
A Intervention stable sets, plausible causal predictors and informative
interventions

A.1 Intervention stable sets

A set of predictors S is an intervention stable set if it d-separates the response from all interventions,
i.e. if the d-separation statement I ⊥⊥G Y |XS holds in G(SE) for all interventions I active in E . An
example follows:

Example A.1. Let E be a collection of environ-
ments with direct interventions on X0 and X4, as
shown in the graph. Then, the intervention stable
sets are

SE ={0},
{0, 4},
{0, 3, 4}
{0, 1}
{0, 1, 4}
{0, 1, 3, 4}.

X0 X1

Y

X3

X4

I1

I2

A.2 Stable sets vs. plausible causal predictors

While SE ⊆ CE , it is not generally true that SE = CE . Importantly, this does not change when
assuming faithfulness as the following example illustrates.
Example A.2. Take the following SCM,

w01 w02

w12

X0

X1 X2

X0 := ε0
X1 := w01X0 + ε1
X2 := w02X0 + w12X1 + ε2

with εi ∼i.i.d. N (µi, σ
2
i ) noise variables such that εi ⊥⊥ εj ∀i, j. Consider Y := X1 and the

conditioning sets S0 = {0} and S2 = {2}. In the following, we assess the invariance of the
conditional distributions Y |X0 and Y |X2 under interventions. The conditional distributions of Y |X0

and Y |X2 are both Gaussian and below we compute their expectations and variances. For Y |X0 we
have:

E(Y |X0) = E(Y ) +
Cov(Y,X0)

Var(X0)
(X0 − E(X0))

= w01µ0 + µ1 +
w01σ

2
0

σ2
0

(X0 − µ0) = µ1 + w01X0

Var(Y |X0) = Var(Y )− Cov(Y,X0)
2

Var(X0)
= w2

01σ
2
0 + σ2

1 −
(w01σ

2
0)

2

σ2
0

= σ2
1

For Y |X2 we have:

E(Y |X2) = E(Y ) +
Cov(Y,X2)

Var(X2)
(X2 − E(X2))

= w01µ0 + µ1 +
σ2
0(w01w02 + w2

01w12) + w12σ
2
1

σ2
0(w

2
02 + w2

12w
2
01 + 2w02w12w01) + w2

12σ
2
1 + σ2

2

(X2 − E(X2))
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Var(Y |X2) = Var(Y )− Cov(Y,X2)
2

Var(X2)

= w2
01σ

2
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1 −
(σ2
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If we additionally assume µi = 0, wij = 1 ∀i, j and σ2
1 = σ2

2 = 1, the above expressions become

E(Y |X2) =
1

2
X2 and Var(Y |X2) = σ2

0 + 1− (2σ2
0 + 1)2

4σ2
0 + 2

=
1

2
.

Consider now an intervention on X0. We have that S0 = {0} is intervention stable and a set of
plausible causal predictors. On the other hand, S2 = {2} does not d-separate Y from the intervention
on X0, and is not intervention stable; however, for interventions that affect only the variance of X0

(i.e. σ2
0), S2 is a set of plausible causal predictors. Under this setting, we have that SE ⊂ CE .

Example A.2 shows that SE 6= CE . However, one might ask how often this happens in practice. In
the example, this only happens when we set the weights, means and variances to very particular
values. When these parameters are sampled from a continuous distribution, we conjecture that the
set of parameters for which SE 6= CE has probability zero. We call the assumption that SE = CE
stability-faithfulness.

A.3 Informative interventions

If we make the assumption that CE = SE , by Lemma 1 we know that, in the absence of estimation
errors, a direct intervention on a parent is sufficient for it to appear in the ICP estimate. However, it is
not a necessary condition, as is shown in the following example.

Example A.3. Let E be a collection of two envi-
ronments: one without interventions and one with
a direct intervention on X2, as shown in the graph.
The intervention stable sets are

SE ={0, 1, 2},
{0, 1, 3},
{0, 1, 2, 3}.

