
Appendix

The appendix contains the proofs for all the results presented in the main document. It is organized
as follows:

Appendix A shows how MLPs can simulate Boolean circuits, which will be used in order to
prove several propositions.

Appendix B contains a proof of Proposition 5.
Appendix C contains a proof of Proposition 6.
Appendix D contains a proof of Proposition 7.
Appendix E contains a proof of Proposition 8.
Appendix F contains a proof of Proposition 9.
Appendix G contains a proof of Proposition 10.
Appendix H contains a more detailed description of the parameterized complexity frame-

work.
Appendix I contains a proof of Proposition 11.
Appendix J contains a proof of Proposition 12.

Appendix A. Simulating Boolean formulas/circuits with MLPs

In this section we show that multilayer perceptrons can efficiently simulate arbitrary Boolean formulas.
We will often use this result throughout the appendix to prove the hardness of our explainability
queries over MLPs. In fact, and this will make the proof cleaner, we will show a slightly more general
result: that MLPs can simulate arbitrary Boolean circuits. Formally, we show:
Lemma 13. Given as input a Boolean circuit C, we can build in polynomial time an MLPMC that
is equivalent to C as a Boolean function.

Proof. We will proceed in three steps. The first step is to build from C another equivalent circuit C ′
that uses only what we call relu gates. A relu gate is a gate that, on input x = (x1, . . . , xm) ∈
Rm, outputs relu(〈w,x〉 + b), for some rationals w1, . . . ,wm, b. Observe that these gates do not
necessarily output 0 or 1, and so the circuit C ′ might not be Boolean. However, we will ensure in the
construction that the output of every relu gate in C ′, when given Boolean inputs (i.e., x ∈ {0, 1}m),
is Boolean. This will imply that the circuit C ′ is Boolean as well. To this end, it is enough to show
how to simulate each original type of internal gate (NOT, OR, AND) by relu gates. We do so as
follows:

• NOT-gate: simulated with a relu gate with only one weight of value −1 and a bias of 1.

Indeed, it is clear that for x ∈ {0, 1}, we have that relu(−x+ 1) =

{
1 if x = 0

0 if x = 1
.

• AND-gate of in-degree n: simulated with a relu gate with n weights, each of value 1,
and a bias of value −(n − 1). Indeed, it is clear that for x ∈ {0, 1}n, we have that

relu(
∑n
i=1 xi − (n− 1)) =

{
1 if

∧n
i=1 xi = 1

0 otherwise
.

• OR-gate of in-degree n: we first rewrite the OR-gate with NOT- and AND-gates using De
Morgan’s laws, and then we use the last two items.

The second step is to build a circuit C ′′, again using only relu gates, that is equivalent to C ′ and
that is what we call layerized. This means that there exists a leveling function l : C ′′ → N that

13

assigns to every gate of C ′ a level such that (i) every variable gate is assigned level 0, and (ii) for
any wire g → g′ (meaning that g is an input to g′) in C ′′ we have that l(g′) = l(g) + 1. To this end,
let us call a relu gate that has a single input and weight 1 and bias 0 an identity gate, and observe
then that the value of an identity gate is the same as the value of its only input, when this input is
in {0, 1}. We will obtain C ′′ from C ′ by inserting identity gates in between the gates of C ′, which
clearly does not change the Boolean function being computed. We can do so naïvely as follows. First,
we initialize l(g) to 0 for all the variable gates g of C ′. We then iterate the following process: select a
gate g such that l(g) is undefined and such that l(g′) is defined for every input g′ of g. Let g′1, . . . , g

′
m

be the inputs of g, and assume that l(g′1) ≤ . . . ≤ l(g′m). For every 1 ≤ i ≤ m, we insert a line
of l(g′m) − l(g′i) identity gates in between g′i and g, and we set l(g) := l(g′m) + 1, and we set the
levels of the identity gates that we have inserted appropriately. It is clear that this construction can be
done in polynomial time and that the resulting circuit C ′′ is layerized.

Finally, the last step is to transform C ′′ into an MLPMC using only relu for the internal activation
functions and the step function for the output layer (i.e., what we simply call “an MLP” in the paper),
and that respects the structure given by our definition in Section 3.1 (i.e., where all neurons of a given
layer are connected to all the neurons of the preceding layer). We first deal with having a step gate
instead of a relu gate for the output. To achieve this, we create a fresh identity gate g0, we set the
output of C ′′ to be an input of g0, and we set g0 to be the new output gate of C ′′ (this does not change
the Boolean function computed). We then replace g0 by a step gate (which, we recall, on input x ∈ R
outputs 0 if x < 0 and 1 otherwise) with a weight of 2 and bias of −1, which again does not change

the Boolean function computed; indeed, for x ∈ {0, 1}, we have that step(2x− 1) =

{
1 if x = 1

0 if x = 0
.

The level of g0 is one plus the level of the previous output gate of C ′′. Therefore, to make C ′′ become
a valid MLP, it is enough to do the following: for every gate g of level i and gate g′ of level i+ 1, if g
and g′ are not connected in C ′′, we make g be an input of g′ and we set the corresponding weight
to 0. This clearly does not change the function computed, and the obtained circuit can directly be
regarded as an equivalent MLPMC . Since the whole construction can be performed in polynomial
time, this concludes the proof.

Appendix B. Proof of Proposition 5

In this section we prove Proposition 5. We recall its statement for the reader’s convenience:

Proposition 5. The MINIMUMCHANGEREQUIRED query is (1) in PTIME for FBDDs, (2) in PTIME
for perceptrons, and (3) NP-complete for MLPs.

We prove each item separately.

Lemma 14. The MINIMUMCHANGEREQUIRED query can be solved in linear time for FBDDs.

Proof. Let (M,x, k) be an instance of MINIMUMCHANGEREQUIRED, where M is an FBDD.
For every node u in M we define Mu to be the FBDD obtained by restricting M to the nodes
that are (forward-)reachable from u; in other words,Mu is the sub-FBDD rooted at u. Then, we
define mcru(x) to be the minimum change required on x to obtain a classification underMu that
differs fromM(x). More formally,

mcru(x) = min{k′ | there exists an instance y such that d(x,y) = k′ andMu(y) 6=M(x)},

with the convention that min∅ = ∞. Observe that, (†) for an instance y minimizing k′ in this
equality, since the FBDDMu does not depend on the features associated to any node u′ from the
root ofM to u excluded, we have that for any such node yu′ = xu′ holds (otherwise k′ would not
be minimized).3 Let r be the root ofM. Then, by definition we have that (M,x, k) is a positive
instance of MINIMUMCHANGEREQUIRED if and only mcrr(x) ≤ k. We now explain how we can
compute all the values mcru(x) for every node u ofM in linear time.

3We slightly abuse notation and write xu for the value of the feature of x that is indexed by the label of u.

14

By definition, if u is a leaf labeled with true we have that Mu(y) = 1 for every y, and thus
ifM(x) = 0 we get mcru(x) = 0, while ifM(x) = 1 we get that mcru(x) = ∞. Analogously,
if u is a leaf labeled with false, then mcru(x) is equal to 0 ifM(x) = 1 and to∞ otherwise.

For the recursive case, we consider a non-leaf node u. Let u1 be the node going along the edge labeled
with 1 from u, and u0 analogously. Using the notation [xu = a] to mean 1 if the feature of x indexed
by the label of node u has value a ∈ {0, 1}, and 0 otherwise, and the convention that∞+ 1 =∞,
we claim that:

mcru(x) = min
(

[xu = 1] + mcru0(x), [xu = 0] + mcru1(x)
)

Indeed, consider by inductive hypothesis that mcru0
(x) and mcru1

(x) have been properly calculated,
and let us show that this equality holds. We prove both inequalities in turn:

• We show that mcru(x) ≤ min
(

[xu = 1]+mcru0(x), [xu = 0]+mcru1(x)
)

. It is enough
to show that both mcru(x) ≤ [xu = 1] + mcru0(x) and mcru(x) ≤ [xu = 0] + mcru1(x)
hold. We only show the first inequality, as the other one is similar. If mcru0

(x) = ∞
then clearly the inequality holds, hence let us assume that mcru0

(x) = k′ ∈ N. This
means that there is an instance y′ such that d(x,y′) = k′ and such thatMu0

(y′) 6=M(x).
Furthermore, by the observation (†) we have that for any node u′ from the root of M
to u (included), we have yu′ = xu′ . Therefore, the instance y that is equal to y′ but has
value yu = 0 differs from x in exactly k′′ = [xu = 1] + k′, which implies that mcru(x) ≤
[xu = 1] + mcru0

(x). Hence, the first inequality is proven.

• We show that mcru(x) ≥ min
(

[xu = 1] + mcru0
(x), [xu = 0] + mcru1

(x)
)

. First,
assume that both mcru0

(x) and mcru1
(x) are equal to ∞. This means that every path

in both Mu0
and Mu1

leads to a leaf with the same classification as M(x). Then, as
every path from u goes either through u0 or through u1, it must be that every path from u
leads to a leaf with the same classification as M(x), and thus mcru(x) = ∞, and so
the inequality holds. Therefore, we can assume that one of mcru0(x) or mcru1(x) is
finite. Let us assume without loss of generality that (?) min

(
[xu = 1] + mcru0(x), [xu =

0] + mcru1(x)
)

= [xu = 1] + mcru0(x) ∈ N (the other case being similar). Let us now
assume, by way of contradiction, that the inequality does not hold, that is, we have that (††)
mcru(x) < [xu = 1] + mcru0

(x), and let y be an instance such thatMu(y) 6= Mu(x)
and d(x,y) = mcru(x). Thanks to (?), we can assume wlog that yu = 0. But then we
would have that mcru0(x) ≤ mcru(x) − [xu = 1], which contradicts (††). Hence, the
second inequality is proven.

It is clear that the recursive function mcr can be computed bottom-up in linear time, thus concluding
the proof.

Lemma 15. The MINIMUMCHANGEREQUIRED query can be solved in linear time for perceptrons.

Proof. Let (M = (w, b),x, k) be an instance of the problem, and let us assume without loss of
generality that M(x) = 1, as the other case is analogous. For each feature i of x we define its
importance s(i) as wi if xi = 1 and −wi otherwise. Intuitively, s represents how good it is to
keep a certain feature in order to maintain the verdict of the model. We now assume that x and w
have been sorted in decreasing order of score s (paying the cost of a sorting procedure) . For
example, if originally w = (3,−5,−2) and x = (1, 0, 1), then after the sorting procedure we have
w = (−5, 3,−2) and x = (0, 1, 1). This sorting procedure has cost O(|M|) as it is a classical
problem of sorting strings whose total length add up to M and can be carried with a variant of
Bucketsort [7]. As a result, for every pair 1 ≤ i < j ≤ n we have that s(i) ≥ s(j). Let k′
be the largest integer no greater than k such that s(k′) > 0 and then define x′ as the instance
that differs from x exactly on the first k′ features. We claim that M(x′) 6= M(x) if and only
if (M,x, k) is a positive instance of MINIMUMCHANGEREQUIRED. The forward direction follows
from the fact that k′ ≤ k. For the backward direction, assume that (M,x, k) is a positive instance
of MINIMUMCHANGEREQUIRED. This implies that there is an instance y that differs from x in at

15

most k features, and for whichM(y) = 0. If y = x′, then we are immediately done, so we can
safely assume this is not the case.

