

)
.

This finishes the proof for the case with oblivious adversaries, and the case with adaptive adversaries
is again by taking a union bound as done earlier.

Remark 2. The tuning of η in the proof above depends on the unknown quantity LT . In fact,
the issue seems even more severe than that pointed out in Remark 1 because LT depends on the
algorithm’s behavior, which in turns depends on η itself. We point out that, however, this can again
be addressed using a doubling trick, making the algorithm completely parameter-free. We omit the
details but refer the reader to Lee et al. [27, Algorithm 4] for very similar ideas.
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C Omitted details for Section 4

C.1 Preliminary

In this section, we introduce the concept of occupancy measure (used in previous works already;
see [25]), which helps reformulate adversarial MDP problems in a way very similar to adversarial
MAB problems. For a state x, let k(x) denote the index of the layer to which state x belongs. Given
a policy π and a transition function P , we define occupancy measure wP,π ∈ RX×A×X as follows:

wP,π(x, a, x′) = P [xk = x, ak = a, xk+1 = x′|P, π] ,

where k = k(x). In other words, wP,π(x, a, x′) is the probability of visiting the triple (x, a, x′) if we
execute policy π in an MDP with transition function P .

According to this definition, we have the following two properties for any occupancy measure w.
First, based on the layered structure, we know that each layer is visited exactly once in each episode,
which means for each k = 0, 1, . . . , J , we have∑

x∈Xk,a∈A,x′∈Xk+1

w(x, a, x′) = 1. (18)

Second, the probability of entering one state when coming from the previous layer equals to the
probability of leaving the state to the next layer. Therefore, for each k = 1, 2, . . . , J − 1, we have∑

x′∈Xk−1,a∈A
w(x′, a, x) =

∑
x′∈Xk+1,a∈A

w(x, a, x′), (19)

for all x ∈ Xk.

Moreover, the following lemma shows that if w satisfies the above two properties, then w is an
occupancy measure with respect to some transition function Pw and policy πw.

Lemma C.1 (Lemma 3.1 in [34]). For any w ∈ [0, 1]|X|×|A|×|X|, it satisfies Eq. (18) and Eq. (19) if
and only if it is a valid occupancy measure associated with the following induced transition function
Pw and policy πw:

Pw(x′|x, a) =
w(x, a, x′)∑

y∈Xk(x)+1
w(x, a, y)

, πw(a|x) =

∑
x′∈Xk(x)+1

w(x, a, x′)∑
a′∈A

∑
x′∈Xk(x)+1

w(x, a′, x′)
.

Following [25], we denote by ∆ the set of all valid occupancy measures. For a fixed transition
function, we denote by ∆(P ) ⊆ ∆ the set of occupancy measures whose induced transition function
Pw is exactly P . In addition, we denote by ∆(P) ⊆ ∆ the set of occupancy measures whose
induced transition function Pw belongs to a set of transition functions P . With a slightly abuse
of notation, we define w(x, a) =

∑
x′∈Xk(x)+1

w(x, a, x′) for all x 6= xJ and a ∈ A. Using the
notations introduced above, we know that the expected loss of using policy π at round t is exactly〈
wP,π, `t

〉
,
∑
x,a w

P,π(x, a)`t(x, a). Let πt be the policy chosen at round t. Then the total

expected loss (with respect to randomness of the transition function) is
∑T
t=1

〈
wP,πt , `t

〉
and the

total regret can be written as:

Reg =

T∑
t=1

`t(πt)−min
π

T∑
t=1

`t(π) =

T∑
t=1

〈wt − u?, `t〉 = LT − L?, (20)

where u? = wP,π
?

is the occupancy measure induced by the optimal policy π? =

argminπ
∑T
t=1 `t(π), wt = wP,πt , LT ,

∑T
t=1 〈wt, `t〉, and L? ,

∑T
t=1 〈u?, `t〉. When the

regret is written in this way, it is clear that the problem is very similar to MAB or linear bandits with
∆(P ) being the decision set and `t parametrizing the linear loss function at time t.

C.2 Algorithm for MDPs

In this section, we introduce our algorithm that achieves high-probability small-loss regret bound for
the MDP setting. The full pseudocode of the algorithm is shown in Algorithm 4. The algorithm is
very similar to UOB-REPS introduced in [25], except for the following two modifications.
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Algorithm 4 Upper Occupancy Bound Log Barrier Policy Search
Input: state space X , action space A, learning rate η, and confidence parameter δ.
Define: κ = e

1
7 lnT , COMP-UOB is Algorithm 3 of [25], and

Ω =

{
ŵ : ŵ(x, a, x′) ≥ 1

T 3|X|2|A|
,∀k ∈ {0, 1, . . . , J − 1}, x ∈ Xk, a ∈ A, x′ ∈ Xk+1

}
.

Initialization: Set epoch index i = 1 and confidence set P1 as the set of all transition functions. For
all k = 0, . . . , J − 1, (x, a, x′) ∈ Xk ×A×Xk+1, set

ŵ1(x, a, x′) =
1

|Xk||A||Xk+1|
, π1 = πŵ1 , η1(x, a) = η, ρ1(x, a) = 2|Xk||A|,

φ1(x, a) = COMP-UOB(π1, x, a,P1), N0(x, a) = N1(x, a) = G0(x′|x, a) = G1(x′|x, a) = 0.

1 for t = 1, 2, . . . , T do
2 Execute policy πt for J steps and obtain trajectory xk, ak, `t(xk, ak) for k = 0, . . . , J − 1.
3 Construct loss estimators for all (x, a) ∈ X ×A:

̂̀
t(x, a) =

`t(x, a)

φt(x, a)
1t(x, a), where 1t(x, a) = 1{xk(x) = x, ak(x) = a}. (21)

4 Update counters: for each k = 0, 1, . . . , J − 1,

Ni(xk, ak)← Ni(xk, ak) + 1, Gi(xk+1|xk, ak)← Gi(xk+1|xk, ak) + 1.