Therefore,

S(E) =
⋂

S:S∈SE

S = {0, 1},

X0 X1

X2

X3

Y

I

which shows that parents can appear in the intersection of intervention stable sets without being
directly intervened on. In this case, a direct intervention on X2 is very informative, as it reveals two
parents simultaneously. To the best of our knowledge it is not clear when situations like the above
arise, or how they can be detected from the accepted sets. Therefore, as a first approach we consider
direct interventions on the parents as “maximally informative”, and the goal of the proposed policies
is to pick such interventions.

B Detailed description of ICP

Here we present a slightly adapted version of Invariant Causal Prediction [27]. In contrast to the
original formulation, algorithm 2 takes candidate sets as an additional, optional argument. If
candidate sets is not provided, algorithm 2 corresponds to the original ICP formulation where the
null hypothesis H0,S needs to be tested for all subsets of the predictors. As detailed in Corollary 3.1,
A-ICP (algorithm 1) does not require testing all subsets in each iteration. Hence, when ICP is
called as a subroutine in A-ICP only the accepted sets from the previous iteration are provided as
candidate sets to ICP.
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In general terms, the null hypothesis H0,S states that the distribution of the response Y conditional
on the predictors XS is invariant across the different environments. Depending on which ICP version
is employed, the specific formulation of null hypothesis is adapted to the respective problem setting.
In the linear case, one can test for the equality of the regression coefficients and the noise variances
across environments but other options are also possible (for details, please see [27]). When using
nonlinear ICP [14], the environment is considered as an additional variable E in the system and the
null hypothesis then corresponds to Y ⊥⊥ E|XS which is tested using a non-parametric conditional
independence test. To formulate the algorithm below generically, we leave open what formulation
and test is chosen for H0,S .

Algorithm 2: ICP
Output :accepted sets sets for which the null hypothesis cannot be rejected,

Ŝ(E) estimate of the parents of the response
Input : i.i.d. samples of (X,Y ) from different environments E ,

candidate sets sets for which to test the null hypothesis,
α significance level

if candidate sets is null then
candidate sets← S ⊆ {1, . . . , p}

end
for each S in candidate sets do

Test whether H0,S holds at level α.
end
Ŝ(E) := ⋂

S:H0,S not rejected S;
accepted sets← {S | H0,S not rejected};
return accepted sets, Ŝ(E)

C Analysis of computational complexity

The runtime of A-ICP depends on (i) the runtime of ICP, and (ii) the runtime of the chosen intervention
selection policy. The runtime of ICP depends on the complexity c(N, e, k) of testing the invariance
from Eq. (1) for a set of predictors S of size k over a total of N observations from e environments.
Thus, for each iteration of A-ICP, the cost of running ICP on all sets of predictors is∑

S⊆{1,...,p}

c(N, e, |S|) ≤ 2pc(N, e, p).

Furthermore, let s(N, e, p) denote the complexity of the chosen intervention selection policy. In this
notation, the complexity of running A-ICP for a total of T iterations is

O(T2pc(N, e, p)s(N, e, p)). (2)

In the experiments of section 5, we test invariance by performing a least-squares regression of the
response on the predictors, and then running a two-sample t-test and an F-test [27, section 3.1.2]
over the residuals. Under this approach, the complexity of testing a single set of predictors of size
k is the cost of performing a least-squares regression and computing the residuals (O(k2N)) and
the cost of performing the t-test and F-test over each split of the e environments (O(eN)). Thus,
c(N, e, k) = O(N(k2 + e)).

The cost of the empty-set strategy corresponds to that of testing the empty set over the initial and
current environments, i.e. c(N, 2, 0). For the ratio strategy, one must compute the stability ratio (c.f.
Definition 2.2), which in the worst case (all sets are accepted) incurs a cost of O(p2p). The Markov
strategy carries the cost of performing a Lasso regression in the first iteration, which is dominated by
the other terms in Equation 2.