We then define, for any instance y ofM the function v(y) = 〈w,y〉. Note that an instance y ofM
is positive if and only if v(y) ≥ −b. Then, since we have thatM(y) = 0, it holds that v(y) < −b.
We now claim that v(x′) ≤ v(y):

Claim 16. For every instance y such that d(y,x) ≤ k and M(y) 6= M(x), it must hold
that v(x′) ≤ v(y).

Proof. For an instance z, let us write Cz for the set of features for which z differs from x. We then
have on the one hand

v(x′) =
∑

i∈Cx′\Cy

(1− xi)wi +
∑

i∈Cy∩Cx′

(1− xi)wi +
∑

i 6∈Cx′∪Cy

xiwi +
∑

i∈Cy\Cx′

xiwi

and on the other hand

v(y) =
∑

i∈Cy\Cx′

(1− xi)wi +
∑

i∈Cy∩Cx′

(1− xi)wi +
∑

i 6∈Cx′∪Cy

xiwi +
∑

i∈Cx′\Cy

xiwi

As the two middle terms are shared, we only need to prove that∑
i∈Cx′\Cy

(1− xi)wi +
∑

i∈Cy\Cx′

xiwi ≤
∑

i∈Cy\Cx′

(1− xi)wi +
∑

i∈Cx′\Cy

xiwi

which is equivalent to proving that∑
i∈Cx′\Cy,xi=0

wi +
∑

i∈Cy\Cx′ ,xi=1

wi ≤
∑

i∈Cy\Cx′ ,xi=0

wi +
∑

i∈Cx′\Cy,xi=1

wi

and by using the definition of importance, equivalent to∑
i∈Cx′\Cy,xi=0

−s(i) +
∑

i∈Cy\Cx′ ,xi=1

s(i) ≤
∑

i∈Cy\Cx′ ,xi=0

−s(i) +
∑

i∈Cx′\Cy,xi=1

s(i)

which can be rearranged into ∑
i∈Cy\Cx′

s(i) ≤
∑

i∈Cx′\Cy

s(i)

But this inequality must hold as C ′x is by definition the set C of features of size at most k that
maximizes

∑
i∈C s(i).

Because of the claim, and the fact that v(y) < −b we conclude that v(x′) < −b, and
thus M(x′) 6= M(x). This concludes the backward direction, and thus, the fact that checking
whetherM(x′) 6=M(x) is enough to solve the entire problem. Since checking this can be done in
linear time, constructing x′ is the most expensive part of the process, which can effectively be done
in time O(|M|). This concludes the proof of the lemma.

Lemma 17. The MINIMUMCHANGEREQUIRED query is NP-complete for MLPs.

Proof. Membership is easy to see, it is enough to non-deterministically guess an instance y and
check that d(x,y) ≤ k andM(x) 6=M(y).

In order to prove hardness, we reduce from VERTEX COVER. Given an undirected graph G = (V,E)
and an integer k, the VERTEX COVER problem consists in deciding whether there is a subset S ⊆ V
of at most k vertices such that every edge of G touches a vertex in S. Let (G = (V,E), k) be an
instance of VERTEX COVER, and let n denote |V |. Based on G, we build a formula ϕG, where
propositional variables correspond to vertices of G.

ϕG =
∧

(u,v)∈E

(xu ∨ xv)

16

It is clear that the satisfying assignments of ϕG correspond to the vertex covers of G, and furthermore,
that a satisfying assignment of Hamming weight k (number of variables assigned to 1) corresponds
to a vertex cover of size k.

Moreover, we can safely assume that there is at least 1 edge in G, as otherwise the instance would be
trivial, and a constant size positive instance of MCR would finish the reduction. This implies in turn,
that we can assume that assigning every variable to 0 does not satisfy ϕG.

We now build an MLPMϕ from ϕG, using Lemma 13. We claim that the instance (Mϕ, 0
n, k) is

a positive instance of MINIMUMCHANGEREQUIRED if and only if (G, k) is a positive instance of
VERTEX COVER.

Indeed, 0n is a negative instance of Mϕ, as assigning every variable to 0 does not satisfy ϕG.
Moreover a positive instance of weight k forMϕ corresponds to a satisfying assignment of weight k
for ϕG, which in turn corresponds to a vertex cover of size k for G. This is enough to conclude
conclude the proof, recalling that both the construction of ϕG andMϕ take polynomial time.

Appendix C. Proof of Proposition 6

In this section we prove Proposition 6, whose statement we recall here:

Proposition 6. The MINIMUMSUFFICIENTREASON query is (1) NP-complete for FBDDs (and
hardness holds already for decision trees), (2) in PTIME for perceptrons, and (3) Σp2-complete for
MLPs.

Again, we prove each claim separately.

Lemma 18. The MINIMUMSUFFICIENTREASON query is NP-complete for FBDDs, and hardness
holds already for decision trees.

Proof. Membership in NP is clear, it suffices to guess the instance y and check both that it has
less than k defined components and that is a sufficient reason for x, which can be done thanks to
Lemma 23. We will prove that hardness holds already for the particular case of decision trees, and
when the input instance x is positive. Hardness of this particular setting implies of course the hardness
of the general problem. In order to do so, we will reduce from the problem of determining whether a
directed acyclic graph has a dominating set of size at most k, which we abbreviate as DOM-DAG.
Recall that in a directed graph G = (V,E), a subset of vertices D ⊆ V is said to be dominating
if every vertex in V \D has an incoming edge from a vertex in D. The problem of DOM-DAG is
shown to be NP-complete in [22].

An illustration of the reduction is presented in Figure 2. Let (G = (V,E), k) be an instance of
DOM-DAG, and let us define n := |V |. We start by computing in polynomial time a topological
ordering ϕ = ϕ1, . . . , ϕn of G. Next, we will create an instance (T ,x, k) of k-SUFFICIENTREASON
such that there is a sufficient reason of size at most k for x under the decision tree T if and only if G
has a dominating set of size at most k. We create the decision tree T , of dimension n, in 2 steps.

1. Create nodes v1, . . . , vn, where node vi is labeled with ϕi The node vn will be the root of T ,
and for 2 ≤ i ≤ n, connect vi to vi−1 with an edge labeled with 1. Node v1 is connected to
a leaf labeled true through an edge labeled with 1. We will denote the path created in this
step as π.

2. For every vertex ϕi create a decision tree Ti equivalent to the boolean formula

Fi =
∨

(ϕj ,ϕi)∈E

ϕj

and create an edge from vi to the root of Ti labeled with 0. If Fi happens to be the empty
formula, Ti is defined as false. Note that the nodes introduced by this step are all naturally
associated with vertices of G.

Step 2 takes polynomial time because boolean formulas in 1-DNF can easily be transformed into a
decision tree in linear time.

17

12 3

4 5

6

(a) Example of an input
DAG. Nodes 2 and 5, cor-
responding to the minimum
dominating set of G are em-
phasized. 5

4

2

1

6

3

(b) A topological ordering ϕ
of G.

3

6

1

2

4

5

5

1

6

1

2 5

4

2

4

5

(c) Resulting decision tree T . Edges to the left of a
node are always labeled with 0, and edges to the right
with 1. The leaves are not depicted for clarity, but: if
a node has no right child in the picture, then its right
child is true, and if it has no left child then its left child
is false. Note that in every diagonal there is an empha-
sized node, which is either 2 or 5, implying the partial
instance (⊥, 1,⊥,⊥, 1,⊥) is a sufficient reason for the
instance x = (1, 1, 1, 1, 1, 1).

Figure 2: Illustration of the reduction from DOM-DAG to k-SUFFICIENTREASON over decision
trees, for an example graph of 6 nodes.

We now check that T is a decision tree. Since T has a tree structure, it is enough to check that for
every path from the root to a leaf there are no two nodes on the path that have the same label (i.e., to
check that T is a valid FBDD). Note that any path from the root vn to a leaf goes first to a certain
node vi in π, from where it either takes an edge labeled with 0, in case i 6= 1 or it simply goes to a
leaf otherwise. In case i = 1, the path from the root goes exactly through vn, vn−1, . . . , v1, which all
have different labels. In case i 6= 1, the path includes (i) nodes with labels ϕn, ϕn−1, . . . , ϕi, and (ii)
a subpath inside Ti. It is clear that all the labels in (i) are different. And as by construction Ti is a
decision tree, no two nodes inside (ii) can have the same label. It remains to check that no node in (i)
can have the same label of a node in (ii). To see this, consider that all the vertices of G associated to
the nodes in (ii) have edges to ϕi in G, and thus come before ϕi in the topological order. But (i) is
composed precisely by ϕi and the nodes who come after it in the topological ordering, so (i) and (ii)
have empty intersection.

Let x = 1n be the vector of n ones. We claim that (T ,x, k) is a yes-instance of k-
SUFFICIENTREASON if and only if (G, k) is a yes-instance of DOM-DAG.

Forward direction. Consider that there is a sufficient reason y for x under T of size at most k. As
x contains only 1s, y must contain only 1s and⊥s. Consider the set S of components i where yi = 1.
Recalling that every vertex of G is canonically associated with a feature of T , we will denote DS

to the set of vertices of G that are associated with the features in S. It is clear that |DS | ≤ k. We
now prove that DS is a dominating set of G. First, in case DS = V , we are trivially done. We know
assume DS 6= V . Consider a vertex v ∈ V \DS , corresponding to ϕi in the topological ordering,
and define z as the completion of y where the features ϕj such that j > i, are set to 1, and all other
features that are undefined by y are set to 0. By hypothesis, z must be a positive instance, and so its
path on T must end in a leaf labeled with true. Note that the path of z in T necessarily takes the
path π created in Step 1 of the construction, up to the node vi, and then enters its subtree Ti. Let t be
the node of Ti whose leaf labeled with true ends the path of z in T , and ϕk its label and associated
vertex in G. As feature t is set to 1, we must have either ϕk ∈ DS (in case t is 1 because of y)
or k > i (in case t is 1 by the construction of completion z). However, the second case is not actually
possible, as if k > i, that means vk comes before vi in path π, and thus the path of z in T passes
through vk, which has label ϕk before passing through vi. But the path of z in T passes through t
before ending, which also has label ϕk. This contradicts the already proven fact that T is a decision
tree. We can therefore assume that ϕk belongs to DS . Then, as t is a node of Ti, there must be an
edge (ϕk, ϕi) in E because of the way Ti is constructed. But this means that vertex v ∈ V \DS has
an edge coming from ϕk ∈ DS , and so v is effectively dominated by the set DS . As this holds for
every v ∈ V \DS , we conclude that DS is indeed a dominating set of G.

