A Dynamic Programs For SSK Evaluations and Gradients

We now detail recursive calculation strategies for calculating k,,(a, b) and its gradients with O(nl?)
complexity. A recursive strategy is able to efficiently calculate the contributions of particular sub-
string, pre-calculating contributions of the smaller sub-strings contained within the target string.

Adapting the recursion and notation of Beck and Cohn [2017] to our chosen contribution function,
kn(a,b) can be calculated by following for i =1, ..n — 1:

K, =1
K] = D|, KDy,
K/ =X MoK,_;)
ki =AY (MOK)),k,
3.k

producing the kernel evaluation k,,(a,b) = _ k;. Here, ® is the Hadamard product, M is the |a| X |b]
matrix of character matches between the two strings (M;; = 1,,(b;)), and Dy is the ¢ x ¢ matrix

0 1 Ay -+ /\§2
00 1 - A3
D, = s
00 0 - 1
00 0 - 0

The gradients of k,, with respect to the kernel parameters A, and A4 can also be calculated recursively.
For the kernel gradients with respect to match decay we calculate

/
-0
gfni = D@gfimm
gfi =20, (MO K]_;) + A\ ( ® a;()\; 1>
gfm = Jzk: l2/\ (MK, + A\, <M® aliikﬂ :
producing the gradient ‘%"( b = 8‘9%1

Similarly, kernel gradients w1th respect to gap decay are calculated by

K,
20 _ 9
ONg
oK a |a\ r 0K/ Dy
Bx, = Ohy P+ Dlay gy Dy + Dl K5
oK K,
) :>\2 M 7—1
o, m ( Yo, )
L= Mo —2 |,
= (e
producing the gradient L(Zb) dkl , where 2 e /\ is the £ X £ matrix
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B Context-free Grammars

Context-free grammars (CFG) are 4-tuples G = (V, X, R, S), consisting of:

e a set of non-terminal symbols V,
e a set of terminal symbols X (also known as an alphabet),
e a set of production rules R,

e anon-terminal starting symbol .S from which all strings are generated.

Production rules are simple maps permitting the swapping of non-terminals with other non-terminals
or terminals. All strings generated by the CFG can be broken down into a (non-unique) tree of
production rules with the non-terminal starting symbol .S at its head. These are known as the parse
trees and are demonstrated in Figure 3 in the main paper.

The CFG for the symbolic regression task of Section 5.3 is given by the following rules:
S8+ T

S— §%T

S—>8S 7T

S— T

T— (S )

T— ‘sin(” S )

T— ‘exp(’ S °)

T— ‘x’
T— ‘I’
T— 2
T— 3,

where V = {S,T} and ¥ = {+,%,/,z,1,2,3}. Although each individual production rule is a
simple replacement operation, the combination of many such rules can specific a string space with
complex syntactical constraints. For example, these 11 rules are able to specify that the string
‘(sin(2*x)+3(x*(2+exp(x))))+1/2’ is valid but that ‘(sin(2*x)+3(x*(2+exp(x)))+1/2’ (with invalid
bracket closing) is not.

Sampling from the CFG. One of the advantages of CFGs is that it is easy (and cheap) to generate
large collections of valid strings by recursively sampling production rules. However, when sampling
strings from the grammar, we found this simple sampling strategy to produce long and repetitive
strings. For our BO applications, where sample diversity is key, we instead employed a sampling
strategy that down-weights the probability of selecting a particular rule based on the number of times
it has already occurred in the parse tree. In particular, the probability of applying a particular rule to a
non-terminal is proportional to ¢”, where n is the number of occurrences of that rule in the current
branch and c is a discount factor (set to 0.1 in all our experiments). The construction of this sampler
ensures that a wide range of production rules are used when generating from the CFG.