By Corollary 3.1, at each iteration it suffices for ICP to consider only the sets accepted in the previous
iteration. On average, this provides a substantial speed up as not all 2p subsets of predictors need to
be re-tested in each iteration. However, the complexity is still exponential in the number of variables
p, which limits the applicability of A-ICP to “large p” settings. Nonetheless, A-ICP can still be useful
in settings where the time needed to carry out an experiment far outweighs the computation time to
select the next experiment, which is common in empirical sciences like biology.
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D Additional experimental results

Here, we present additional experimental results. In section D.1, we show the average number
of interventions until exact recovery (Figure D.5) for the finite-sample experiments presented in
section 5. In section D.2, we provide additional results for the total 50 iterations over which the
policies are run: the family-wise error rate is shown in Figure D.6, Figures D.8 and D.7 show the
Jaccard similarity and the average number of iterations until exact recovery, respectively. The error
analysis of the Markov blanket estimation procedure is displayed in section D.4, Figure D.10. In
section D.3, we present the results from running ABCD and A-ICP with different sizes of the initial
observational sample. Finally, section D.5 contains additional results comparing the interplay between
the A-ICP significance level and the performance for different intervention strengths.

D.1 Average number of interventions for exact recovery
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Figure D.5: (finite regime) Average number of interventions until the causal parents are recovered
exactly for the first 20 iterations of A-ICP, for each one of the 300 SCMs. If Ŝ 6= S∗ at t = 20, we
set the statistic to 20. For each SCM, we average the performance over the 8 different random seeds
considered. The average performance of each SCM is represented by a dot and connected across
policies by a grey line. The total average of interventions employed by each policy is given below its
label. The “e” policy performs well across all sample sizes, and is the best performer except at 1000
obs./sample where it falls behind the “e + r” and “Markov + e“ policies.
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D.2 Results for 50 interventions

We run the policies for a total of 50 interventions, to evaluate their performance in a setting where
more experimental rounds are possible.

D.2.1 Family-wise error rate

In Figure D.6 we plot the family-wise error rate (FWER) P̂ (Ŝ 6⊆ S∗). Recall that to achieve FWER
control across all iterations, we have to apply a correction to the level at which ICP is run in each
iteration of A-ICP (also see Appendix B, algorithm 1). Due to the strong dependence between the
tests, we use a Bonferroni correction by running ICP at iteration t at the level α/T where α is the
overall significance level and T is the total number of iterations. Figure D.6 confirms that the FWER
is indeed kept below the 0.01 significance level at which A-ICP is run, maintaining the coverage
guarantees provided by Invariant Causal Prediction (ICP). The FWER lies well below the nominal
level of 0.01 due to the construction of the estimate Ŝ. The error control rests on the fact that the
true set of causal parents is rejected with probability smaller than α/T in each round of A-ICP.
However, even if a mistake is made and the true set is rejected, accepting other sets and computing
their intersection to obtain Ŝ may still result in Ŝ ⊆ S∗.
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Figure D.6: (finite regime) Family-wise error rate (FWER) for the finite-sample experiments. The
FWER P̂ (Ŝ 6⊆ S∗), i.e. the probability of wrongly marking as direct causes variables which are not,
is kept below the 0.01 significance level at which A-ICP is run, maintaining the coverage guarantees
provided by Invariant Causal Prediction (ICP) [27].

D.2.2 Jaccard similarity and average number of interventions for exact recovery

The results in Figure D.7 and Figure D.8 illustrate the fact that if there are no constraints on the
number of interventions, the random policy is among the most robust options, as its choice of
intervention targets is unaffected by estimation errors. However, it needs a large number of iterations
to achieve competitive performance and only achieves an average Jaccard similarity close to one
when t approaches 50.

Overall, the empty-set strategy is the best performer across all sample sizes for a large range of
intervention numbers. For the Markov policies, the issues arising from obtaining an estimate of
the Markov blanket are more apparent in this setting: while the policies quickly identify parents
contained in the estimate, they become stuck performing non-informative interventions and fail to
identify the remaining parents for some SCMs. This can be seen in Figure D.7 which shows the
average number of interventions needed to achieve exact recovery (averaged over different random
seeds).