18

Backward Direction. Consider that there is a dominating set D ⊆ V of size at most k. Let SD be
the set of features associated with D. We claim that the partial instance y that has 1 in the features
that belong to SD, and is undefined elsewhere, is a sufficient reason for x, and by construction its size
is at most k. Consider an arbitrary completion z of y, we need to show that z is a positive instance
of T . For z not to be a positive instance, its path on T would have to reach a leaf labeled with false.
This can only happen by either taking the edge labeled with 0 from v1 (the last node in path π built in
the construction), or inside a subtree Ti, corresponding to a node vi whose associated feature in z is
set to 0. We show that neither can happen. For the first case, every dominating set must include ϕ1,
the vertex in G associated with v1, as it is the first element in the topological ordering of G, and thus
it must has in-degree 0, which implies ϕ1 ∈ D. Therefore, it is not possible to take the edge labeled
with 0 from v1. On the other hand, suppose the path of z in Ti ends in a leaf labeled with false. Then,
by construction of Ti, there is no vertex ϕj such that (ϕj , ϕi) ∈ E whose associated feature is set
to 1 in z. But as D is a dominating set, either there is indeed a ϕj ∈ D such that (ϕj , ϕi) ∈ E
or ϕi ∈ D. The first case is in direct contradiction with the previous statement, as ϕj ∈ D implies,
by our construction of y that the feature associated with ϕj is set to 1. The second case also creates a
contradiction, as if ϕi ∈ D, then by construction y would have a 1 in the feature vi associated to ϕi,
which contradicts the assumption of the path of z entering Ti.

Lemma 19. The MINIMUMSUFFICIENTREASON query is in PTIME for perceptrons.

Proof. Let (M = (w, b),x, k) be an instance of the problem, and let d be the dimension of the
perceptron. We will assume without loss of generality that M(x) = 1. In this proof, what we
call a minimum sufficient reason for x is a sufficient reason for x that has the least number of
components being defined. We show a greedy algorithm that computes a minimum sufficient reason
for x underM in time O(|M|). For each feature i of x we define its importance s(i) as wi if xi = 1
and −wi otherwise (just as we did in the proof of Lemma 15), and its penalty p(i) as min(0, wi).
Intuitively, s represents how good it is for a partial instance to be defined in a given feature, and p
represents the penalty or cost that a partial instance incurs by not being defined in a given feature. We
now assume that x and w have been sorted in decreasing order of score s. For example, if originally
w = (3,−5,−2) and x = (1, 0, 1), then after the sorting procedure we have w = (−5, 3,−2)
and x = (0, 1, 1). We now define a function ψ that takes any partial instance y as input and outputs
the worst possible value for a completion of y:

ψ(y) := min
z: z is a completion of y

〈w, z〉 =
∑
yi 6=⊥

wiyi +
∑
yi=⊥

p(i).

The second equality is easy to see based on the definition of the function p, and the definition of ψ
implies that ψ(y) ≥ −b exactly when y is a sufficient reason. For 1 ≤ l ≤ d, we define yl as the
partial instance of x such that yli is equal to xi if i ≤ l and to ⊥ otherwise. In simple terms, yl is the
partial instance obtained by taking the first l features of x; continuing our example with x = (0, 1, 1),
we have for instance y2 = (0, 1,⊥). Let j be the minimum index such that ψ(yj) ≥ −b. Such an
index always exists, because, since x is a positive instance, taking j = d is always a valid index.
Note that j can be computed in linear time.

We now prove that (†) the partial instance yj is a minimum sufficient reason for x. By definition we
have that ψ(yj) ≥ −b, so yj is indeed a sufficient reason for x. We now need to show that yj is
minimum. Assume, seeking for a contradiction, that there is a sufficient reason y′ of x with strictly
less components defined than yj ; clearly we can assume without loss of generality that y′ has exactly
j − 1 components defined. We will now show that (?) yj−1 is a also a sufficient reason for x, which
is a contradiction since j was assumed to be the minimal index such that yj is a sufficient reason
of x, hence proving (†). If y′ = yj−1, we have that (?) is trivially true. Otherwise, and considering
that y′ and yj−1 have the same size, and that yj−1 is defined exactly on the first j − 1 features, there
must be at least a pair of features (m,n), with m ≤ j− 1 < n, such that yj−1 is defined at feature m
and y′ is not, and on the other hand y′ is defined at feature n whereas yj−1 is not. In order to finish
the proof of (?), we will prove a simpler claim that will help us conclude.

Claim 20. Assume that there is a pair of features (m,n) with m ≤ j − 1 < n such that y′m =
⊥, yj−1

m 6= ⊥ and y′n 6= ⊥, yj−1
n = ⊥, and let y∗ be the resulting partial instance that is equal to y′

except that y∗m := yj−1
m and y∗n := ⊥. Then we have that ψ(y∗) ≥ ψ(y′).

19

Proof of Claim 20. By definition, ψ(y∗) − ψ(y′) = p(n) − p(m) + wmy
j−1
m − wny′n = p(n) −

p(m) + wmxm − wnxn. But because the features in yj−1 are sorted in decreasing order of score,
it must hold that s(m) ≥ s(n). Using this last inequality and reasoning by cases on the values
xm, xn and on the signs of wm, wn, one can tediously check that ψ(y∗) − ψ(y′) ≥ 0 and thus
ψ(y∗) ≥ ψ(y′).

We now continue with the proof of (?). As a result of Claim 20, one can iteratively modify y′ until
it becomes equal to yj−1 in such a way that the value of ψ is never decreased along the process,
implying therefore that ψ(yj−1) ≥ ψ(y′). But ψ(y′) ≥ −b, because y′ is assumed to be a sufficient
reason, hence we have that ψ(yj−1) ≥ −b, implying that yj−1 is a sufficient reason for x, and
thus concluding the proof of (?). Therefore, (†) is proven, and since yj can clearly be computed in
polynomial time (in fact, the runtime of the whole procedure is dominated by the sorting subroutine,
which again has cost O(|M|) as it is a classical problem of sorting strings whose total length add
up to |M| and can be carried with a variant of Bucketsort [7]), this finishes the proof of the lemma;
indeed, we can output YES if j ≤ k and NO otherwise.

Lemma 21. The MINIMUMSUFFICIENTREASON query is Σp2-complete for MLPs.

Proof. Membership in Σp2 is clear, as one can non-deterministically guess the value of the k features
that would make for a sufficient reason, and then use an oracle in co-NP to verify that no completion
of that guess has a different classification. To show hardness, we will reduce from the problem
SHORTEST IMPLICANT CORE, defined and proven to be Σp2-hard by Umans [34, Theorem 1]. First,
we need a few definitions in order to present this problem. A formula in disjunctive normal form
(DNF) is a Boolean formula of the form ϕ = t1 ∨ t2 ∨ . . .∨ tn, where each term ti is a conjunction of
literals (a literal being a variable of the negation thereof). An implicant for φ is a partial assignment
of the variables of φ such that any extension to a full assignment makes the formula evaluate to true;
note that we can equivalently see an implicant of φ as what we call a sufficient reason of φ. For
a partial assigment C of the variables and for a set of literals t (or conjunction of literals t), we
write C ⊆ t when for every variable x, if x ∈ t then C(x) = 1 and if ¬x ∈ t then C(x) = 0
and C(x) is undefined otherwise. An instance of SHORTEST IMPLICANT CORE then consists of
a DNF formula ϕ = t1 ∨ t2 ∨ . . . ∨ tn, together with an integer k. Such an instance is positive
for SHORTEST IMPLICANT CORE when there is an implicant C for ϕ such that C ⊆ tn.4 Note
that the SHORTEST IMPLICANT CORE is closer to the problem at hand than the general SHORTEST
IMPLICANT problem, as (minimum) sufficient reasons of an instance x can only induce literals
according to x, in a similar fashion of implicants that can only induce literals according to the core
tn.

A reduction that does not work, and how to fix it on an example. In order to convey the main
intuition, we start by presenting a first tentative of a reduction that does not work. Thanks to
Lemma 13 we know that it is possible to build an MLP Mϕ equivalent to ϕ. However, doing
so directly creates a problem: we would need to find a convenient instance x such that (ϕ, k) ∈
SHORTEST IMPLICANT CORE if and only if (Mϕ,x, k) ∈ k-SUFFICIENTREASON. A natural idea
is to consider tn as a candidate for x, but the issue is that tn does not necessarily include every
variable. The next natural idea is to try with x being an arbitrary completion of tn (interpreting tn as
the partial instance that is uniquely defined by its satisfying assignment). This approach fails because
there could be a sufficient reason of size at most k for such an x that relies on features (variables)
that are not in tn. We illustrate this with an example for n = 4.

ϕ := x1x5 ∨ x2 x6 ∨ x3x6 ∨ x1 x2x4 ∨ x1x3x5︸ ︷︷ ︸
t4

While it can be checked that (ϕ, 2) 6∈ SHORTEST IMPLICANT CORE, we have that
(Mϕ, (1, 0, 1, 0, 1, 1), 2) is in fact a positive instance of k-SUFFICIENTREASON, as the partial
instance that assigns 1 to x3 and x6 and is undefined for the rest of the features, is a sufficient reason
of size 2 for x. The issue is that we are allowing x6 to be part of the sufficient reason for x even
though x6 6∈ t4. We can avoid this from happening by splitting each variable that is not in tn, such
as x6, into k + 1 variables, in such a way that defining the value of x6 would force us to define the

4Note that, in order to keep our notation consistent, we use the symbol ⊆ where Umans uses ⊇.

20

value of all the k + 1 variables, which is of course unaffordable. Continuing with the example, we
build the formula ϕ′ as follows:

ϕ′ :=

3∧
i=1

(
x1x5 ∨ xi2 xi6 ∨ x3x

i
6 ∨ x1 xi2x

i
4 ∨ x1x3x5

)
Now we can simply take (Mϕ′ ,x, 1) where x is an arbitrary completion of t4 over the new set
of variables, for example, one that assigns 1 to the features 1, 3 and 5, and 0 to all other features
(variables). Note that ϕ′ is not a DNF anymore, but this is not a problem, since we only need to
computeMϕ′ . It is then easy to check that this instance is equivalent to the original input instance.

The reduction. We now present the correct reduction and prove that it works. Let (ϕ, k) be an
instance of SHORTEST IMPLICANT CORE. Let Xc be the set of variables that are not mentioned in tn.
We split every variable xj ∈ Xc into k + 1 variables x1

j , . . . x
k+1
j and for each i ∈ {1, . . . , k + 1}

we build ϕ(i) by replacing every occurrence of a variable xj , that belongs to Xc, by xij . Finally we
define ϕ′ as the conjunction of all the ϕ(i). That is,

ϕ(i) := ϕ[xj → xij , for all xj ∈ Xc] (2)

ϕ′ :=

k+1∧
i=1

ϕ(i) (3)

Observe that any meaningful instance of SHORTEST IMPLICANT CORE has k < |tn|, so we can
safely assume that k is given in unary, making this construction polynomial.