C Genetic Algorithms

We now provide implementation details for our GA acquisition function optimizers. During each
GA step, populations are refined through stochastic biologically-inspired operations, providing a
population achieving (on average) higher scores. The GA begins with a randomly sampled population
and ends once the best string in the population stops improving between iterations (Algorithm 1). The
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Algorithm 1 Genetic Algorithms for Acquisition Function Maximization

: function GA(py, pe, pm, N)
: n+0
Sample [V strings for initial population Py
Evaluate acquisition function Ay < a(Fp)
Store current best value e < max(Ag)
while .s; = max(A,,) do
Begin new iteration n <— n + 1
Evolve population P,, + EVOLVE(P,,_1, pt, De, Pm)
Evaluate acquisition function A,, + «a(P,)
Store current best value apest — max(max(A,—1), Wpest)

—_

S B AR U

Ju—

return String achieving score ot

Algorithm 2 Evolution of Genetic Algorithm Populations

1: function EVOLVE(P,p;:, pc, D)
2:  Initialize new population P,,c,, < 0

3:  while |P,.,| < |P| do

4 Collect a candidate string s; <~ TOURNAMENT (P, p;)
5: Sample r ~ U[0, 1]
6
7
8

if r < p. then
Sample another candidate string s, < TOURNAMENT (P, p;)
: Perform crossover s1, so < CROSSOVER(s1, s2)
9: Sample r1, 79 ~ UJ0, 1]

10: if 1 < p,, then

11: Perform mutation s; <~ MUTATION(s;)

12: if ro < p,, then

13: Perform mutation so <~ MUTATION(s5)

14: Add two strings to new population Pyey < Prew {51, 2}
15: else

16: Sample r ~ U[0, 1]

17: if r1 < p,, then

18: Perform mutation s; <— MUTATION(s;)

19: Add string to new population Py,e < Prew {51}

20: return New population P,

N strings of the i + 1*" population are perturbations of the i*" population. To evolve a population
(Algorithm 2), a tournament process first selects n candidate strings (with replacement) attaining the
highest evaluations across random sub-samples of a proportion p; of the current population. To create
the next population, these candidate strings undergo stochastic perturbations: a mutation operation
producing a new offspring string from a single parent, and a crossover operation combining attributes
of two parent strings to produce two new offspring. These operations occur with probability p. and
Pm respectively, which, alongside p;, control the level of diversity maintained across populations. To
highlight the robustness of our genetic algorithm acquisition optimizer, we do not tune the evolution
parameters to each task, using populations of 100 candidate strings and (py, pc, prm) = (0.5,0.75,0.1)
for all our experiments. The exact crossover and mutation operators chosen to traverse string spaces
under different syntactical constraints are discussed in the main paper.
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Figure 10: Optimizing the number of non-
overlapping occurrences of "101" in a string of
length 20 and alphabet ["0","1"]

D Synthetic String Optimization Experiments

Although seemingly simple tasks, our synthetic string optimization tasks of Section 5.1 are deceptively
challenging, as only a very small proportion of valid strings produce high scores. In fact, these
tasks are considerably more challenging than the common benchmarks used to test standard BO
frameworks. Figure 9, shows the performance attained by random search over our synthetic string
tasks and standard benchmarks . All objective functions are standardized (€ [0, 1]) and we run
1000 optimization steps, plotting the mean and standard error across 25 replications. We see that our
easiest synthetic string optimization tasks are among the hardest of the standard benchmark problems
to solve with random search, and we expect this to hold similarly for BO.

We now provide comprehensive experimental results across the synthetic string optimization tasks.
In Figures 10,11,12,13,14,15 and 16, we show the performance and computational overhead of our
string kernels, extending the analysis from the main paper to include a variety of sub-sequence
lengths considered by the string and feature-based kernels. We see that the string kernels always
provide superior optimization over existing kernels, with the string kernel based on sub-sequences
of maximum length 5 consistently among the best. The string kernel is particularly effective for the
most complicated objective functions (Figures 11 and 15) and when observations are contaminated
by observation noise (Figure 14). For problems with larger alphabets (and so significantly larger
search spaces), our genetic algorithm acquisition optimizer dramatically outperforms a larger budget
random search optimizer (Figure 13 and 15).