While at 1000 obs./sample, combining the ratio strategy with the empty-set strategy grants an
advantage in performance over using the empty-set strategy alone for the early iterations, this
advantage is lost later on as the combination performs worse for some particular graphs, which
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decreases the average performance. Combining the ratio with the empty-set strategy can in some cases
be less effective than the empty-set strategy alone for the following reasons. First, the interventions
chosen here are quite strong such that the empty-set strategy is not affected by the issue of statistical
power that the empty set may be wrongly accepted after an intervention on a parent, which would then
be discarded from future interventions. Second, in the finite regime, it is not necessarily sufficient
to intervene on a parent once for it to appear in Ŝ due to a lack of power. In other words, after an
intervention on a parent not all unstable sets are necessarily rejected. In contrast, intervening on
children of the response can sometimes lead to a larger number of unstable sets being rejected and
hence an estimate Ŝ with larger Jaccard similarity. Intervening on children of the response tends to
occur more often when using the empty-set strategy alone. Lastly, the ratio strategy is subject to the
following testing errors: falsely rejecting stable sets and wrongly accepting unstable sets can bias
the estimate of the stability ratio of some parents and thereby keep A-ICP from intervening on such
parents. Since a rejected set is not re-tested at future iterations (by Corollary 3.1), falsely rejecting a
stable set at some iteration t will also bias the estimate of the stability ratio for future iterations (as
long as the set remains stable). While this discussion highlights the failure cases of the ratio strategy,
the analysis in section D.5 shows that for smaller intervention strengths the empty-set strategy is not
always the best-performing policy, presumably due to the power issue described above.
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Figure D.7: (finite regime) Average number of interventions until the causal parents are recovered
exactly for T = 50, for each one of the 300 SCMs. If Ŝ 6= S∗ at t = 50, we set the statistic to 50. For
each SCM, we average the performance over the 8 different random seeds considered. Each SCM is
represented by a dot and connected across policies by a grey line. The total average of interventions
employed by each policy is given below its label.
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Figure D.8: (finite regime) Average Jaccard similarity for 300 SCMs of size 12 as a function of the
number of interventions for 10, 100 and 1000 observations per sample. Here, α = 0.01 and the
policies’ performance is shown for all 50 iterations.

D.3 Effect of the observational sample size on the performance of ABCD and A-ICP
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Figure D.9: Average Jaccard similarity (top) and family-wise error rate (FWER) (bottom) of the
ABCD and A-ICP estimates, as a function of the number of interventions (50 in total). Both
the Jaccard similarity and family-wise error rate of ABCD are affected by the size of the initial
observational sample. While the performance of A-ICP improves slightly with a larger observational
sample, having a large observational sample is not a requirement of A-ICP. In all cases, A-ICP
maintains the FWER under the desired level (α = 0.1) while its power increases steadily with the
number of interventions. Details about the experimental setup can be found in Appendix E.

19



For the results summarized in Figure D.9, we vary the size of the initial observational sample while
keeping the number of observations per interventional sample fixed at 10. For the observational
sample we consider 50, 100 and 1000 observations. ABCD requires a large observational sample to
obtain a sufficiently good estimate of the posterior over graphs. This leads to relatively large Jaccard
similarities for the first few iterations. In contrast, A-ICP remains conservative at the beginning,
often returning the empty set as an estimate as a large number of predictor sets are stable for small t.
While A-ICP controls the nominal FWER of α = 0.1 over all iterations, its power increases steadily
with the number of interventions, reaching an average Jaccard similarity close to one for large t. In
contrast, ABCD does not control the false positives: while the average Jaccard similarity increases
with the number of iterations, it does not approach one since the estimate still contains false positives
even for large t. The comparison for different observational sample sizes shows that both the average
Jaccard similarity and the FWER improve for ABCD the larger the initial observational sample is.

D.4 Error analysis of the Markov blanket estimation procedure
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Figure D.10: Error analysis of the Markov blanket estimation procedure for the finite regime, for 1000
SCMs of size 12. The estimate is produced by taking the variables with non-zero coefficients resulting
from a Lasso regression over all predictors in the sample from the observational environment. The
regularization parameter is picked individually for each SCM by ten-fold cross-validation. By size
we refer to the number of variables included in the estimate. As expected, the quality of the estimate
improves with the sample size. However, even at the largest sample size, for some SCMs not all
the parents are contained in the estimate. In these cases the policies relying on the Markov strategy
become stuck performing non-informative interventions, and fail to recover all parents after the limit
T of iterations is reached.