5 if ∃k, Ni(xk, ak) ≥ max{1, 2Ni−1(xk, ak)} then
6 Increase epoch index i← i+ 1.
7 Initialize new counters: Ni = Ni−1, Gi = Gi−1 (copy all entries).
8 Compute confidence set

Pi =
{
P̂ :

∣∣∣P̂ (x′|x, a)− P̄i(x′|x, a)
∣∣∣ ≤ εi(x′|x, a),

∀(x, a, x′) ∈ Xk ×A×Xk+1, k = 0, 1, . . . , J − 1
}
,

where P̄i(x′|x, a) = Gi(x
′|x,a)

max{1,Ni(x,a)} and

εi(x
′|x, a) , 4

√√√√ P̄i(x′|x, a) ln
(
T |X||A|

δ

)
max{1, Ni(x, a)− 1}

+
28 ln

(
T |X||A|

δ

)
3 max{1, Ni(x, a)− 1}

.

9 Compute ŵt+1 = argminw∈∆(Pi)∩Ω

{
〈w, ̂̀t〉+Dψt(w, ŵt)

}
, where

ψt(w) =
J−1∑
k=0

∑
(x,a,x′)∈Xk×A×Xk+1

1

ηt(x, a)
ln

(
1

w(x, a, x′)

)
. (22)

10 Update policy πt+1 = πŵt+1 .
11 for each (x, a) ∈ X ×A do
12 Update upper occupancy bound:

φt+1(x, a) = max
P̂∈Pi

wP̂ ,πt+1(x, a) = COMP-UOB(πt+1, x, a,Pi). (23)

13 if 1
φt+1(x,a) ≥ ρt(x, a) then ρt+1(x, a) = 2

φt+1(x,a) , ηt+1(x, a) = ηt(x, a) · κ.
14 else ρt+1(x, a) = ρt(x, a), ηt+1(x, a) = ηt(x, a).

First, in [25], they propose a loss estimator akin to the importance-weighted estimator using the
so-called upper occupancy bound, denoted by φt(x, a) in our notation. Indeed, the actual probability
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wt(x, a) of visiting state-action pair (x, a) is unknown (due to the unknown transition), and thus
standard unbiased importance-weighted estimators do not apply directly. Instead, since the algorithm
maintains a confidence set Pi (for epoch i) of all the plausible transition functions based on obser-
vations, one can calculate the largest probability of visiting state-action pair (x, a) under policy πt,
among all the plausible transition functions, which is exactly the definition of φt(x, a) and can be
computed efficiently via the sub-routine COMP-UOB as shown in [25]. In addition, Jin et al. [25]
also apply the idea of implicit exploration from [31] and introduce an extra bias with a parameter
γ > 0, leading to the following loss estimator:

̂̀
t(x, a) =

`t(x, a)

φt(x, a) + γ
1t(x, a),

which is crucial for them to derive a high-probability bound. As one can see in Eq. (21), the first
difference of our algorithm is that we remove this implicit exploration (that is, γ = 0), similarly
to our MAB algorithm in Section 2. As we later explain in Appendix C.4, removing this implicit
exploration is important for obtaining a small-loss bound.

Second, while UOB-REPS uses the entropy regularizer with a fixed learning rate, we use the log-
barrier regularizer with time-varying and individual learning rates for each state-action pair, defined
in Eq. (22), which is a direct generalization of Algorithm 1 for MAB. The way we increase the
learning rate is also essentially identical to the MAB case; see the last part of Algorithm 4. We also
point out that the analogue of the clipped simplex used in Algorithm 1 is now ∆(Pi) ∩ Ω where
∆(Pi) is the set of occupancy measures with induced transition functions in the confidence set Pi,
and Ω (defined at the beginning of Algorithm 4) contains all ŵ with each entry not smaller than
1/(T 3|X|2|A|), which ensures that the learning rates cannot be increased by too many times.

C.3 Proof of Theorem 4.1

In this section, we analyze Algorithm 4 and prove Theorem 4.1. We start with decomposing the
regret into five terms (recall the definitions of wt and u? in Eq. (20) and ŵt and ̂̀t in Algorithm 4):

T∑
t=1

〈wt − u?, `t〉 =

T∑
t=1

〈wt − ŵt, `t〉︸ ︷︷ ︸
ERROR

+

T∑
t=1

〈
ŵt, `t − ̂̀t〉︸ ︷︷ ︸
BIAS-1

+

T∑
t=1

〈
ŵt − u, ̂̀t〉︸ ︷︷ ︸

REG-TERM

+

T∑
t=1

〈
u, ̂̀t − `t〉︸ ︷︷ ︸
BIAS-2

+

T∑
t=1

〈u− u?, `t〉︸ ︷︷ ︸
BIAS-3

.

Here u is defined as

u =

(
1− 1

T

)
u? +

1

T |A|
∑
a∈A

wP0,πa , (24)

where πa is the policy that chooses action a at every state, and the definition of the transition function
P0 is deferred to Lemma C.4. Note that u is random in the case with adaptive adversaries.

In the remaining of this subsection, we first provide a few useful lemmas in Appendix C.3.1, and
then bound ERROR in Appendix C.3.2, BIAS-1 in Appendix C.3.3, BIAS-2 in Appendix C.3.4, and
REG-TERM in Appendix C.3.5. Note that BIAS-3 can be trivially bounded by J as

BIAS-3 =

T∑
t=1

〈u− u?, `t〉 ≤
1

T |A|
∑
a∈A

T∑
t=1

〈
wπa,P0 , `t

〉
≤ J. (25)

We finally put everything together and prove Theorem 4.1 in Appendix C.3.6.

C.3.1 Useful lemmas

The first two lemmas are from [25].

