
Learning Augmented Energy Minimization via Speed
Scaling

Etienne Bamas∗
EPFL

Switzerland
etienne.bamas@epfl.ch

Andreas Maggiori∗
EPFL

Switzerland
andreas.maggiori@epfl.ch

Lars Rohwedder∗
EPFL

Switzerland
lars.rohwedder@epfl.ch

Ola Svensson∗
EPFL

Switzerland
ola.svensson@epfl.ch

Abstract

As power management has become a primary concern in modern data centers,
computing resources are being scaled dynamically to minimize energy consumption.
We initiate the study of a variant of the classic online speed scaling problem, in
which machine learning predictions about the future can be integrated naturally.
Inspired by recent work on learning-augmented online algorithms, we propose an
algorithm which incorporates predictions in a black-box manner and outperforms
any online algorithm if the accuracy is high, yet maintains provable guarantees if
the prediction is very inaccurate. We provide both theoretical and experimental
evidence to support our claims.

1 Introduction

Online problems can be informally defined as problems where we are required to make irrevocable
decisions without knowing the future. The classical way of dealing with such problems is to design
algorithms which provide provable bounds on the ratio between the value of the algorithm’s solution
and the optimal (offline) solution (the competitive ratio). Here, no assumption about the future is
made. Unfortunately, this no-assumption regime comes at a high cost: Because the algorithm has to
be overly prudent and prepare for all possible future events, the guarantees are often poor. Due to
the success story of machine learning (ML), a recent line of work, first proposed by Lykouris and
Vassilvitskii [13] and Medina and Vassilvitskii [14], suggests incorporating the predictions provided
by ML algorithms in the design of online algorithms. While some related approaches were considered
before (see e.g. Xu and Xu [16]), the attention in this subject has increased substantially in the recent
years [7, 8, 10, 11, 12, 13, 14, 15]. An obvious caveat is that ML predictors often come with no
worst-case guarantees and so we would like our algorithm to be robust to misleading predictions. We
follow the terminology introduced by Purohit et al. [15], where consistency is the performance of an
algorithm when the predictor is perfectly accurate, while robustness is a worst case guarantee that
does not depend on the quality of the prediction. The goal of the works above is to design algorithms
which provably beat the classical online algorithms in the consistency case, while being robust when
the predictor fails.

Problem. The problem we are considering is motivated by the following scenario. Consider a
server that receives requests in an online fashion. For each request some computational work has to
∗Equal Contribution

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

be done and, as a measure of Quality-of-Service, we require that each request is answered within
some fixed time. In order to satisfy all the requests in time the server can dynamically change its
processor speed at any time. However, the power consumption can be a super-linear function of the
processing speed (more precisely, we model the power consumption as sα where s is the processing
speed and α > 1). Therefore, the problem of minimizing energy becomes non-trivial. This problem
can be considered in the online model where the server has no information about the future tasks at
all. However, this assumption seems unnecessarily restrictive as these requests tend to follow some
patterns that can be predicted. For this reason a good algorithm should be able to incorporate some
given predictions about the future. Similar scenarios appear in real-world systems as, for instance,
in dynamic frequency scaling of CPUs or in autoscaling of cloud applications [4, 9]. In the case of
autoscaling, ML advice is already being incorporated into online algorithms in practice [4]. However,
on the theory side, while the above speed scaling problem was introduced by Yao et al. [17] in a
seminal paper who studied it both in the online and offline settings (see also [2, 3]), it has not been
considered in the learning augmented setting.

Contributions. We formalize an intuitive and well-founded prediction model for the classic speed
scaling problem. We show that our problem is non-trivial by providing an unconditional lower bound
that demonstrates: An algorithm cannot be optimal, if the prediction is correct, and at the same time
retain robustness. We then focus on our main contribution which is the design and analysis of a simple
and efficient algorithm which incorporates any ML predictor as a black-box without making any
further assumption. We achieve this in a modular way: First, we show that there is a consistent (but
not robust) online algorithm. Then we develop a technique to make any online algorithm (which may
use the prediction) robust at a small cost. Moreover, we design general methods to allow algorithms
to cope with small perturbations in the prediction. In addition to the theoretical analysis, we also
provide an experimental analysis that supports our claims on both synthetic and real datasets. For
most of the paper we focus on a restricted case of the speed scaling problem by Yao et al. [17], where
predictions can be integrated naturally. However, we show that with more sophisticated algorithms
our techniques extend well to the general case.