20



In figure D.10 we provide further analyses to understand the behavior of the policies using the
Markov strategy. For 1000 SCMs of size 12, the Markov blanket is estimated with the Lasso using
the observational sample. The regularization parameter is chosen by ten-fold cross-validation. In
Figure D.10 we plot (i) the proportion of estimates which contain the Markov blanket (top left); (ii)
the average size of the estimate where size refers to the number of variables included in the estimate
(top right); (iii) proportion of estimates which contain all parents (bottom left); and (iv) the average
size of the estimate when it contains all parents (bottom right). At smaller sample sizes, often not all
parents are included in the estimate (bottom left). Hence, policies using the Markov strategy do not
intervene on them which often results in a failure to identify them. While this issue is attenuated for
larger sample sizes, it does not disappear entirely, even for a sample size of 1000. This explains why
the policies using the Markov strategy have a lower average Jaccard similarity for large t, as can be
seen in Figure D.8.

D.5 A-ICP significance level and intervention strength
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Figure D.11: (finite regime) Performance of the policies for an observational sample of size 100 and
10 observations per interventional sample, for different intervention strengths (rows), and significance
levels of A-ICP (columns). Overall, the gains in performance over the random policy increase with
the intervention strength. The performance of the empty-set policy increases with the level, as power
also increases and the empty set is rejected more often. The ratio policy is largely unaffected by
the change in level, and often yields additional improvements when used in combination with the
empty-set strategy in the initial iterations.

To correct for multiple testing of the accepted sets, we apply a Bonferroni correction to the significance
level of the statistical tests performed in each round of A-ICP (see algorithm 1). To assess the
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sensitivity of the results with respect to the overall significance level of A-ICP α and the intervention
strength, we run A-ICP at 100 observational data points and 10 observations per interventional sample
for α ∈ {0.005, 0.01, 0.05, 0.1}, and shift interventions with variance 1 and means 3, 5 and 7. Details
about the experimental settings can be found in Appendix E.

Figure D.11 shows that the ratio and the empty-set strategy yield larger improvements over the
random policy for larger intervention strengths. This is to be expected as statistical power increases
with the intervention strength and both the ratio and the empty-set strategy rely on statistical testing
to choose the intervention target. While the results reported in section 5 are based on experiments
with strong interventions (shift interventions with variance 1 and mean 10), the relative performance
between the ratio and the empty-set strategy changes when considering weaker interventions. For
instance, for interventions with mean 5 (second row), the empty-set strategy does not reach an average
Jaccard similarity of one for t = 50. For large t, the ratio as well as the random strategy perform
better.

E Experimental settings

Table E.1: Overview of the experimental parameters considered. Below, ne denotes the number of
interventions per interventional sample. For the ABCD experiments, we additionally vary the size of
initial observational sample. Unless indicated otherwise, all interventions are shift interventions with
different means µ and variance σ2 = 1.

# SCMs # seeds ne p T α Interventions

Population 1000 8 — 15 15 — µ = 10

Finite regime 300 8 {10, 100, 1000} 12 50 .01 µ = 10

ABCD 100 4 10 12 50 .1 do, µ = 9

Figure D.11 100 4 10 12 50 {.005, .01, .05, .1} µ ∈ {3, 5, 7}

The code to reproduce the experimental results is provided in the repositories https://github.
com/juangamella/aicp and https://github.com/juangamella/abcd. Additionally, to gen-
erate synthetic interventional data we make the python package sempler (https://github.com/
juangamella/sempler) available.

Population setting For the experiments, 1000 linear structural causal models of size 15 are ran-
domly generated by sampling from Erdős-Rényi graphs with an average degree of 3. The weights
are sampled uniformly at random from [0.5, 1], and the intercepts and noise variances from [0, 1]. In
the population setting no further assumptions are made on the noise distributions, besides having
finite mean and variance to perform the OLS regression. To perform the regression in the population
setting, we maintain a symbolic representation of distributions that contains their first and second
moments, and allows conditioning and marginalization. Further experiments with SCMs of different
size and parameters yielded very similar results to the ones presented in the main text and are not
shown separately. For every SCM, each policy is run 8 times with different random seeds, to account
for the stochastic component of the policies.