29



Lemma C.2 (Lemma 2 in [25]). With probability at least 1− 4δ, we have for all k = 0, 1, . . . , J − 1
and (x, a, x′) ∈ Xk ×A×Xk+1,∣∣P (x′|x, a)− P̄i(x′|x, a)

∣∣ ≤ εi(x
′|x, a)

2
. (26)

Consequently, we have P ∈ Pi for all i.
Lemma C.3 (Lemma 10 in [25]). With probability at least 1− δ, we have for all k = 0, . . . , J − 1,

T∑
t=1

∑
x∈Xk,a∈A

wt(x, a)

max{1, Nit(x, a)}
= Õ

(
|Xk| · |A|+ ln

1

δ

)
T∑
t=1

∑
x∈Xk,a∈A

wt(x, a)− 1t(x, a)√
max{1, Nit(x, a)}

≤
T∑
t=1

∑
x∈Xk,a∈A

wt(x, a)

max{1, Nit(x, a)}
+ Õ

(
ln

1

δ

)

≤ Õ
(
|Xk| · |A|+ ln

1

δ

)
,

where it is the index of the epoch to which episode t belongs.

Next, we prove a lemma showing that there exists a transition function P0 that always lies in the
confidence set Pi of the algorithm, such that for any action a ∈ A and any two states x, x′ in
consecutive layers, the probability of reaching x′ by taking action a at state x is at least 1

T |X| .

Lemma C.4. With probability at least 1− 4δ, there exists P0 ∈ ∩iPi such that for all k < J, x ∈
Xk, a ∈ A, and x′ ∈ Xk+1, we have P0(x′|x, a) ≥ 1

T |X| .

Proof. The construction of P0 is as follows. First we start with P0 = P . Then for each fixed (x, a),
we focus on the distribution P0(·|x, a). In particular, for all x′ ∈ Xk(x)+1 such that P0(x′|x, a) <

1
T |X| , we move the weight from the largest entry of P0(·|x, a) to this entry so that P0(x′|x, a) =

1
T |X| and P0(·|x, a) remains a valid distribution. Repeat the same for all (x, a) pairs finishes the
construction of P0.

Clearly, P0 satisfies P0(x′|x, a) ≥ 1
T |X| , and it remains to show P0 ∈ Pi for all i. To this end, we

first note that

|P0(x′|x, a)− P (x′|x, a)| ≤
|Xk(x′)|
T |X|

≤ 1

T
≤ εi(x

′|x, a)

2

holds for all k = 0, 1, . . . , J − 1 and (x, a, x′) ∈ Xk × A ×Xk+1. Combining this with Eq. (26)
then shows that

∣∣P0(x′|x, a)− P̄i(x′|x, a)
∣∣ ≤ εi(x

′|x, a), indicating that P0 is indeed in Pi by the
definition of Pi.

The next lemma shows that the upper occupancy bound for each state-action pair is lower bounded.
Lemma C.5. We have φt(x, a) ≥ 1

T 3|X|2|A| for all x ∈ X and a ∈ A.

Proof. This is simply by the definition of φt in Eq. (23) and the definition of Ω: φt(x, a) ≥
ŵt(x, a) ≥ 1

T 3|X|2|A| .

The last lemma is an improvement of [25, Lemma 4] and is important for bounding ERROR and
BIAS-1 in terms of

√
LT , as opposed to

√
T (which is the case in [25]).

Lemma C.6. With probability at least 1− 6δ, for any t and any collection of transition functions
{P xt }x∈X such that P xt ∈ Pit for all x (where it is the index of the epoch to which episode t belongs),
we have

T∑
t=1

∑
x∈X,a∈A

∣∣∣wPxt ,πt(x, a)− wt(x, a)
∣∣∣ `t(x, a)

= Õ

(
|X|
√
J |A|LT ln

1

δ
+ |X|5|A|2 ln

1

δ
+ |X|4|A| ln2 1

δ

)
.
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Proof. The proof is technical but mostly follows the same ideas of that for [25, Lemma 4]. We first
assume that the events of Lemma C.2 and Lemma C.3 hold, which happens with probability at least
1− 5δ. According to the proof of [25, Lemma 4] (specifically their Eq. (15)), we have for any pair
(x, a), ∣∣∣wPxt ,πt(x, a)− wt(x, a)

∣∣∣ · `t(x, a)

≤
k(x)−1∑
m=0

∑
xm,am,xm+1

ε?it(xm+1|xm, am)wt(xm, am)wP
x
t ,πt(x, a|xm+1) · `t(x, a), (27)

where ε?it (x′|x, a) = O
(√

P (x′|x,a) ln(T |X||A|δ )
max{1,Nit (x,a)} +

ln(T |X||A|δ )
max{1,Nit (x,a)}

)
, and for an occupancy measure

w, w(x, a|x′) denotes the probability of encountering the pair (x, a) given that x′ was visited earlier,
under policy πw and Pw. By their Eq. (16), we also have

|wP
x
t ,πt(x, a|xm+1)− wt(x, a|xm+1)|

≤ πt(a|x)

k(x)−1∑
h=m+1

∑
x′h,a

′
h,x
′
h+1

ε?it(x
′
h+1|x′h, a′h)wt(x

′
h, a
′
h|xm+1), (28)

Combining Eq. (27) and Eq. (28), summing over all t and (x, a) and using shorthands zm ,
(xm, am, xm+1) and z′h , (x′h, a

′
h, x
′
h+1), we have

T∑
t=1

∑
x∈X,a∈A

|wP
x
t ,πt(x, a)− wt(x, a)| · `t(x, a)

≤
∑
t,x,a

k(x)−1∑
m=0

∑
zm

ε?it(xm+1|xm, am)wt(xm, am)wt(x, a|xm+1)`t(x, a)

+
∑
t,x,a

k(x)−1∑
m=0

∑
zm

ε?it(xm+1|x)wt(xm, am) ·

πt(a|x)

k(x)−1∑
h=m+1

∑
z′h

ε?it(x
′
h+1|x′h, a′h)wt(x

′
h, a
′
h|xm+1)


(`t(x, a) ≤ 1)

=
∑
t

∑
k<J

k−1∑
m=0

∑
zm

ε?it(xm+1|xm, am)wt(xm, am)
∑

x∈Xk,a∈A
wt(x, a|xm+1)`t(x, a)