We then use Lemma 13 to build an MLPMϕ′ from ϕ′, in polynomial time. The features of this model
correspond naturally to the variables of ϕ′, and thus we refer to both features and variables without
distinction. Let y be the instance that assigns 1 to every variable that appears as a positive literal
in tn, and 0 to all other variables. We claim that (ϕ, k) ∈ SHORTEST IMPLICANT CORE if and only
if (Mϕ′ ,x, k) ∈ k-SUFFICIENTREASON. For the forward direction, if there is an implicant C ⊆ tn
of ϕ, of size at most k, then we claim that C is also an implicant of each ϕ(i). This follows from the
fact that every assignment σ that is consistent with C and satisfies ϕ, has a related assignment σi,
that for every variable xj ∈ Xc assigns σi(xij) = σ(xj), and that is equal to σ for every xj 6∈ Xc. It
is clear that σi(ϕ(i)) = σ(ϕ), which concludes the claim. As C is an implicant of each ϕ(i), it must
also be an implicant of ϕ′. Then, asMϕ′ is equivalent to ϕ′ (as Boolean functions) by construction,
and x is consistent with C because it is consistent with tn, it follows that the partial instance that is
induced by C is a sufficient reason for x underMϕ′ . For the backward direction, assume there is a
sufficient reason y for x underMϕ′ , whose size is at most k, and let C ′ be its associated implicant
for ϕ′. We cannot say yet that C ′ is a proper candidate for being an implicant core of ϕ, as C ′ could
contain variables not mentioned by tn. Let us define X ′c to be the set of variables of ϕ′ that are not
present in tn. Intuitively, as there are k + 1 copies of each variable of X ′c in ϕ′, no valuation of a
variable in X ′c, for the formula ϕ, can be forced by a sufficient reason of size at most k. We will prove
this idea in the following claim, allowing us to build an implicant C for which we can assure C ⊆ tn.

Claim 22. Assume that there is an implicant C ′ of size at most k for ϕ′, and let C be the partial
valuation that sets every variable x that appear in tn and that is defined by C ′ to C ′(x), and that
leaves every other variable undefined. Then C ′ is an implicant of size at most k for ϕ.

Proof. The set X ′c can be expressed as the union of k + 1 disjoint sets of variables,
namely X1

c , . . . , X
k+1
c , where Xi

c contains all variables of the form xij . Since C ′ contains at
most k literals, and there are k+1 disjoint sets Xi

c, there must exist an index l such that X l
c∩C ′ = ∅.

But then this implies that C is an implicant of ϕ(l). But ϕ(l) is equivalent to ϕ up to renaming of the
variables that are not present in C, therefore, the fact that C is an implicant of ϕ(l) implies that C
must be an implicant of ϕ as well.

By using Claim 22 we get that C is an implicant of ϕ. But we have that C ⊆ tn, which is enough to
conclude that (ϕ, k) ∈ SHORTEST IMPLICANT CORE and finishes the proof of Lemma 21.

21

Appendix D. Proof of Proposition 7

We now prove Proposition 7, whose statement we recall here:

Proposition 7. The query CHECKSUFFICIENTREASON is (1) in PTIME for FBDDs, (2) in PTIME
for perceptrons, and (3) co-NP-complete for MLPs.

We prove each claim separately.

Lemma 23. The query CHECKSUFFICIENTREASON can be solved in linear time for FBDDs.

Proof. Let (M,x,y) be an instance of the problem, withM being an FBDD. We first check that x is
a completion of y, which can clearly be done in linear time. We the defineM′ as the resulting FBDD
from the following procedure: (i) For every internal node inM with label i, delete its outgoing edge
with label 0 if yi = 1 and its outgoing edge with label 1 if yi = 0. We note here thatM′ is not a
well defined FBDDs, since some internal nodes may have only one outgoing edge: more precisely,
the valueM(x′) ∈ {0, 1} is well defined for every instance x′ that is a completion of y, and is not
defined for an instance x′ that is not a completion of y. To check whether y is a sufficient reason,
we can then simply check that every leaf that is reachable from the root inM′ is labeled the same
(either true or false). This can clearly be done in linear time by standard graph algorithms.

Lemma 24. The query CHECKSUFFICIENTREASON can be solved in linear time for perceptrons.

Proof. Let (M = (w, b),x,y) be an instance of the problem. We first check in linear time that x is
a completion of y. We then get rid of the components that are defined by y, as follows. We define:

• A :=
∑
yi 6=⊥ yiwi;

• w′ := (wi | yi = ⊥); and

• b′ := b+A;

and letM′ be the perceptron (w′, b′). Notice that the dimension ofM′ is equal to the number of
undefined components of y; we denote this number by m. It is then clear that y is a sufficient reason
of x underM if and only if every instance ofM′ is labeled the same. We can check this as follows.
Let J1 be the minimum possible value of 〈w′,x′〉 (for x′ ∈ {0, 1}m); J1 can clearly be computed in
linear time by setting x′i = 0 if w′i ≥ 0 and x′i = 1 otherwise. Similarly we can compute the maximal
possible value J2 of 〈w′,x′〉. Then, every instance ofM′ is labeled the same if and only if it is not
the case that J1 < −b′ and J2 ≥ −b′, thus concluding the proof.

Lemma 25. The query CHECKSUFFICIENTREASON is co-NP-complete for MLPs.

Proof. We first show membership in co-NP. Let (M,x,y) be an instance of the problem. Then y is
a sufficient reason of x underM if and only if all the completions of y are labeled the same as x.
This can clearly be checked in co-NP.

In order to prove hardness we reduce from TAUT, the problem of checking whether an arbitrary
boolean formula is a satisfied by all possible assignments of its variables. This problem is known
to be complete for co-NP. Let F be an arbitrary boolean formula. We use Lemma 13 to build an
equivalent MLPM in polynomial time (with the features ofM corresponding to the variables of F).
Then F is a tautology if and only if all completions of the partial instance y = ⊥n are positive
instances ofM. First, we construct an arbitrary instance x (for instance, the one with all the features
being 0), and we reject ifM(x) = 0. Then, we accept if y is a sufficient reason of x underM, and
we reject otherwise. This concludes the reduction.

Appendix E. Proof of Proposition 8

We prove Proposition 8, whose statement we recall here:

Proposition 8. The query COUNTCOMPLETIONS is (1) in PTIME for FBDDs, (2) #P-complete for
perceptrons, and (3) #P-complete for MLPs.

22

As we said in the main text, the first claim follows almost directly from the definition of FBDDs;
see [35] for instance. For the second claim, we will rely on the #P-hardness of the counting
problem #Knapsack, as defined next:

Definition 26. An input of the problem #Knapsack consists of natural numbers s1, . . . , sn, k ∈ N
(given in binary). The output is the number of subsets S ⊆ {1, . . . , n} such that

∑
i∈S si ≤ k.

The problem #Knapsack is well known to be #P-complete. Since we were not able to find a proper
reference for this fact, we prove it here by using the #P-hardness of the problem #SubsetSum. An
input of the problem #SubsetSum consists of natural numbers s1, . . . , sn, k ∈ N, and the output is
the number of subsets S ⊆ {1, . . . , n} such that

∑
i∈S si = k. The problem #SubsetSum is shown

to be #P-complete in [4, Theorem 4]. From this we can deduce:

Lemma 27 (Folklore). The problem #Knapsack is #P-complete.

Proof. Membership in #P is trivial. We prove hardness by polynomial-time reduction
from #SubsetSum. Let (s1, . . . , sn, k) ∈ Nn+1 be an input to #SubsetSum. It is clear
that #SubsetSum(s1, . . . , sn, 0) = #Knapsack(s1, . . . , sn, 0), and that for k ≥ 1 we have
#SubsetSum(s1, . . . , sn, k) = #Knapsack(s1, . . . , sn, k) − #Knapsack(s1, . . . , sn, k − 1), thus es-
tablishing the reduction.

We can now show the second claim of Proposition 8.

Lemma 28. The query COUNTCOMPLETIONS is #P-complete for perceptrons.

Proof. Membership in #P is trivial. We show hardness by polynomial-time reduction from #Knap-
sack. Let (s1, . . . , sn, k) be an input of #Knapsack. LetM be the perceptron with weights s1, . . . , sn
and bias −(k+ 1). Remember that we consider only perceptrons that use the step activation function,
so that an instance x ∈ {0, 1}n is positive forM if and only if

∑n
i=1 xisi − (k + 1) ≥ 0. It is

then clear that #Knapsack(s1, . . . , sn, k) = 2n − COUNTPOSITIVECOMPLETIONS(M,⊥n), thus
establishing the reduction.

Finally, the third claim of Proposition 8 simply comes from the fact that MLPs can simulate arbitrary
Boolean formulas (Lemma 13), and the fact that counting the number of satisfying assignments of a
Boolean formula (#SAT) is #P-complete.

Appendix F. Proof of Proposition 9

We now prove Proposition 9, that is:

Proposition 9. The query COUNTCOMPLETIONS can be solved in pseudo-polynomial time for
perceptrons (assuming the weights and biases to be integers given in unary).

The first part of the proof is to show how to transform in polynomial time and arbitrary instance
of COUNTPOSITIVECOMPLETIONS for perceptrons (with the weights and bias being integers given
in unary) into an instance of #Knapsack that has the same number of solutions.

Lemma 29. Let M = (w, b) be a perceptron having at least one positive instance,
with the weights and bias being integers given in unary, and let x be a partial instance.
We can build in polynomial time an input (s1, . . . , sm, k) ∈ Nm+1 of #Knapsack such
that COUNTPOSITIVECOMPLETIONS(M,x) = #Knapsack(s1, . . . , sm, k), with s1, . . . , sm, k
written in unary (i.e., their value is polynomial in the input size).

Proof. The first step is to get rid of the components that are defined by x, like we did in Lemma 24.
Define

• A :=
∑
xi 6=⊥ xiwi;

• w′ := (wi | xi = ⊥); and

• b′ := b+A;

23

and let M′ be the perceptron (w′, b′). Notice that the dimension of M′ is equal to the
number of undefined components of x; let us write m this number. It is then clear that
COUNTPOSITIVECOMPLETIONS(M,x) is equal to the number of positive instances ofM′, that is,
of instances x′ ∈ {0, 1}m that satisfy

〈w′,x′〉+ b′ ≥ 0 (4)

Now, let J be the maximum possible value of 〈w′,x′〉; J can clearly be computed in linear time
by setting x′i = 1 if w′i ≥ 0 and x′i = 0 otherwise. We then claim that the number of solutions to
Equation 4 is equal to the number of solutions of

〈s,x′〉 ≤ k, (5)

where si := |w′i| for 1 ≤ i ≤ m and k := J + b′. Indeed, consider the function h : {0, 1}m →
{0, 1}m defined componentwise by h(x′i) := x′i if w′i < 0 and h(x′i) := 1− x′i otherwise. Then h is
a bijection, and we will show that for any x′ ∈ {0, 1}m, we have that x′ satisfies Equation 4 if and
only if h(x′) satisfies Equation 5, from which our claim follows. In order to see this, consider that

(3) ⇐⇒
∑
i

w′ix
′
i ≥ −b′ ⇐⇒

∑
wi≥0

w′ix
′
i +

∑
wi<0

w′ix
′
i ≥ −b′ (6)

⇐⇒
∑
wi≥0

|w′i|x′i −
∑
wi<0

|w′i|x′i ≥ −b′ (7)

⇐⇒
∑
wi<0

|w′i|x′i −
∑
wi≥0

|w′i|x′i ≤ b′ (8)

(9)

On the other hand, we have

h(x′) satisfies (4) ⇐⇒
∑
i

|w′i|h(x′i) ≤ J + b′ (10)

⇐⇒
∑
wi<0

|w′i|x′i +
∑
wi≥0

|w′i|(1− x′i) ≤
∑
wi≥0

|w′i|+ b′ (11)

⇐⇒ (7) (12)

Last, let us observe that we have k ≥ 0, as otherwise M would not have any positive instance.
Therefore (s1, . . . , sm, k) is a valid input of #Knapsack, which concludes the proof.