Finite sample setting For the experiments, 300 linear structural causal models of size 12 are
randomly generated, again by sampling from Erdős-Rényi graphs with an average degree of 3. The
weights, variances and intercepts are sampled as in the population setting. Interventions are shift-
interventions with mean 10 and variance 1. Like in the population setting, the policies are run 8 times
with different random seeds, for 50 iterations. To simplify the implementation, we assume that the
underlying noise distributions are Gaussian, and set ICP to use a two-sample t-test and F-test to check
the invariance of the conditional distribution of the response. It is important to note that this is not a
necessary requirement: the results derived in section 2 (e.g. Corollary 2.1) apply to arbitrary SCMs
with arbitrary noise distributions, and ICP can use other statistical tests, including non-parametric
ones. However, we expect that the effect of the sample size on the results will be different under
different noise distributions and tests. Figure 3 corresponds to the results of running A-ICP at a
significance level of 0.01.
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Comparison with ABCD We randomly generate 100 linear structural causal models of size 12, by
sampling from Erdős-Rényi graphs with an average degree of 3. The weights, variances and intercepts
are sampled as in the population setting. ABCD requires a Gaussian SCM, so the underlying noise
distributions are Gaussian and ICP is set to use a two-sample t-test and F-test to check the invariance
of the conditional distribution of the response. At each iteration, each method receives 10 observations
from the newly performed intervention. Interventions are do-interventions, as this is the only type
of intervention that the ABCD implementation considers. Experiments are carried out for different
sizes of the initial observational sample (see Figure D.9), running each method a total of 4 times
to account for stochasticity. The output of ABCD are posterior probabilities over parent sets; the
average Jaccard similarity and FWER are computed by taking the argmax of the posterior. ABCD is
set to use 100 bootstrap samples and A-ICP is run at a significance level of 0.1.

Intervention strength vs. level (Figure D.11) The experiments are run on 100 randomly generated
linear structural causal models of size 12, sampled from Erdős-Rényi graphs with an average degree
of 3. The remaining parameters are sampled as in the population setting. We then compare the perfor-
mance of the random, empty-set and ratio strategies at different significance levels (0.005, 0.01, 0.05
and 0.1) and intervention strengths, i.e. we use shift interventions with variance 1 and means 3, 5 and
7. We collect 100 observations from the initial observational environment and 10 observations from
each interventional environment. Again ICP employs a t-test and F-test to check the invariance of the
conditional distribution of the response.

F Proofs

To simplify notation, let PA(i) be the parents of Xi and let PA(S) = {j ∈ {1, ..., p} | ∃i ∈ S : j ∈
PA(i)} denote the parents of variables in a set S. Similarly, let CH(i) be the children of Xi and let
CH(S) = {j ∈ {1, ..., p} | ∃i ∈ S : j ∈ CH(i)} denote the children of variables in a set S. Let
DE(S) = {j ∈ {1, ..., p} | ∃i ∈ S : j ∈ DE(i)} denote the descendants of variables in a set S. Note
that the descendants of a variable include the variable itself, i.e. i ∈ DE(i).
Lemma 1 (intervened parents appear on all intervention stable sets). Let E be a set of observed
environments and let j ∈ PA(Y ) be directly intervened on in E . Then,

S ⊆ {1, ..., p} is intervention stable =⇒ j ∈ S.

Proof. Assume S ⊆ {1, ..., p} is an intervention stable set such that j /∈ S, and let I denote the
direct intervention on j. Then, there is a path I → j → Y that is unblocked by S, which contradicts
S being intervention stable.

Lemma 2 (sets containing descendants of directly intervened children are unstable). Let i ∈ CH(Y )
be directly intervened on in E . Then, any set S ⊆ {1, ..., p} which contains descendants of i is not
intervention stable.

Proof. Let I denote the direct intervention on i, and let S ⊆ {1, ..., p} : S ∩ DE(i) 6= ∅. Then, the
path Y → i← I is not blocked by S.