+
∑
t

∑
0≤m<h<k<J

∑
zm,z′h

ε?it(xm+1|x)wt(xm, am)ε?it(x
′
h+1|x′h, a′h)wt(x

′
h, a
′
h|xm+1) ·

 ∑
x∈Xk,a∈A

πt(a|x)


=

∑
0≤m<k<J

∑
t,zm

ε?it(xm+1|xm, am)wt(xm, am)
∑

x∈Xk,a∈A
wt(x, a|xm+1)`t(x, a)

+
∑

0≤m<h<k<J

|Xk|
∑

t,zm,z′h

ε?it(xm+1|x)wt(xm, am)ε?it(x
′
h+1|x′h, a′h)wt(x

′
h, a
′
h|xm+1)

≤
∑

0≤m<k<J

∑
t,zm

ε?it(xm+1|xm, am)wt(xm, am)
∑

x∈Xk,a∈A
wt(x, a|xm+1)`t(x, a)

+ |X|
∑

0≤m<h<J

∑
t,zm,z′h

ε?it(xm+1|x)wt(xm, am)ε?it(x
′
h+1|x′h, a′h)wt(x

′
h, a
′
h|xm+1)

, B1 + |X|B2.

It remains to bound B1 and B2. First, B2 is exactly the same as in the proof of [25, Lemma 4]. Below,
we outline the proof with the dependence on all parameters explicit (indeed, this is hidden in their
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proof). First, according to their analysis, B2 is bounded by

Õ

 ∑
0≤m<h<J

∑
t,zm,z′h

√
P (xm+1|xm, am) ln 1

δ

max{1, Nit(xm, am)}
wt(xm, am)

√
P (x′h+1|x′h, a′h) ln 1

δ

max{1, Nit(x′h, a′h)}
wt(x

′
h, a
′
h|xm+1)


+ Õ

 ∑
0≤m<h<J

∑
t,zm,z′h

wt(xm, am) ln 1
δ

max{1, Nit(xm, am)}

+ Õ

 ∑
0≤m<h<J

∑
t,zm,z′h

wt(x
′
h, a
′
h) ln 1

δ

max{1, Nit(x′h, a′h)}

 .

They show that the first term is bounded by Õ(|X|2|A| ln2(1/δ)). For the second term, we have

∑
0≤m<h<J

∑
t,zm,z′h

wt(xm, am) ln 1
δ

max{1, Nit(xm, am)}

≤

(
J−1∑
h=0

|Xh| · |A| · |Xh+1| ln
1

δ

)
J−1∑
m=0

|Xm+1| ·
∑

t,x∈Xm,a∈A

wt(xm, am)

max{1, Nit(xm, am)}

≤ O
(
|X|2|A| ln 1

δ

)
· Õ
(
|X|2|A|+ |X| ln 1

δ

)
(Lemma C.3)

≤ Õ
(
|X|4|A|2 ln

1

δ
+ |X|3|A| ln 1

δ

)
.

The third term can be bounded in the exact same way. Therefore, we arrive at

|X|B2 ≤ Õ
(
|X|5|A|2 ln(1/δ) + |X|4|A| ln2(1/δ)

)
. (29)

Next we show that B1 is bounded by Õ(|X|
√
J |A|LT ln(1/δ) + |X|3|A| ln(1/δ)). According to

the definition of ε?it , we have

B1 = O

 ∑
0≤m<k<J

∑
t,zm

wt(xm, am)

 ∑
x∈Xk,a∈A

wt(x, a|xm+1)`t(x, a)



·

√√√√P (xm+1|xm, am) ln
(
T |X||A|

δ

)
max{1, Nit(xm, am)}

+O

 ∑
0≤m<k<J

∑
t,zm

wt(xm, am) ln
(
T |X||A|

δ

)
max{1, Nit(xm, am)}

 .

(30)

According to Lemma C.3, the second term is bounded as

O

 ∑
0≤m<k<J

∑
t,zm

wt(xm, am) ln
(
T |X||A|

δ

)
max{1, Nit(xm, am)}

 ≤ Õ(J |X|2|A|+ J |X| ln 1

δ

)
. (31)

In the following, we define `t(k|x, a) ,
∑
xk∈Xk,ak∈A `t(xk, ak)wt(xk, ak|x, a) where

wt(x
′, a′|x, a) is the probability of encountering pair (x′, a′) given that pair (x, a) was encoun-
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tered earlier, under policy πt and transition P . For the first term of Eq. (30), we then have

∑
0≤m<k<J

∑
t,zm

wt(xm, am)

 ∑
x∈Xk,a∈A

wt(x, a|xm+1)`t(x, a)

 ·
√√√√P (xm+1|xm, am) ln

(
T |X||A|

δ

)
max{1, Nit(xm, am)}

≤
∑

0≤m<k<J

∑
t,zm

wt(xm, am)

√√√√√
 ∑
x∈Xk,a∈A

wt(x, a|xm+1)`t(x, a)

 · P (xm+1|xm, am) ln
(
T |X||A|

δ

)
max{1, Nit(xm, am)}

≤
∑

0≤m<k<J

∑
t,xm,am

wt(xm, am)

√√√√
|Xm+1| ·

`t(k|xm, am) ln
(
T |X||A|

δ

)
max{1, Nit(xm, am)}

(Cauchy-Schwarz inequality)

≤
∑

0≤m<k<J

√
|Xm+1| ln

(
T |X||A|

δ

)

·
∑

t,xm,am

(
1t(xm, am)

√
`t(k|xm, am)

max{1, Nit(xm, am)}
+
wt(xm, am)− 1t(xm, am)√

max{1, Nit(xm, am)}

)
. (32)

According to Lemma C.3 again, we have for all m = 0, 1, . . . , J − 1,

T∑
t=1

∑
xm,am

wt(xm, am)− 1t(xm, am)√
max{1, Nit(xm, am)}

≤ Õ (|Xm||A|+ ln(1/δ)) .