We can now easily combine Lemma 29 together with a well-known dynamic programming algorithm
solving #Knaspsack in pseudo-polynomial time.

Proof of Proposition 9. Let M = (w, b) be a perceptron, with the weights and bias being inte-
gers given in unary, and let x be a partial instance. First, we check that the maximal value
of 〈x,w〉 is greater than −b, as otherwise M has no positive instance and we can simply re-
turn 0. We then use Lemma 29 to build in polynomial time an instance (s1, . . . , sm, k) ∈ Nm+1

of #Knapsack such that COUNTPOSITIVECOMPLETIONS(M,x) = #Knapsack(s1, . . . , sm, k), and
with s1, . . . , sm, k being written in unary (i.e., their value is polynomial in the input size). We can
then compute #Knapsack(s1, . . . , sm, k) by dynamic programming as follows. For i ∈ {1, . . . ,m}
and C ∈ N, define the quantity DP[i][C] := |{S ⊆ {1, .., i}|

∑
j∈S sj ≤ C}|. We wish to com-

pute DP[m][k]. We can do so by computing DP[i][C] for i ∈ {1, . . . ,m} and C ∈ {0, . . . , k},
using the relation DP[i + 1][C] = DP[i][C] + DP[i][C − si+1], and starting with the convention
that DP[0][a] = 0 for all a < 0 and that DP[0][a] = 1 for all a ≥ 0. It is clear that the whole
procedure can be done in polynomial time.

Appendix G. Proof of Proposition 10

We prove in this section Proposition 10, whose statement we recall here:

24

Proposition 10. The problem COUNTCOMPLETIONS restricted to perceptrons admits an FPRAS
(and the use of randomness is not even needed in this case). This is not the case for MLPs, on the
other hand, at least under standard complexity assumptions.

The fact that the query has no FPRAS for MLPs is because MLPs can efficiently simulate Boolean
formulas (Lemma 13), and it is well known that the problem #SAT (of counting the number of
satisfying assignments of a Boolean formula) has no FPRAS unless NP = RP. Hence we only need
to prove our claim concerning perceptrons.

Proof of Proposition 10 for perceptrons. We can assume without loss of generality that the weights
and bias are integers, as we can simply multiply every rational by the lowest common denominator
(note that the bit lenght of the lowest common denominator is polynomial, and that it can be computed
in polynomial time5). We then transform the perceptron and partial instance to an input of #Knapsack
with the right number of solutions using Lemma 29, by observing that the construction also takes
polynomial time when the input weights are given in binary (and by considering that the s1, . . . , sm, k
are also computed in binary). We can then apply an FPTAS to this #Knapsack instance, as shown
in [18, 29].

Appendix H. Background in parameterized complexity

In this section we present the notions from parameterized complexity that we will need to prove
Proposition 11.

A parameterized problem is a language L ⊆ Σ∗ × N, where Σ is a finite alphabet. For each
element (x, k) of a parameterized problem, the second component is called the parameter of the
problem. A parameterized problem is said to be fixed parameter tractable (FPT) if the question of
whether (x, k) belongs to L can be decided in time f(k) · |x|O(1), where f is a computable function.

The FPT class, as well as the other classes we will introduce in this paper, are closed under a
particular kind of reductions. A mapping φ : Σ∗×N→ Σ∗×N between instances of a parameterized
problem A to instances of a parameterized problem B is said to be an fpt-reduction if and only if

• (x, k) is a yes-instance of A ⇐⇒ φ(x, k) is a yes-instance of B.

• φ(x, k) can be computed in time |x|O(1) · f(k);

• There exists a computable function g such that k′ ≤ g(k), where k′ is the parameter
of φ(x, k).

We define the complexity classes that are relevant for this article in terms of circuits. Recall that a
circuit is a rooted directed acyclic graph where nodes of in-degree 0 are called input gates, and that
the root of the circuit is called the output gate. Internal gates can be either OR, AND, or NOT gates.
All NOT nodes have in-degree 1. Nodes of types AND and OR can either have in-degree at most 2, in
which case they are said to be small gates, or in-degree bigger than 2, in which case they are said to
be large gates. The depth of a circuit is defined as the length (number of edges) of the longest path
from any input node to the output node. The weft of a circuit is defined as the maximum amount
of large gates in any path from an input node to the output node. An assignment of a circuit C is a
function from the set of input gates in C to {0, 1}. The weight of an assignment is defined as the
number of input gates that are assigned 1. Assignments of a circuit naturally induce a value for each
gate of the circuit, computed according to the label of the gate. We say an assignment satisfies a
circuit if the value of the output gate is 1 under that assignment.

The main classes we deal with are those composing the W-hierarchy and the W(Maj)- hierarchy, a
variant proposed by Fellows et al. [14]. These complexity classes can be defined upon the WEIGHTED
CIRCUIT SATISFIABILITY problem, parameterized by specific classes C of circuits, as defined below.

5We need to compute the least common multiple (lcm) of a set of integers a1, . . . , an. Indeed, it is easy
to check that lcm(a1, . . . , an) = lcm(lcm(a1, . . . , an−1), an), which reduces inductively the problem to
computing the lcm of two numbers in polynomial time. It is also easy to check that lcm(a1, a2) = a1a2

gcd(a1,a2)
,

where gcd(a1, a2) is the greatest common divisor of a1 and a2. As multiplication can clearly be carried in
polynomial time, and Euclid’s algorithm allows computing the gcd function in polynomial time, we are done.

25

Problem: WEIGHTED CIRCUIT SATISFIABILITY(C), abbreviated WCS(C)
Input: A circuit C ∈ C

Parameter: An integer k
Output: YES, if there is a satisfying assignment of weight exactly k for C,

and NO otherwise.

We consider two restricted classes of circuits. First, Ct,d, the class of circuits using the connectives
AND, OR, NOT that have weft at most t and depth at most d. On the other hand, we consider Mt,d,
the class of circuits that use (only) the MAJORITY connective (that is satisfied exactly when more
than half of its inputs are true), have weft at most t and depth at most d. In the case of majority
gates, we allow multiple parallel edges. Observe that, even though his is not useful for circuits with
(OR,AND,NOT)-gates, it allows circuits majority gates to receive multiple times a same input. In
the case of majority gates, a gate is said to be small if its fan-in is at most 3.

We can then define each class W[t] (resp., W(Maj)[t]) as the set of parameterized problems that can
be fpt-reduced to WCS(Ct,d) (resp., WCS(Mt,d)) for some constant d. Note that the notion of can
be fpt-reduced is transitive, and thus the classes W[t] and W(Maj)[t] are closed under fpt-reductions.
As usual, a parameterized problem A is then said to be W[t]-hard (resp., W(Maj)[t]-hard) when
every parameterized problem in W[t] (resp., W(Maj)[t]) can be fpt-reduced to A.

Appendix I. Proof of Proposition 11

In this section we prove Proposition 11, that is:
Proposition 11. For every t ≥ 1 the MINIMUMCHANGEREQUIRED query over rMLPs with 3t+ 3
layers is W(Maj)[t]-hard and is contained in W(Maj)[3t+ 7].

We first explain what are rMLPs, then sketch the proof, and then proceed with the proof.

Given an MLP M, with the dimension of the layers being d0, . . . , dk, we define its graph size
as N :=

∑k
i=0 di. We say an MLP with graph size N is restricted (abbreviated as rMLP) if each of

its weights and biases can be represented as a decimal number with at most O(log(N)) digits. More
precisely, represented as

∑K
i=−K ai10i, for integers 0 ≤ ai ≤ 9 and K ∈ O(logN). Note that all

numbers expressible in this way are also expressible by fractions, where the numerator is an arbitrary
integer bounded by a polynomial in N , and the denominator is a power of 10 whose value is bounded
as well by a polynomial in N .

We now explicit a family of parameterized problems indexed by an integer t ≥ 1.

Problem: t-MINIMUMCHANGEREQUIRED, abbreviated t-MCR
Input: An rMLPM with at most t layers, an instance x

Parameter: An integer k
Output: YES, if there exists an instance y with d(x,y) ≤ k

andM(x) 6=M(y), and NO otherwise

We rewrite the statement of Proposition 11 with this explicit notation.
(Restatement of Proposition 11). For every t ≥ 1, the (3t+ 3)-MCR problem is W(Maj)[t]-hard
and is contained in W(Maj)[3t+ 7].

As the proof of Proposition 11 is quite involved, we first present a proof sketch that summarizes the
process.

Hardness. We prove hardness in Section I.1. Showing that a parameterized problem A is W[t]-
hard (resp., W(Maj)[t]-hard) is usually complicated since, by directly using the definition, one
would have to show that for every fixed d ∈ N, there exists an fpt-reduction fd from WCS(Ct,d)
(resp., from WCS(Mt,d)) to A. Instead, it is usually more convenient to prove first some form
of normalization theorem stating that a particular class of circuits, for which one knows the value
of d, is already hard for W[t] (or W(Maj)[t]).6 Following this approach, we start by showing

6Useful normalization theorems for the W-hierarchy are proved in the work of Downey, Fellows and Regan
[11, 13], or Buss and Islam. [6]. Our normalization theorem for the W(Maj)-hierarchy is inspired from those.

26

loose normalization theorem for the W(Maj)-hierarchy in Lemma 30; namely, we prove that the
problem WCS(M3t+2,3t+3) is W(Maj)[t]-hard. The main difficulty here is to reduce the depth d of
the majority circuits, for any fixed d ∈ N, to a depth of at most 3t+ 3. We then show in Lemma 31
that rMLPs can simulate majority circuits, without increasing the depth of the circuit. In Theorem 32
we use this construction to show an fpt-reduction from WCS(M3t+2,3t+3) to (3t+ 3)-MCR. This is
enough to conclude hardness for W(Maj)[t].