U https:/twww.sfu.ca/ ssurjano/index.html
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E Protein Optimization

We now provide additional details for our four protein optimization experiments, each targeting one
of the following proteins.

1. Cystic fibrosis transmembrane conductance regulator:
TIKENIFGVS.

2. Invertebrate iridescent virus 6 (IIV-6) (Chilo iridescent virus):
MTSRGHLRRAPCCYAFKSATSHQRTRTSLCLASPPAPHCLLLYSHRCLTYFTVDYELSFFCL.

3. Anaphase-promoting complex subunit 15B:

MSTLFPSLLPQVTDSLWFNLDRPCVDENELQQQEQQHQAWLLSIAEKDSSLVPIGKPASEPY
DEEEEEDDEDDEDSEEDSEDDEDMQDMDEMNDYNESPDDGEIEADMEGAEQDQDQWMI .

4. Tyrosine-protein kinase abl-1:

MGHSHSTGKEINDNELFTCEDPVFDQPVASPKSEISSKLAEEIERSKSPLILEVSPRTPDSV
QMFRPTFDTFRPPNSDSSTFRGSQSREDLVACSSMNSVNNVHDMNTVSSSSSSSAPLFVALY
DFHGVGEEQLSLRKGDQVRILGYNKNNEWCEARLYSTRKNDASNQRRLGEIGWVPSNFIAPY
NSLDKYTWYHGKISRSDSEAILGSGITGSFLVRESETSIGQYTISVRHDGRVFHYRINVDNT
EKMFITQEVKFRTLGELVHHHSVHADGLICLLMYPASKKDKGRGLFSLSPNAPDEWELDRSE
IIMHNKLGGGQYGDVYEGYWKRHDCTIAVKALKEDAMPLHEFLAEAAIMKDLHHKNLVRLLG
VCTHEAPFYIITEFMCNGNLLEYLRRTDKSLLPPIILVQMASQIASGMSYLEARHFIHRDLA
ARNCLVSEHNIVKIADFGLARFMKEDTYTAHAGAKFPIKWTAPEGLAFNTFSSKSDVWAFGV
LLWEIATYGMAPYPGVELSNVYGLLENGFRMDGPQGCPPSVYRLMLQCWNWSPSDRPRFRDI
HFNLENLISSNSLNDEVQKQLKKNNDKKLESDKRRSNVRERSDSKSRHSSHHDRDRDRESLH
SRNSNPEIPNRSFIRTDDSVSFFNPSTTSKVTSFRAQGPPFPPPPQQUNTKPKLLKSVLNSNA
RHASEEFERNEQDDVVPLAEKNVRKAVTRLGGTMPKGQRIDAYLDSMRRVDSWKESTDADNE
GAGSSSLSRTVSNDSLDTLPLPDSMNSSTYVKMHPASGENVFLRQIRSKLKKRSETPELDHI
DSDTADETTKSEKSPFGSLNKSSIKYPIKNAPEFSENHSRVSPVPVPPSRNASVSVRPDSKA
EDSSDETTKDVGMWGPKHAVTRKIEIVKNDSYPNVEGELKAKIRNLRHVPKEESNTSSQEDL
PLDATDNTNDSIIVIPRDEKAKVRQLVTQKVSPLQHHRPFSLQCPNNSTSSAISHSEHADSS
ETSSLSGVYEERMKPELPRKRSNGDTKVVPVTWIINGEKEPNGMARTKSLRDITSKFEQLGT
ASTIESKIEEAVPYREHALEKKGTSKRFSMLEGSNELKHVVPPRKNRNQDESGSIDEEPVSK
DMIVSLLKVIQKEFVNLFNLASSEITDEKLQQFVIMADNVQKLHSTCSVYAEQISPHSKFRF
KELLSQLEIYNRQIKFSHNPRAKPVDDKLKMAFQDCFDQIMRLVDR.