For the term
∑
t,xm,am

1t(xm, am)
√

`t(k|xm,am)
max{1,Nit (xm,am)} , using Cauchy-Schwarz inequality, we have

∑
t,xm,am

1t(xm, am)

√
`t(k|xm, am)

max{1, Nit(xm, am)}

≤
∑
xm,am

√√√√ T∑
t=1

1t(xm, am)

max{1, Nit(xm, am)}
·

√√√√ T∑
t=1

1t(xm, am)`t(k|xm, am)

(Cauchy-Schwarz inequality)

≤ O


√√√√√|Xm||A|

 T∑
t=1

∑
x∈Xm,a∈A

1t(xm, am)`t(k|x, a)

 · lnT
 , (33)

where the last step uses Cauchy-Schwarz inequality again and the fact
∑T
t=1

1t(xm,am)
max{1,Nit (xm,am)} ≤

O(lnT ). Combining Eq. (32) and Eq. (33), we have

∑
0≤m<k<J

∑
t,zm

wt(xm, am)

 ∑
x∈Xk,a∈A

wt(x, a|xm+1)`t(x, a)

 ·
√√√√P (xm+1|xm, am) ln

(
T |X||A|

δ

)
max{1, Nit(xm, am)}

≤ Õ

 ∑
0≤m<k<J

√
|Xm||A||Xm+1| ln

1

δ

√√√√ T∑
t=1

∑
x∈Xm,a∈A

1t(xm, am)`t(k|x, a)


≤ Õ

J−1∑
m=0

√√√√J |Xm||A||Xm+1|
T∑
t=1

∑
k>m

∑
x∈Xm,a∈A

1t(xm, am)`t(k|x, a) ln
1

δ

 .

(Cauchy-Schwarz inequality)
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Further note that

Et

∑
k>m

∑
x∈Xm,a∈A

1t(xm, am)`t(k|x, a)


=
∑
k>m

∑
x∈Xm,a∈A

wt(x, a)`t(k|x, a)

=
∑

x∈Xm,a∈A
wt(x, a)

∑
k>m

∑
x′∈Xk,a′∈A

wt(x
′, a′|x, a)`t(x

′, a′)

=
∑
k>m

∑
x′∈Xk,a′∈A

wt(x
′, a′)`t(x

′, a′)

≤ 〈wt, `t〉

and

Et


∑
k>m

∑
x∈Xm,a∈A

1t(xm, am)`t(k|x, a)

2
 ≤ J 〈wt, `t〉 .

Using Freedman inequality J times with parameter δ/J for m = 0, 1, . . . , J − 1 and taking a union
bound, we have with probability 1− δ, for all m = 0, 1, . . . , J − 1,

T∑
t=1

∑
k>m

∑
x∈Xm,a∈A

1t(xm, am)`t(k|x, a)−
T∑
t=1

〈wt, `t〉

≤ Õ


√√√√J

T∑
t=1

〈wt, `t〉 ln
1

δ
+ J ln

1

δ

 = Õ

(√
JLT ln

1

δ
+ J ln

1

δ

)
.

Therefore, using AM-GM inequality, we have

T∑
t=1

∑
k>m

∑
x∈Xm,a∈A

1t(xm, am)`t(k|x, a) ≤ Õ
(
LT + J ln

1

δ

)
.

Combining the results above and Eq. (31), we know that with probability at least 1− δ,

B1 ≤ Õ

(
|X|
√
J |A|LT ln

1

δ
+ J |X|

√
|A| ln 1

δ

)
+ Õ

(
J |X|2|A|+ J |X| ln 1

δ

)

≤ Õ

(
|X|
√
J |A|LT ln

1

δ
+ |X|3|A| ln 1

δ

)
. (34)

Finally, combining Eq. (29) and Eq. (34) and considering the probability of the events of Lemma C.2
and Lemma C.3, we have with probability 1− 6δ,

B1 + |X|B2 ≤ Õ

(
|X|
√
J |A|LT ln

1

δ
+ |X|5|A|2 ln

1

δ
+ |X|4|A| ln2 1

δ

)
,

finishing the proof.

C.3.2 Bounding ERROR

Lemma C.7. With probability at least 1− 6δ, we have

ERROR =

T∑
t=1

〈wt − ŵt, `t〉 = Õ

(
|X|
√
J |A|LT ln

1

δ
+ |X|5|A|2 ln

1

δ
+ |X|4|A| ln2 1

δ

)
,
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Proof. Note that according to the definition of ŵt, the transition function P ŵt induced by ŵt is in
Pit . Therefore, applying Lemma C.6, we know that with probability at least 1− 6δ,

ERROR =

T∑
t=1

〈ŵt − wt, `t〉

≤
T∑
t=1

∑
x∈X,a∈A

|ŵt(x, a)− wt(x, a)| `t(x, a)

≤ Õ

(
|X|
√
J |A|LT ln

1

δ
+ |X|5|A|2 ln

1

δ
+ |X|4|A| ln2 1

δ

)
,

completing the proof.

C.3.3 Bounding BIAS-1

Lemma C.8. With probability at least 1− 7δ, we have

BIAS-1 =

T∑
t=1

〈
ŵt, `t − ̂̀t〉 ≤ Õ(|X|√J |A|LT ln

1

δ
+ |X|5|A|2 ln

1

δ
+ |X|4|A| ln2 1

δ

)
.

Proof. First we write

T∑
t=1

〈
ŵt, `t − ̂̀t〉 =

T∑
t=1

〈
ŵt,Et

[̂̀
t

]
− ̂̀t〉+

T∑
t=1

〈
ŵt, `t − Et

[̂̀
t

]〉
.