Membership. We prove membership in Section I.2. Presented in Theorem 34, the proof consists of 4
steps. We first show in Lemma 35 how to transform a given rMLPM that into an MLPM′ that uses
only step activation functions and that has the same number of layers. Then, as a second step, we
build an MLPM′′, with 3t+ 4 layers and again using only the step activation function, such thatM′′
has a satisfying assignment of weight k if and only if (M,x, k) is a positive instance of the t-MCR
problem. The third step is to use a result of circuit complexity [17] stating that circuits with weighted
thresholds gates (which are equivalent to biased step functions), can be transformed into circuits using
only majority gates, increasing the depth by no more than 1. This yields a circuit CM′′ with 3t+ 5
layers. However, the circuit CM′′ , resulting from the construction of Goldmann et al. [17], has
both positive variables and negated variables as inputs, as their model needs to be able to represent
non-monotone functions. For the fourth and last step, we build a circuit C∗M′′ based on CM′′ , that fits
the description of majority circuits as defined by [14, 15] (i.e., the one that we use). This circuit C∗M′′
has weft 3t + 7, and we prove that (C∗M′′ , k + 1) is a positive instance of the Weighted Circuit
Satisfiability problem that characterizes the class W(Maj)[t] if and only if (M,x, k) is a positive
instance of the (3t+ 3)-MCR problem. The whole construction being an fpt-reduction, this will be
enough to conclude membership in W(MAJ)[3t+ 7].

Observe that (r)MLPs can be interpreted as well as rooted directed acyclic graphs, with weighted
edges and where each node is associated a layer according to its (unweighted) distance from the
root. Every node in a certain layer ` is connected to every node in layers `− 1 and `+ 1. We will
sometimes use this equivalent interpretation, which turns out to be more handy for some of the proofs
in this section.

I.1 Hardness

As explained in the proof sketch, we start by establishing a normalization theorem for the W(Maj)-
hierarchy.

Lemma 30. The problem WCS(M3t+2,3t+3) is W(Maj)[t]-hard.

Proof. A significant part of this proof is based on techniques due to Fellows et al. [14] and to Buss
et al. [6]. Let C be an arbitrary majority circuit of weft at most t and depth at most d ≥ t for
some constant d, and let k be the parameter of the input instance. We define a small sub-circuit as
a maximally connected sub-circuit comprising only small gates. Now, consider a path π from an
arbitrary input node of C to its output gate. We claim that π intersects at most t+ 1 small sub-circuits.
Indeed, there must be at least one large gate separating every pair of small sub-circuits intersected
by π, as otherwise the maximality assumption would be broken. But in π, as in any path, there are at
most t large gates, because of the weft restriction, from where we conclude the claim. Now, for each
small sub-circuit S, consider the set IS of its inputs (that may be either large gates or input nodes
of C). As small gates have fan-in at most 3, and the depth of each small sub-circuit is at most d, we
have that |IS | ≤ 3d. We can thus enumerate in constant time all the satisfying assignments of S. We
identify each assignment with the set of variables to which it assigns the value 1. We keep a set Γ
with the satisfying assignments among IS that are minimal with respect to ⊆. Then, because of the
fact that majority circuits are monotone, S can be written in monotone DNF as

S ≡
∨
γ∈Γ

∧
x∈γ

x

Note that the size of Γ is trivially bounded by the constant 23d

. We then build a circuit C ′, based
on C, by following these steps:

1. Add 3d(k + 1) extra input nodes. We distinguish the first, that we denote as u, from
the 3d(k + 1)− 1 remaining, that we refer to by N .

27

2. Add a new output gate that is a binary majority between the old output gate and the node u.

3. Replace every small sub-circuit S by its equivalent monotone DNF formula, consisting of
one large OR-gate and many large AND-gates.

4. Relabel every large OR-gate, of fan-in ` ≤ 23d

created in the previous step to be a majority
gate with the same inputs, but to which one wires as well ` parallel edges from the input
node u.

5. Relabel every large AND-gate g, of fan-in ` ≤ 3d, to be a majority gate. If g had edges
from gates g1, . . . , g`, then replace each edge coming from a gi by k + 1 parallel edges, and
finally, wire `(k + 1)− 1 nodes in N to g.

An illustration of the transformation ins presented in Figure 3. We now check that C ′ is a (majority)
circuit in M3t+2,3t+3. To bound the depth and weft of C ′ we need to account for all the sub-circuits
of depth 2 that we introduced in steps 3–5 to replace each small sub-circuit of C. Note that two
small sub-circuits that were parallel in C (meaning no input-output path could intersect both) have
corresponding sub-circuits that are parallel in C ′. Consider now an arbitrary path π from a variable
to the root of C, and let π′ be the corresponding path in C ′ (that goes to the new root of C ′). The
path π contains one variable gate, at most t large gates, and intersects at most t+ 1 small sub-circuits.
The corresponding path π′ in C ′ still contains the variable gate, the (at most t) large gates that
were in π, and for each of the at most t + 1 small-subcircuits that π intersected, π′ now contains
exactly 2 large gate (and π′ also contains the new output gate of C ′). Therefore, the length of π′ is at
most 1 + t+ 2(t+ 1) + 1− 1 = 3t+ 3, and it contains at most t+ 2(t+ 1) = 3t+ 2 large gates.
Since every path π′ in C ′ from a variable to the root of C ′ corresponds to such a path π in C, we
obtain that the depth of C ′ is at most 3t + 3 and its weft is at most 3t + 2. Hence, C ′ is indeed a
majority circuit in M3t+2,3t+3.

We now prove that (?) there is a satisfying assignment of weight k + 1 for C ′ if and only if there
is a satisfying assignment of weight k for C, which would conclude our fpt-reduction. The proof
for this claim is based on how the constructions in step 4 and 5 actually simulate large OR-gates
and AND-gates, respectively.7 We prove each direction in turn.

Forward direction. Let us assume that there exists a satisfying assignment of weight k + 1 for C ′.
First, because input node u is directly connected to the output gate through a binary majority, it must
be assigned to 1 in order to satisfy C ′. Let C ′′ be the sub-circuit of C ′ formed by all the nodes that
descend from the old output-gate in C ′. Then C ′′ needs to be satisfied in order to satisfy C ′. Since u
is not present in C ′′, an assignment of weight k + 1 that satisfies C ′ is made by assigning 1 to u and
to exactly k other input gates. In order to prove the claim, we will show that (†) an assignment of
weight k for the inputs of C ′′ satisfies C ′′ if and only if its restriction to the inputs of C satisfies C,
assuming u is assigned to 1. As C ′′ only differs from C because of the replacement of each small
sub-circuit S by its equivalent DNF, and the additional inputs in N , we only need to prove that
steps 4 and 5 actually compute large OR and AND gates. Consider a gate g introduced in step 4,
having edges from gates g1, . . . , g` and ` edges from node u. Therefore, g has fan-in 2`, and as u
always contributes with a value of ` to g, we have that g is satisfied exactly when at least one of
the gates g1, . . . , g` is satisfied. Consider now a gate g introduced in step 5. By construction, g has
fan-in equal to 2`(k+ 1)− 1, from which we deduce that if all gates g1, . . . , g` are satisfied, then g is
indeed satisfied in C ′′. On the other hand, if an assignment of weight k does not satisfy every gate gi,
then g receives at most (`− 1)(k + 1) units from the gates gi, and as the assignment has weight k, it
receives at most k from the nodes in N . Thus, g receives at most (k + 1)`− 1 units, which is less
than half of its fan-in, and thus, g is not satisfied. Thus, we have proved (†). However, notice that
the restriction of the assignment might have a weight of strictly less than k in C. But it is clear that,
since the circuit is monotone, we can increase the weight by setting some variables of C to 1, until
the weight becomes equal to k. This proves the forward direction.

Backward direction. Let us now assume an assignment of weight k for C. We then we extend
such an assignment to C ′ by assigning 0 to the inputs in N and 1 to u. Thanks to (†), this is a

7Although this technique can already be found in the work of Fellows et al. [14], we include it here for
completeness.

28

(a) A majority circuit where small sub-circuits are
represented with blue blobs, and black nodes cor-
respond to large majority gates. The path deter-
mining the weft is colored red. The longest path,
determining the depth of the circuit, is drawn with
a dashed orange line.

(b) The majority circuit where small sub-circuits
have been replaced by depth-2 majority circuits,
corresponding to their equivalent DNF. The equiv-
alent DNF depth-2 sub-circuits are represented by
rectangles. Once again, the path determining the
weft is colored red. The longest path, determining
the depth of the circuit, is drawn with a dashed
orange line.

Figure 3: Illustration of the Normalization Lemma (30). In a nutshell, by paying a controlled increase
in weft, the depth of the circuit can be substantially reduced.

satisfying assignment of weight k + 1 for C ′, which proves the backward direction of (?) and thus
concludes the proof of Lemma 30.

Then, we show that rMLPs can simulate majority circuits, without increasing the depth of the circuit.
Lemma 31. Given a circuit C containing only majority gates, we can build in polynomial time an
rMLP that is equivalent to C (as a Boolean function) and whose number of layers is equal to the
depth of C.

Proof. First, note that we can assume that circuit C does not contain parallel edges by replacing
each gate g having p edges to a gate g′ by p copies g1, . . . , gp with single edges to g′. We then build
a layerized circuit (remember the definition of a layerized circuit from Appendix A) C ′ from C,
by applying the same construction that we used in Lemma 13 to layerize a circuit, but using unary
majority gates as identity gates instead. Note that the depth of C ′ is the same as that of C.

Next, we show how each non-output majority gate can be simulated by using two relu-gates (again,
remember the definition of a relu gate from Appendix A). First, note that (†) for any non-negative
integers x, n ∈ N, the function

fn(x) := relu
(
x− bn

2
c
)
− relu

(
x− bn

2
c − 1

)
is equal to

Majn(x) =

{
1 if x > n

2

0 otherwise
.

29

We will use (†) to transform the majority circuit C ′ into a circuit C ′′ that has only relu gates for
the non-output gates, and that is equivalent to C ′ in a sense that we will explain next. For every
non-output majority gate g of C ′, we create two relu gates g′1, g

′
2 of C ′′. The idea is that (?) for any

valuation of the input gates (we identify the input gates of C ′ with those of C ′′), the Boolean value of
any non-output gate g in C ′ will be equal to the (not necessarily Boolean) value of gate g′1 (in C ′′)
minus the value of the gate g′1 (in C ′′). We now explain what the biases of these new gates g′1, g

′
2 for

every majority gate g of C ′ are. Letting n be the in-degree of a majority gate g in C ′, the bias of g′1
is −bn2 c, and that of g′2 is −bn2 c − 1. Next, we explain what the weights of these new gates g′1, g

′
2 are

and how we connect them to the other relu gates. We do this by a bottom-up induction on C ′, that is,
on the level of the gates of C ′ (since C ′ is layerized), and we will at the same time show that (?) is
satisfied. To connect the gates g′1, g

′
2 to the gates of the preceding layer, we differentiate two cases:

Base case. The inputs of the gate g are variable gates; in other words, the level of g in C ′ is 1
(remember that variable gates have level 0). We then set these variable gates to be an
input of both g′2 and g′2, and set all the weights to 1. It is clear that (?) is satisfied for the
gates g, g′1, g

′
2, thanks to (†).

Inductive case. The inputs of the gate g are other majority gates; in other words, the level of g in C ′
is > 1. Then, let 1g, . . . ,m g be the inputs8 (majority gates) of the gate g in C ′, and consider
their associated pairs of relu gates (1g′1,

1 g′2), . . . , (mg′1,
m g′2) in C ′′. We then set all the

gates 1g′1, . . . ,
m g1 to be input gates of both gates g′1 and g′2, with a weight of 1, and set all

the gates 1g2, . . . ,
m g2 to be input gates of both gates g′1 and g′2, with a weight of −1. By

induction hypothesis, and using again (†), it is clear that (?) is satisfied.