Lemma 3 (stability of the empty set). Let E be any set of environments. Then,

∅ ∈ SE ⇐⇒ E contains no interventions on variables in AN(Y ).

Proof. ( =⇒ ) Assume the empty set is stable under environments E which contain an intervention I
on j ∈ AN(Y ). Then there exists a path Y ← ...← j ← I which is not blocked by the empty set,
arriving at a contradiction. (⇐= ) For every intervention I on a variable i, every path from Y to I
either

(i) contains a collider, and is thus blocked by ∅, or

(ii) does not contain a collider and is active under ∅.

Since I is a source node, paths of type (ii) can only be of the form Y ← ...← i← I , which is not
possible as i would then be an ancestor of Y .
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Proposition 1 (ancestors appear on at least half of all stable sets). Let E be any set of observed
environments. Then, for any j ∈ {1, ..., p},

rE(j) < 1/2 =⇒ j /∈ AN(Y ).

Proof. We will prove the equivalent statement j ∈ AN(Y ) =⇒ rE(j) ≥ 1/2. For any i ∈ {1, ..., p}
we have that

rE(i) =
|{S ∈ SE : i ∈ S}|

|{S ∈ SE : i ∈ S}|+ |{S ∈ SE : i /∈ S}|
,

and therefore

rE(i) ≥ 1/2 ⇐⇒ |{S ∈ SE : i ∈ S}| ≥ |{S ∈ SE : i /∈ S}|. (3)

We will show that for any j ∈ AN(Y ), and any intervention stable set S such that j /∈ S, the set
S ∪ {j} is also intervention stable, satisfying the right hand side of Equation 3. To do this, we will
use the fact that S d-separates the response from all interventions, and show that the same is true for
S ∪ {j}, making it intervention stable.

Let I denote an intervention on a variable i. For every path connecting Y and the intervention, either

(i) j appears in the path as a collider,

(ii) j appears in the path but not as a collider,

(iii) j does not appear in the path but is downstream of a collider, or

(iv) j does not appear in the path and is not downstream of a collider.

If S blocks paths of type (ii) and (iv), S ∪{j} also does. Assume now there is a path of type (i) or (iii)
which is blocked under S but active under S∪{j}. This implies that such path is blocked by a collider c
such that j ∈ DE(c) and S∩DE(c) = ∅; thus, there exists a path Y ← ...← j ← ...← c← ... i← I
which is active under S, i.e. S /∈ SE .

Therefore, for all S ∈ SE such that j /∈ S, we have that S ∪ {j} ∈ SE , and

|{S ∈ SE : j ∈ S}| ≥ |{S ∈ SE : j /∈ S}| =⇒ rE(j) ≥ 1/2.

Proposition 2 (intervention stable sets are plausible causal predictors). Let E be a set of observed
environments. Then, for all intervention stable sets S ⊆ {1, ..., p}, it holds that S ∈ CE .

Proof. The following is based on proof of proposition 3 in [30].

Let E be a set of observed environments, and let S ∈ SE be an intervention stable set. From [27] we
know that S is a set of plausible causal predictors iff Y e|Xe

S remains invariant for all environments
e ∈ E . Starting from setting 1, introduce an auxiliary random variable E taking values in E with
equal probability (for simplicity). To model the environments we construct an extended SCM SEfull,
where the variable E appears on the assignments of the intervention variables I , and the assignments
of the remaining variables remain as in SE . As such, in G(SEfull) E is a source node with only edges
into the variables in I . The SCM SEfull induces a distribution Pfull over (E, I,X, Y ), which under
setting 1 has a density p that factorizes with respect to a product measure. Furthermore, since Pfull
satisfies the Markov properties [24] and S d-separates the response from all the intervention variables
in I , it holds that E ⊥⊥ Y | XS ∼ Pfull. Therefore, for every environment e ∈ E , we have that

p(Y e = y | Xe
S = x) = p(Y = y | XS = x,E = e)

=
p(Y = y | XS = x)p(E = e | XS = x)

p(E = e | XS = x)

= p(Y = y | XS = x),

and Y e | Xe
S remains invariant for all environments e ∈ E .
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