Since ŵt(x, a) ≤ φt(x, a) by the definition of φt, we have〈
ŵt, ̂̀t〉 ≤ J∑

k=1

∑
x∈Xk,a∈A

ŵt(x, a)

φt(x, a)
· 1t(x, a) ≤ J,

Et
[〈
ŵt, ̂̀t〉2

]
≤ Et

[
J ·
〈
ŵt, ̂̀t〉] = J

∑
x,a

ŵt(x, a) · `t(x, a)

φt(x, a)
· wt(x, a) ≤ J · 〈wt, `t〉 ,

and thus according to Freedman inequality, we have with probability at least 1− δ,

T∑
t=1

〈
ŵt,Et

[̂̀
t

]
− ̂̀t〉 ≤ O


√√√√J

T∑
t=1

〈wt, `t〉 ln
1

δ
+ J · ln 1

δ

 = O

(√
JLT ln

1

δ
+ |X| ln 1

δ

)
.

(35)

For the second term, we have

T∑
t=1

〈
ŵt, `t − Et

[̂̀
t

]〉
=
∑
t,x,a

ŵt(x, a)`t(x, a) ·
(

1− wt(x, a)

φt(x, a)

)
≤
∑
t,x,a

|φt(x, a)− wt(x, a)| · `t(x, a).

By the definition of φt, one has φt = wP
x
t ,πt for P xt = argmaxP̂∈Pit

∑
a w

P̂ ,πt(x, a). Therefore,
according to Lemma C.7, we have with probability at least 1− 6δ,

T∑
t=1

〈
ŵt, `t − Et

[̂̀
t

]〉
≤ Õ

(
|X|
√
J |A|LT ln

1

δ
+ |X|5|A|2 ln

1

δ
+ |X|4|A| ln2 1

δ

)
. (36)

Combining Eq. (35) and Eq. (36) proves the lemma.
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C.3.4 Bounding BIAS-2

Lemma C.9. With probability at least 1− 5δ, we have

BIAS-2 =

T∑
t=1

〈
u, ̂̀t − `t〉 ≤ C ∑

x∈X,a∈A
u(x, a)

√√√√8ρT (x, a)

T∑
t=1

`t(x, a) ln
C|X||A|

δ

+ 2C 〈u, ρT 〉 ln
C|X||A|

δ
,

for some constant C = Õ(1).

Proof. First we write

T∑
t=1

〈
u, ̂̀t − `t〉 =

T∑
t=1

〈
u,Et

[̂̀
t

]
− `t

〉
+

T∑
t=1

〈
u, ̂̀t − Et

[̂̀
t

]〉
.

The first term is nonpositive under the event of Lemma C.2 as for any (x, a) ∈ X ×A, wt(x, a) ≤
φt(x, a) by the definition of φt and thus

Et
[̂̀
t(x, a)

]
− `t(x, a) = wt(x, a) · `t(x, a)

φt(x, a)
− `t(x, a) ≤ 0. (37)

For the second term, note that for each (x, a) ∈ X ×A, we have

̂̀
t(x, a) =

`t(x, a)

φt(x, a)
· 1t(x, a) ≤ T 3|X|2|A|, (Lemma C.5)

̂̀
t(x, a) =

`t(x, a)

φt(x, a)
· 1t(x, a) ≤ ρt(x, a),

and

T∑
t=1

Et
[̂̀
t(x, a)2

]
≤

T∑
t=1

Et
[
`t(x, a)

φt(x, a)2
· 1t(x, a)

]
≤ ρT (x, a)

T∑
t=1

`t(x, a).

Therefore, using Theorem 2.2 with Xt = ̂̀
t(x, a) − Et

[̂̀
t(x, a)

]
, Bt = ρt(x, a), B? = ρT (x, a),

b = T 3|X|2|A|, C = dlog2 bedlog2 b
2T e = Õ(1), we have with probability at least 1− δ

|X||A| ,

T∑
t=1

̂̀
t(x, a)− Et

[̂̀
t(x, a)

]
≤ C


√√√√8ρT (x, a)

T∑
t=1

`t(x, a) ln
C|X||A|

δ
+ 2ρT (x, a) ln

C|X||A|
δ

 .

Taking a union bound over all (x, a) ∈ X ×A, multiplying both sides by u(x, a), and summing up
all these inequalities, we have with probability at least 1− δ,

T∑
t=1

〈
u, ̂̀t − Et

[̂̀
t

]〉

≤ C
∑

x∈X,a∈A
u(x, a)


√√√√8ρT (x, a)

T∑
t=1

`t(x, a) ln
C|X||A|

δ
+ 2ρT (x, a) ln

C|X||A|
δ

 . (38)

Combining Eq. (37) and Eq. (38) finishes the proof.
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C.3.5 Bounding REG-TERM

Lemma C.10. With probability at least 1− 4δ, we have

REG-TERM =

T∑
t=1

〈
ŵt − u, ̂̀t〉 ≤ Õ( |X|2|A|

η

)
+ 5ηLT −

〈u, ρT 〉
70η lnT

,

where LT =
∑T
t=1

∑
x∈X,a∈A 1t(x, a)`t(x, a).

Proof. We condition on the event of Lemma C.2. First, we prove that u ∈ ∆(Pi) ∩Ω for all i (recall
its definition in Eq. (24)). Indeed, for any fixed (x, a, x′) ∈ Xk ×A×Xk+1, k = 0, 1, . . . , J − 1,
we have (with wP0,πa(x) being the probability of visiting x under P0 and πa)

u(x, a, x′) ≥ 1

T |A|
wP0,πa(x, a, x′)

=
1

T |A|
wP0,πa(x)P0(x′|x, a)

≥ 1

T |A|

 ∑
x′′∈Xk(x)−1

wP0,πa(x′′) · P0(x|x′′, a)

 · 1

T |X|
(Lemma C.4)

≥ 1

T 3|X|2|A|

 ∑
x′′∈Xk(x)−1

wP0,πa(x′′)

 , (Lemma C.4 again)

=
1

T 3|X|2|A|
,

which shows u ∈ Ω. On the other hand, since P ∈ Pi under Lemma C.2 and P0 ∈ Pi as well
by Lemma C.4, we have u? ∈ ∆(Pi) and wP0,πa ∈ ∆(Pi), which indicates that, as a convex
combination of u? and wP0,πa for all a, u has to be in ∆(Pi) as well.