Finally, based on the output gate r of C ′, we create a step gate r′ in C ′′ in the following way. Let
1g, . . . ,m g be the inputs of r, and (1g′1,

1 g′2), . . . , (mg′1,
m g′2) their associated pairs in C ′′. Then wire

each gate ig′1 to r′ with weight 1, and also wire each gate ig′2 to r′ with weight −1. Let −bn2 c − 1 be
the bias of r′.

We have constructed a circuit C ′′ whose output gate is a step gate, and all other gates are relu gates.
Consider now a valuation x of the input gates of C ′, which we identify as well as a valuation x′ of
the input gates of C ′′. We claim that C ′(x) = 1 if and only if C ′′(x′) = 1. But this simply comes
from the fact that for x, n ∈ N, we have x > n

2 ⇐⇒ x ≥ bn2 c + 1, and from the fact that (?) is
satisfied for the input gates of r and of r′.

The last thing that we have to do is to transform the circuit C ′′, that uses only relu gates except for its
output step gate, into a valid MLP. This can be done easily as in the proof of Lemma 13 by adding
dummy connections with weights zero, because C ′′ is layerized. The resulting MLPMC is then
equivalent to C, it is clearly an rMLP, its number of layers is exactly the depth of C, and, since we
have constructed it in polynomial time, this concludes the proof.

Finally, we use this construction to show an fpt-reduction from WCS(M3t+2,3t+3) to (3t+ 3)-MCR.
This is enough to conclude hardness for W(Maj)[t], thanks to Lemma 30.

Theorem 32. There is an fpt-reduction from the problem WCS(M3t+2,3t+3) to the (3t+ 3)-MCR
problem.

Proof. We will in fact show an fpt-reduction from WCS(Mt,t) to t-MCR, which gives the claim
when applied to 3t + 3, noting of course that WCS(M3t+3,3t+3) is trivially at least as hard as
WCS(M3t+2,3t+3). Let (C, k) be an instance of WCS(Mt,t). We first build an MLPMC equivalent
to C (as Boolean functions) by using Lemma 31. The MLPMC has t layers. Then, we build an
MLPM′C , that is based onMC , by following the steps described below:

1. InitializeM′C to be an exact copy ofMC .

2. Add an extra input, that we call v1, to M′C . This means that if MC had dimension n,
thenM′C has dimension n+ 1.

8Please excuse us for using left superscripts.

30

3. Create nodes v2, . . . , vt, all having a bias of 0, and for each 1 ≤ i < t, connect node vi to
node vi+1 with an edge of weight 1.

4. Let r be the root ofM′C , and let m be its fan-in. We connect node vt to r with an edge of
weight m. Moreover, if the bias of r inMC was b, we set it to be b−m inM′C .

5. Observe thatM′C is layerized. To make it a valid MLP (where all the neurons of a layer are
connected to all the neurons of the adjacent layers), we do as in the proof of Lemma 13 by
adding dummy null weights.

It is clear that the construction ofM′C takes polynomial time, and that its number of layers is again t.
We now prove a claim describing the behavior ofM′C .

Claim 33. For any instance x′ ofM′C , expressed as the concatenation of a feature x′1 (for the extra
input node v1) and an instance x ofMC , we have that x′ is a positive instance ofM′C if and only
if x′1 = 1 and x is a positive instance ofMC

Proof. Consider that, by construction, an instance x′ is positive forM′C if and only if

n+1∑
i=1

h
′(t−1)
i W

′(t)
i = mh

′(t−1)
1 +

n+1∑
i=2

h
′(t−1)
i W

′(t)
i ≥ −b+m

But by construction h
′(t−1)
1 = x′1, and

∑m+1
i=2 h

′(t−1)
i W

′(t)
i =

∑m
i=1 h

(t−1)
i W

(t)
i . This means

that x′ is a positive instance ofM′C if and only if

mx′1 +

m∑
i=1

h
(t−1)
i W

(t)
i ≥ −b+m

Note that if x′1 = 1 and x is a positive instance ofMC , this inequality is achieved, making x′ a
positive instance. For the other direction, it is clear that it holds if x′1 = 1. We show that in fact x′1 = 0

is not possible. Indeed, by the construction ofMC , we have that 0 ≤
∑m
i=1 h

(t−1)
i W

(t)
i ≤ m, and

also that −b ≥ 1, which makes the inequality unfeasible.

This concludes the proof of the claim.

This claim has two important consequences:

1. As satisfying assignments of C correspond to positive instance ofMC , we have that there
is a satisfying assignment of weight exactly k for C if and only if there is a positive instance
of weight exactly k + 1 forM′C .

2. The instance 0n+1 is negative forM′C

This consequences will allow us to finish the reduction. Consider the instance (M′C , 0n+1, k + 1)
of t-MCR. We claim that this is a positive instance for the problem if and only if (C, k) is a positive
instance of WCS(Mt).

For the forward direction, consider (M′C , 0n+1, k + 1) to be a positive instance of t-MCR. This
means there is an instance x∗ that has the opposite classification as 0n+1 underM′C , and differs from
it in at most k + 1 features. By the second consequence of the claim, x∗ must be a positive instance.
Also, differing in at most k + 1 features from 0n+1 means that x∗ has weight at most k + 1. But as
majority gates are monotone connectives, majority circuits are monotones as well, so the existence
of a positive instance x∗ of weight at most k + 1 implies the existence of a positive instance x′∗ of
weight exactly k+1. Therefore, by the first consequence of the claim, there is a satisfying assignment
of weight exactly k for C, which implies (C, k) is a positive instance of WCS(Mt,t)

For the backward direction, consider (C, k) to be a positive instance of WCS(Mt,t). This means,
by the first consequence of the claim, that there is a positive instance x∗ of weight exactly k + 1
forM′C . But based on the second consequence of the claim, 0n+1 is a negative instance forM′C .

31

As x∗ differs from 0n+1 in no more than k + 1 features, and they have opposite classifications, we
have that (M′C , 0n+1, k + 1) is a positive instance of t-MCR.

As the whole construction takes polynomial time, and the reduction changes the parameter in a
computable way, from k to k + 1, it is an fpt-reduction. This concludes the proof.

I.2 Membership

In this section we prove membership in W(Maj)[3t+ 7]. This will be enough to prove:
Theorem 34. There is an fpt-reduction from t-MCR to WCS(Mt+4,t+4), implying (3t+ 3)-MCR
belongs to W(Maj)[3t+ 7].

As explained in the proof sketch, we first show how to transform a given rMLP M that into an
MLPM′ that uses only step activation functions and that has the same number of layers. More
formally, we prove that rMLPs using only step activation functions are powerful enough to simulate
MLPs that use relu activation functions in the internal layers (and a step function for the output
neuron). The construction is polynomial in the width (maximal number of neurons in a layer) of the
given relu-rMLP, but exponential on its depth (number of layers). We show:
Lemma 35. Given an rMLPM with relu activation functions, there is an equivalent MLPM′ that
uses only step activation functions and has the same number of layers. Moreover, if the number of
layers ofM is bounded by a constant, thenM′ can be computed in polynomial time.

Proof. Let (W (1), . . . ,W (`)), (b(1), . . . , b(`)) and (f (1), . . . , f (`)) be the sequences of weights,
biases, and activation functions of the rMLPM. Note that f (i) for 1 ≤ i ≤ `− 1 is relu and that f (`)

is the step activation function. The first step of the proof is to transform every weight and bias into
an integer. To this end, let L ∈ N, L > 0 be the lowest common denominator of all the weights
and biases, and letM′ be the MLP that is exactly equal toM except that all the weights have been
multiplied by L, and all the biases of layer i have been multiplied by Li. Observe thatM′ has only
integer weights and biases. When w (resp., b) is a weight (resp., bias) ofM, we write w′ (resp., b′)
the corresponding value inM′. We claim thatM andM′ are equivalent, in the sense that for every
x ∈ {0, 1}n, it holds thatM(x) =M′(x). Indeed, for 0 ≤ i ≤ `, let h(i) and h′(i) be the vectors
of values for the layers ofM andM′, respectively, as defined by Equation 1. We will show that (?)
for all 1 ≤ i ≤ `− 1 we have h′(i) = Li × h(i). The base case of i = 0 (i.e., the inputs) is trivially
true. For the inductive case, assume that (?) holds up to i and let us show that it holds for i+ 1. We
have:

h′(i+1) = relu(h′(i)W ′(i+1) + b′(i+1))

= relu(L× h′(i)W (i+1) + Li+1 × b(i+1)) by the definition ofM′

= relu(Li+1 × h(i)W (i+1) + Li+1 × b(i+1)) by inductive hypothesis

= Li+1 × relu(h(i)W (i+1) + b(i+1)) by the linearity of relu

= Li+1 × h(i+1),

and (?) is proven. Since the step function (used for the output neuron) satisfies step(cx) = c step(x)
for c > 0, we indeed have thatM(x) =M′(x).

We now show how to build a modelM′′ that uses only step activation functions and that is equivalent
toM′. The first step is to prove an upper bound for the values in h′. We start by bounding the
values in h. Let D be width ofM, that is, the maximal dimension of a layer ofM, and let C be the
maximal absolute value of a weight or bias inM; note that the value of C is asymptotically bounded
by |M|O(1) becauseM is an rMLP. For every instance x, we have that

0 ≤ h(i)
j = relu

(∑
k

h
(i−1)
k W

(i)
k,j + b

(i)
j

)
≤ DC max

k
h

(i−1)
k +C ≤ (D+1)C max(1,max

k
h

(i−1)
k)

Using this inequality, and the fact that maxk h
(0)
k ≤ 1, we obtain inductively that 0 ≤ h

(i)
j ≤

((D + 1)C)i. By (?), this implies that 0 ≤ h′(i)j ≤ ((D + 1)CL)i.

32

≥ 1 ≥ 2 ≥ 3

Figure 4: Illustration of the conversion from a relu activation function to step activation functions,
for S = 3. The weights are unchanged, and if the bias of the original neuron was b then the bias in
the j-th copy of that neuron becomes b− j.

As all values (weights, biases and the h′ vectors) inM′ consist only of integers, and are all bounded
by the integer S := ((D + 1)CL)`, then each relu inM′ with bias b becomes equivalent to the
following function f∗:

f∗(x+ b) := [x+ b ≥ 1] + [x+ b ≥ 2] + . . .+ [x+ b ≥ S] (13)

Where [y ≥ j] := 1 if y ≥ j and 0 otherwise. Hence, in order to finish the proof, it is enough to show
how activation functions of the form f∗ can be simulated with step activation functions. Namely,
we show how to buildM′′, that uses only step activation functions, fromM′, in such a way that
both models are equivalent. In order to do so, we replace each f (i),W ′(i), b′(i) for 1 ≤ i ≤ ` in
the following way. If i = `, then nothing needs to be done, as f (`) is already assumed to be a step
activation function. When 1 ≤ i < `, we replace the weights, activations and biases in a way that
is better described in terms of the underlying graph of the MLP. We split every internal node, with
bias b into S copies, all of which will have the same incoming and outgoing edges as the original
nodes, with the same weights. The j-th copy will have a bias equal to b− j. We illustrated this step
in Figure 4. This construction is an exact simulation of the function f∗ defined in Equation 13.