As each amino acid in these protein sequences can be represented as one of a set of possible codons
(triples of bases), the string spaces for these problems are incredibly large, with each space containing
5.53e+4, 9.48e+-33, 4.81e+49 and 1.22e+-614 unique strings, respectively. The permitted mappings
from amino acids to valid codons are as follows:

F — 1t ltte

L — ttaltglctt!ctclcta, ctg
S — tctltecltcalteglagtlage
Y — tatltac

C — tgtltge

W —tgg

P — cctlceclecalcecg

H — catlcac

Q — caalcag

R — cgtlcgclcgalcgglagalagg
I — attlatclata

M — atg

T — actlacclacalacg

N — aatlaac

K — aaalaag

V — gttlgtclgtal gtg

A — gctlgeclgealgeg

D — gatlgac

E — gaalgag

G — ggrlggcelggalggg.

Figure 17 extends the analysis of our protein optimization tasks to include the computational overheads
incurred by each each BO routine (as measured on a single processor). The high evaluation costs
of our SSK means that its overhead is substantially greater than the other approaches. However, in
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Figure 17: Optimization performance and computational overhead when finding the representation
with minimal minimum free-folding energy (MFE) of a protein of length £. SSKs are applied to codon
or base representations split into m or 3m parts, respectively.

real gene design loops, this additional computational cost (hours) is negligible compared to the cost
and time saved in wet-lab experiments (days). Moreover, the acquisition function calculations can be
trivially parallelized across up to 100 cores (the size of the populations used in the GA acquisition
function optimizer) as well as across the m partial SSK calculations. If GPUs are available, these can
also be used to efficiently calculate SSKs [Beck and Cohn, 2017].

F BOin a VAE’s Latent Space

To perform BO in the latent space of a VAE, we follow the set-up of Kusner et al. [2017], fitting a
GP with an SE kernel and using a multi-start gradient descent acquisition function optimizer. We
tried SE kernels with both individual and tied length scales across latent dimensions, however, this
did not have a significant effect on performance, possibly due to difficulties in estimating many
kernel parameters in these low-data BO problems. In order to perform BO, a compact area of the
latent space must be chosen for the search space. Unfortunately, Kusner et al. [2017] do not provide
details about how this should be determined. We chose the space containing the most central 75% of
representations from the set of strings used to train the VAE (100, 000 arithmetic expressions). We
also tried using the space containing all representations from the training data, however, this led to a
drop in optimization performance, likely due to less reliable encoding/decoding learned by the VAE
in these more sparsely supported parts of the latent space.
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(c) SE kernel in the GVAE latent space.

(d) SSK with poor choices of kernel parameters.

Figure 18: Top two KPCA components visualizing the intrinsic representations of the surrogate
models used to predict molecule scores from SMILES strings. Aside from (d), kernel parameters are
tuned to maximize GP likelihood over 10 evaluated molecules.

G Visualizing BO Surrogate Models

In Section 5.4, we present a kernel principal component analysis (KPCA) visualization of the feature
space induced by our SSK. We now extend this analysis to include the VAE competitors. In particular,
we perform KPCA on the SE kernel used to define a surrogate model over each VAE’s latent
representations (Figure 18). All figures show the representations of the same sampled 4, 000 SMILES
strings, color-coded to represent their molecule scores (a linear combination of their water-octanol
partition coefficient, ring-size and synthetic accessibility). We see that the GP with an SSK produces
a significantly smoother KPCA space that the GPs fit in VAE latent space, with the CVAE showing
slightly more structure than the GVAE. This ranking matches the relative performance of the BO
routines based on these surrogate models (Figure 7). So although the latent spaces of these VAE
have been shown to exhibit some smoothness [Kusner et al., 2017], this is not captured by the GP
model. Figure 7.d visualizes the intrinsic representation of an SSK when kernel parameters are
purposely chosen to provide a bad fit. We choose very low A, and high )\, to heavily penalize
the long contiguous sub-sequences we know to be informative for this task. The stark difference
in smoothness between the visualizations of the tuned and badly-tuned SSKs demonstrates their
flexibility as well as the importance of using a representation supervised to the the specific objective
function of interest.
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