Therefore, by standard OMD analysis (e.g., [5, Lemma 12]), we have〈
ŵt − u, ̂̀t〉
≤ Dψt(u, ŵt)−Dψt(u, ŵt+1) +

J−1∑
k=0

∑
(x,a,x′)∈Xk×A×Xk+1

ηt(x, a)ŵ2
t (x, a, x

′)̂̀2t (x, a)

≤ Dψt(u, ŵt)−Dψt(u, ŵt+1) +

J−1∑
k=0

∑
(x,a)∈Xk×A

ηt(x, a)ŵ2
t (x, a)̂̀2t (x, a)

(
∑
x′∈Xk+1

ŵt(x, a, x
′)2 ≤ ŵt(x, a)2)

≤ Dψt(u, ŵt)−Dψt(u, ŵt+1) +
∑

x∈X,a∈A
ηt(x, a)1t(x, a)`t(x, a). (ŵt(x, a) ≤ φt(x, a))

Summing over t gives

T∑
t=1

〈
ŵt − u, ̂̀t〉 ≤ Dψ1

(u, ŵ1) +

T−1∑
t=1

Dψt+1
(u, ŵt+1)−Dψt(u, ŵt+1)

+

T∑
t=1

∑
x∈X,a∈A

ηt(x, a)1t(x, a)`t(x, a). (39)

Next, for a fixed (x, a) pair, let n(x, a) be the total number of times the learning rate for (x, a)
has increased, such that ηT (x, a) = ηκn(x,a), and let t1, . . . , tn(x,a) be the rounds where ηt(x, a)

is increased, such that ηti+1(x, a) = ηti(x, a)κ. Then since 1
φtn(x,a)+1(x,a) > ρtn(x,a)

(x, a) >
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2ρtn(x,a)−1
(x, a) > · · · > 2n(x,a)−1ρ1(x, a) > 2n(x,a)|A| and 1

φtn(x,a)+1(x,a) ≤ T 3|X|2|A|

(Lemma C.5), we have n ≤ log2

(
T 3|X|2

)
≤ 7 log2 T .

Therefore, we have ηt(x, a) ≤ ηe
7 log2 T
7 lnT ≤ 5η for any t, x ∈ X , and a ∈ A, and the last term in Eq.

(39) is thus bounded by 5ηLT . For the second term, with h(y) = y − 1− ln y , we have

T−1∑
t=1

Dψt+1
(u, ŵt+1)−Dψt(u, ŵt+1)

≤
T−1∑
t=1

J−1∑
k=0

∑
x∈Xk,a∈A,x′∈Xk+1

(
1

ηt+1(x, a)
− 1

ηt(x, a)

)
h

(
u(x, a, x′)

ŵt+1(x, a, x′)

)

≤
J−1∑
k=0

∑
x∈Xk,a∈A,x′∈Xk+1

1− κ
η · κn(x,a)

· h

(
u(x, a, x′)

ŵtn(x,a)+1(x, a, x′)

)

≤ − 1

35η lnT

J−1∑
k=0

∑
x∈Xk,a∈A,x′∈Xk+1

h

(
u(x, a, x′)

ŵtn(x,a)+1(x, a, x′)

)
(1− κ ≤ − 1

7 lnT and κn(x,a) ≤ e
7 log2 T
7 lnT ≤ 5)

= − 1

35η lnT

J−1∑
k=0

∑
x∈Xk,a∈A,x′∈Xk+1

(
u(x, a, x′)

ŵtn(x,a)+1(x, a, x′)
− 1− ln

u(x, a, x′)

ŵtn(x,a)+1(x, a, x′)

)

≤ |X|
2|A|(1 + 6 lnT )

35η lnT
− 1

35η lnT

J−1∑
k=0

∑
x∈Xk,a∈A,x′∈Xk+1

u(x, a, x′)

ŵtn(x,a)+1(x, a, x′)

(ln u(x,a,x′)
ŵtn(x,a)+1(x,a,x′) ≤ 6 lnT )

≤ |X|
2|A|

5η
− 1

35η lnT

J−1∑
k=0

∑
x∈Xk,a∈A,x′∈Xk+1

u(x, a, x′)

φtn(x,a)+1(x, a)

=
|X|2|A|

5η
− 1

35η lnT

J−1∑
k=0

∑
x∈Xk,a∈A

u(x, a)

φtn(x,a)+1(x, a)

=
|X|2|A|

5η
− 〈u, ρT 〉

70η lnT
. (ρT (x, a) = 2

φtn(x,a)+1(x,a) )

Finally, we bound the first term in Eq. (39):

Dψ1
(u, ŵ1) =

1

η

J−1∑
k=0

∑
(x,a,x′)∈Xk×A×Xk+1

h

(
u(x, a, x′)

ŵ1(x, a, x′)

)
=

1

η

J−1∑
k=0

∑
(x,a,x′)∈Xk×A×Xk+1

h (|Xk| · |A| · |Xk+1| · u(x, a, x′))


=

1

η

J−1∑
k=0

∑
(x,a,x′)∈Xk×A×Xk+1

ln

(
1

|Xk| · |A| · |Xk+1| · u(x, a, x′)

)
≤ Õ

(
|X|2|A|

η

)
.

Combining all the bounds finishes the proof.

C.3.6 Putting everything together

Now we are ready to prove Theorem 4.1. For completeness, we restate the theorem below.
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Theorem C.11. Algorithm 4 with a suitable choice of η ensures that with probability at least 1− δ,

Reg = Õ
(
|X|
√
J |A|L? ln 1

δ + |X|5|A|2 ln2 1
δ

)
.

Proof. First, note that

Et

J−1∑
k=0

∑
x∈Xk,a∈A

1t(x, a) · `t(x, a)

 = 〈wt, `t〉 ≤ J,

Et


J−1∑
k=0

∑
x∈Xk,a∈A

1t(x, a) · `t(x, a)

2
 ≤ J · 〈wt, `t〉 .