The computationally expensive part of the algorithm is the replacement of each node inM′ by S
nodes, which takes time at most S = ((D + 1)CL)` ∈ O(|M|`(CL)`) per node and thus at
most O(|M|`+1(CL)`) in total. Since ` is a constant, and C is bounded by a polynomial onM, we
only need to argue that L is bounded as well. Indeed, asM is an rMLP, each weight and bias can be
assumed to be represented as a fraction whose denominator is a power of 10 of value polynomial in
the graph sizeN ofM. But the lowest common multiple of a set of powers of 10 is exactly the largest
power of 10 in the set. Therefore L ≤ 10p, where p ∈ O(logN), and thus L ∈ O(N c) ⊆ O(|M|c)
for some constant c. We conclude from this that the construction takes polynomial time.

We are now ready to prove Theorem 34.

Proof of Theorem 34. Let (M,x, k) be an instance of t-MCR. During this reduction we assume
that n > 2k, as otherwise the result can be achieved trivially; if n ≤ 2k then trying all instances that
differ by at most k from x takes only O(kk), and thus we can solve the entire problem in fpt-time
and return a constant-size instance of WCS(Mt+2), completing the reduction.

We start by applying Lemma 35 to build an equivalent MLP M′ that uses only step activation
functions. As t is constant, this construction takes polynomial time, and its resulting MLPM′ has t
layers as well. If x is a negative instance ofM′ (and thus ofM) we do nothing. This can trivially be
checked in polynomial time, evaluating x inM′. But if x happens to be a positive instance ofM′,

33

then we change the definition ofM′ negating its root perceptron9, and thus making x a negative
instance. As a result, we can safely assume x to be a negative instance ofM′. We can also, in the
same fashion that we assumed n > 2k, discard the case where the instance 0n is a positive instance
of M′ that differs by at most k from x, as in such scenario we could also solve the problem in
fpt-time. The same can be done for 1n.

We now build an MLPM′′, that still uses only step activation functions, such thatM′′ has a positive
instance of weight exactly k if and only if (M,x, k) is a positive instance of t-MCR.

LetM′′ be a copy ofM′ to which we add one extra layer at the bottom. For each 1 ≤ i ≤ n, we
connect the i-th input node ofM′′ to what was the i-th input node ofM′, but is now an internal
node inM′′. If xi = 0 then the node inM′′ corresponding to the i-th input node ofM′ has a bias
of 1, and the weight of the edge coming from the i-th input node ofM′′ is also 1. On the other hand,
if xi = 1, then the node inM′′ corresponding to the i-th input node ofM′ has a bias of 0, and the
weight of the connection added to it is −1. After doing this, we add k − 1 more input nodes toM′′,
a new node p in the t-th layer and a new root node r′′, that is placed in the layer t+ 1. We connect r′,
the previous root node, to r′′ ofM′ with weight 1, and all input nodes to node p with weights of 1. In
case p is more than one layer above the new input nodes, we connect them through paths of identity
gates, as shown in Lemma 13. We set the bias of r′′ to −2, and the bias of p to −k. All non-input
nodes added in the construction use step activation functions.

We now prove a claim stating thatM′′ has exactly the intended behavior.

Claim 36. The MLPM′′ has a positive instance of weight exactly k if and only if (M,x, k) is a
positive instance of t-MCR.

Proof. For the forward direction, assumeM′′ has a positive instance x′ of weight exactly k. As
the root r′′ has a bias of −2, and two incoming edges with weight 1, and given that the output
of any node is bounded by 1, as only step activation functions are used, we conclude that both p
and r′, the children of r′′, must have a value of 1 on x′. The fact that r′ has a value of 1 on x′

implies that xs, the restriction of x that considers only nodes that descend from r′, must be a positive
instance for the submodelMs induced by considering only nodes that descend from r′. But one
can easily check that by construction, we have thatMs(xs) = M′(xs ⊕ x), where ⊕ represents
the bitwise-xor. Thus, xs ⊕ x is a positive instance forM, and consequently forM. As xs ⊕ x
differs from x by exactly the weight of xs, as 0 is the neutral element of ⊕, and the weight of xs
is by definition no more than the weight of x′, which is in turn no more than k by hypothesis, we
conclude that (M,x, k) is a positive instance of t-MCR.

For the backward direction, assume there is a positive instance x′ ofM that differs from x in at
most k positions. This means that x′′ = x⊕ x′ has weight at most k. By the same argument used
in the forward direction,Ms(x′′) =M′(x′′ ⊕ x) =M′(x′), as x⊕ x′ ⊕ x = x⊕ x⊕ x′ = x′,
because ⊕ is both commutative and its own inverse. But the fact that x′ is a positive instance
ofM implies that it is also a positive instance forM′. As we are assuming x′| 6= 0n, we have
that k − |x′| ≤ k − 1. Thus, we can create an instance x′′ for M′′ that is equal to x′ on its
corresponding features, and that sets k − |x′| arbitrary extra input nodes to 1, among those created in
the construction ofM′′. As the instance x′′ has weight exactly k, it satisfies the submodel descending
from p, and as x′′ its equal to x′ on the submodel descending from r′, and x′ is a positive instance
ofM′, we have that this submodel must be satisfied as well. Both submodels being satisfied, the
whole modelM′′ is satisfied, hence we conclude the proof.

We thus have a modelM′′ with step activation functions, and t+ 2 layers, such that if that model has
a satisfying assignment of weight exactly k, then (M,x, k) is a positive instance of t-MCR.

Note that step activation functions with bias are equivalent to weighted threshold gates. We then use
a result by Goldmann and Karpinski [17, Corollary 12] to build a circuit CM′′ that is equivalent (as
Boolean functions) toM′′ but uses only majority gates. The construction of Goldmann et al. can be
carried in polynomial time, and guarantees that CM′′ will have at most t+ 3 layers.

9Let P = (w, b) be the perceptron at the root ofM′, which contains only integer values by construction.
Then, the negation of P is simply P̄ = (−w,−b+ 1), as−wx ≥ −b+ 1 precisely when wx ≤ b− 1, which
occurs over the integers exactly when it is not true that wx ≥ b.

34

There is however a caveat to surpass: although not explicitly stated in the work of Goldmann et
al. [17], their definition of majority circuit must assume that for representing a Boolean function
from {0, 1}n to {0, 1}, the circuit is granted access to 2n input variables x1, . . . ,xn,x1, . . . ,xn, as
it is usual in the field, and described for example in the work of Allender [1]. We thus assume that
the circuit CM′′ resulting from the construction of Goldmann et al. has this structure, which does not
match the required structure of the majority circuits defining the W(Maj)-hierarchy as defined by
Fellows et al [14, 15]. In order to solve this, we adapt a technique from Fellows et al. [15, p. 17].
We build a circuit C∗M′′ that does fit the required structure. Let n be the dimension ofM′′ (which
exceeds by k − 1 that ofM). We now describe the steps one needs to apply to CM′′ in order to
obtain C∗M′′ .

1. Add a new layer with n+ 1 input nodes x′1, . . . ,x
′
n+1, below what previously was the layer

of 2n input nodes x1, . . . ,xn,x1, . . . ,xn.

2. For every 1 ≤ i ≤ n, connect input node x′i with its corresponding node xi in the second
layer, making xi a unary majority, with the same outgoing edges it had as an input node.
This enforces xi = x′i.

3. Create a new root r′ for the circuit, and let r′ be a binary majority between the input
node x′n+1 and the previous root r.

4. Replace each previous input node xi by a majority gates mi that has n+ 1− 2k incoming
edges from x′n+1, and one incoming edge from each x′j with j 6∈ {i, n+ 1}. The outgoing
edges are preserved.

It is clear that the circuit C∗M′′ is a valid majority circuit in the sense defining the W(Maj)-hierarchy.
And it has 2 layers more than CM′′ , yielding a total of t+ 5 layers, where the last one has a small
gate. However, it is not evident what this new circuit does. We now prove a tight relationship between
the circuit C∗M′′ andM′′.

Claim 37. The circuit C∗M′′ has a satisfying assignment of weight exactly k + 1 if and only ifM′′
has a positive instance of weight exactly k.

Proof. Forward Direction. Assume C∗M′′ has a satisfying assignment of weight k+ 1. By step 3 of
the construction, in order to satisfy C∗M′′ , the assignment must set x′n+1 to 1.

As we assume that node x′n+1 is set to 1, the assignment must set to 1 exactly k input nodes
among x′1, . . . ,x

′
n and thus the sum of inputs set to 1 of each majority gate mi constructed in step 4,

is exactly equal to

n+ 1− 2k +
∑

j 6∈{i,n+1}

x′j = n+ 1− 2k + (k − x′i) = n+ 1− k − x′i

and its fan-in is exactly equal to 2n− 2k. Therefore mi is activated when n+ 1− k − x′i > n− k,
which happens precisely when x′i = 0. This way, each gate mi corresponds to the negation of x′i.

This way, the subcircuit induced by considering only the nodes that descend from r′ computes the
same Boolean function that CM′′ computes, under the natural mapping of their variables. Therefore,
a satisfying assignment of weight k + 1 for C∗M′′ implies the existence of a satisfying assignment
for CM′′ that chooses exactly k positive variables, and thus a positive instance of weight k forM′′.
Backward Direction. Assume M′′ has a positive instance of weight exactly k. That implies
that CM′′ has a satisfying assignment σ that sets at most k positive variables to 1. Let us consider the
assignment σ′ for C∗M′′ that sets to 1 the same variables that σ does, and additionally sets xn+1 to 1.
The assignment σ′ has weight exactly k+1. By the same argument used in the forward direction, under
assignment σ′ the gates mi behave like negations. Thus, the assignment σ′ induces an assignment
over the second layer of C∗M′′ that corresponds precisely to a satisfying assignment of CM′′ , and thus
makes the value of r equal to 1. As both r and xn+1 have value 1 under assignment σ′, it follows
that the value of r′, and thus of circuit C∗M′′ , are 1 under σ′ as well. This means that assignment σ′,
which by construction has weight k + 1, is a satisfying assignment for C∗M′′ , and thus concludes the
proof.

35

By combining Claim 36 and Claim 37, and noting again that circuit C∗M′′ is a valid majority circuit,
in the sense that defines the W(Maj)-hierarchy, and has weft at most t+ 4, we conclude the reduction
of Theorem 34.

Appendix J. Proof of Proposition 12

Based on Proposition 11, we know that interpreting an rMLP (for the problem MCR) with 9t+ 27 =
3(3t+ 8) + 3 is W(Maj)[3t+ 8]-hard. On the other hand, by using the same proposition, the problem
of interpreting an rMLP with 3t + 3 layers is contained in W(Maj)[3t + 7]. But by hypothesis,
W(Maj)[3t+ 7] (W(Maj)[3t+ 8], which is enough to conclude the proof.

36