Therefore, using Freedman’s inequality, we have with probability at least 1− δ

LT − LT ≤ 2

√
JLT ln

1

δ
+ J ln

1

δ
,

whereLT is defined in Lemma C.10. Furthermore, using AM-GM inequality, we have with probability
at least 1− δ,

LT ≤ 2LT + 2J ln
1

δ
. (40)

Choosing η ≤ 1
280C ln(C|X||A|/δ) lnT , combining Lemma C.7, Lemma C.8, Lemma C.9 and

Lemma C.10 and letting Lu ,
∑T
t=1 〈u, `t〉, we have with probability at least 1− 22δ:

LT − L?

≤ Õ

(
|X|
√
J |A|LT ln

1

δ
+
|X|2|A|

η

)
+ 5ηLT +

(
2C 〈u, ρT 〉 ln

C|X||A|
δ

− 〈u, ρT 〉
140η lnT

)
︸ ︷︷ ︸

TERM1

+
∑

x∈X,a∈A
u(x, a)

C
√√√√8ρT (x, a)

T∑
t=1

`t(x, a) ln
C|X||A|

δ
− ρT (x, a)

140η lnT


︸ ︷︷ ︸

TERM2

+ Õ
(
|X|5|A|2 ln

1

δ
+ |X|4|A| ln2 1

δ

)
≤ Õ

(
|X|
√
J |A|LT ln

1

δ
+
|X|2|A|

η
+ ηLu ln

1

δ
+ |X|5|A|2 ln

1

δ
+ |X|4|A| ln2 1

δ

)
+ 10ηLT

(TERM1 is nonpositive, AM-GM inequality for TERM2, and Eq. (40))

≤ Õ

(
|X|
√
J |A|LT ln

1

δ
+
|X|2|A|

η
+ ηL? ln

1

δ
+ |X|5|A|2 ln

1

δ
+ |X|4|A| ln2 1

δ

)
+ 10ηLT .

(Eq. (25))

As η ≤ 1
280C ln(C|X||A|/δ) lnT ≤

1
20 , rearranging the terms gives

LT − L? ≤ Õ

(
|X|
√
J |A|LT ln

1

δ
+
|X|2|A|

η
+ ηL? ln

1

δ
+ |X|5|A|2 ln

1

δ
+ |X|4|A| ln2 1

δ

)
.

Finally, choosing η = min
{√

|X|2|A|
L? ln 1

δ

, 1
280C ln(C|X||A|/δ) lnT

}
, δ = δ′/22, and solving the quadratic

inequality, we have with probability at least 1− δ′,

LT − L? ≤ Õ

(
|X|
√
J |A|L? ln

1

δ′
+ |X|5|A|2 ln

1

δ′
+ |X|4|A| ln2 1

δ′

)
,

finishing the proof.
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Remark 3. Similarly to the MAB case, the proof above requires tuning the initial learning rate
η in terms of the unknown quantity L?, and again, using standard doubling trick can remove this
restriction, as pointed out in Remark 1.

C.4 Issues of other potential approaches

In this section, we discuss why the idea of clipping [7] or implicit exploration [31] may not be directly
applicable to achieve near-optimal high-probability small-loss bounds.

Implicit exploration. First, we consider the idea of implicit exploration. As mentioned in Ap-
pendix C.2, this means using the following loss estimator: ̂̀t = `t(x,a)

φt(x,a)+γ · 1t{x, a} for all x ∈ X
and a ∈ A and some parameter γ > 0, and without using our increasing learning schedule. The con-
centration results of [25, Lemma 12] show that the deviation contains a term of order 1/γ, meaning
that γ cannot be too small.

Repeating the same analysis, one can see that the main difficulty of obtaining high-probability
small-loss bounds in this case is to bound BIAS-2 by the loss of the algorithm LT =

∑T
t=1 〈wt, `t〉

or L?, instead of the number of episodes T . Indeed, consider the term
∑T
t=1

〈
ŵt, `t − Et

[̂̀
t

]〉
:

T∑
t=1

〈
ŵt, `t − Et

[̂̀
t

]〉
=

T∑
t=1

∑
x∈X,a∈A

ŵt(x, a)`t(x, a) ·
(

1− wt(x, a)

φt(x, a) + γ

)

≤
T∑
t=1

∑
x∈X,a∈A

|φt(x, a)− wt(x, a)|`t(x, a) +
γ

γ + φt(x, a)
· ŵt(x, a)`t(x, a).

The first term can still be bounded by O
(
|X|
√
J |A|LT + |X|5|A|2 ln 1

δ + |X|4|A| ln2 1
δ

)
accord-

ing to Lemma C.8. For the second term, while it is at most γ
∑T
t=1

∑
x,a `t(x, a) ≤ γ|X||A|T , it is

not clear at all how to bound it in terms of LT or L?. For MAB (where there is only one state x0), it
is possible to show that

∑T
t=1 `t(x0, a) ≤

∑T
t=1 `t(x0, a

?) + Õ( 1
η + 1

γ ) for all a 6= a? where a? is
the best action, making it possible to connect the second term with L?. However, we do not see a
way of doing similar analysis for general MDPs.

Clipping. On the other hand, the idea of clipping for MAB is to clip all small probabilities so that
actions with probability smaller than γ are never selected. Even from an algorithmic perspective, it is
not clear how to generalize this idea to MDPs, because it is possible that for a state x, ŵt(x, a) is
smaller than γ for all a. In this case, the clipping idea suggests not to “pick” (x, a) at all for any a,
but there is no way to ensure that if the transition function is such that x can always be visited with
some positive probability regardless of the policy we execute.

Moreover, even if there is a way to fix this, the analysis of clipping for MAB is also similar to the idea
of implicit exploration in terms of obtaining small-loss bounds of order Õ(

√
L?), and as we argued

already, even for implicit exploration there are difficulties in generalizing the analysis to MDPs.
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