Related work. On the one hand, the field of learning augmented algorithms is relatively new, with
a lot of recent exciting results (see for example Gollapudi and Panigrahi [7], Hsu et al. [8], Kodialam
[10], Lattanzi et al. [11], Lee et al. [12], Lykouris and Vassilvitskii [13], Medina and Vassilvitskii
[14], Purohit et al. [15], Xu and Xu [16]). On the other hand, the speed scaling problem proposed
by Yao et al. in [17] is well understood in both the offline and online setting. In its full generality,
a set of tasks each with different arrival times, deadlines, and workloads needs to be completed in
time while the speed is scaled in order to minimize energy. In the offline setting Yao et al. proved
that the problem can be solved in polynomial time by a greedy algorithm. In the online setting, in
which the jobs are revealed only at their release time, Yao et al. designed two different algorithms: (1)
the AVERAGE RATE heuristic (AVR), for which they proved a bound of 2α−1αα on the competitive
ratio. This analysis was later proved to be asymptotically tight by Bansal et al. [3]. (2) The OPTIMAL
AVAILABLE heuristic (OA), which was shown to be αα-competitive in [2]. In the same paper, Bansal
et al. proposed a third online algorithm named BKP for which they proved a competitive ratio
asymptotically equivalent to eα. While these competitive ratios exponential in α might not seem
satisfying, Bansal et al. also proved that the exponential dependency cannot be better than eα. A
number of variants of the problem have also been considered in the offline setting (no preemption
allowed, precedence constraints, nested jobs and more listed in a recent survey by Gerards et al. [6])
and under a stochastic optimization point of view (see for instance [1]). It is important to note that,
while in theory the problem is interesting in the general case i.e. when α is an input parameter, in
practice we usually focus on small values of α such as 2 or 3 since they model certain physical laws
(see e.g. Bansal et al. [2]). Although the BKP algorithm provides the best asymptotic guarantee, OA
or AVR often lead to better solutions for small α and therefore remain relevant.

2 Model and Preliminaries

We define the Uniform Speed Scaling problem, a natural restricted version of the speed scaling
problem [17], where predictions can be integrated naturally. While the restricted version is our main
focus as it allows for cleaner exposition and prediction models, we also show that our techniques

2

can be adapted to more complex algorithms yielding similar results for the general problem (see
Section 3.4 for further extensions).

Problem definition. An instance of the problem can be formally described as a triple (w,D, T)
where [0, T] is a finite time horizon, each time i ∈ {0, . . . , T − D} jobs with a total workload
wi ∈ Z>0 arrive, which have to be completed by time i + D. To do so, we can adjust the speed
si(t) at which each workload wi is processed for t ∈ [i, i+D]. Jobs may be processed in parallel.
The overall speed of our processing unit at time t is the sum s(t) =

∑
i si(t), which yields a power

consumption of s(t)α, where α > 1 is a problem specific constant. Since we want to finish each job
on time, we require that the amount of work dedicated to job i in the interval [i, i+D] should be wi.
In other words,

∫ i+D
i

si(t) dt = wi. In the offline setting, the whole instance is known in advance,
i.e., the vector of workloads w is entirely accessible. In the online problem, at time i, the algorithm is
only aware of all workloads wj with j 6 i, i.e., the jobs that were released before time i. As noted
by Bansal et al. [2], in the offline setting the problem can be formulated concisely as the following
mathematical program:

Definition 1 (Uniform Speed Scaling problem). On input (w,D, T) compute the optimal solution
for

min

∫ T

0

s(t)
α
dt s.t. ∀i

∫ i+D

i

si(t) dt = wi, ∀t
∑
i

si(t) = s(t), ∀i∀t si(t) > 0.

In contrast, we refer to the problem of Yao et al. [17] as the General Speed Scaling problem. The
difference is that there the time that the processor is given to complete each job is not necessarily
equal across jobs. More precisely, there we replace w and D by a set of jobs Jj = (rj , dj , wj), where
rj is the time the job becomes available, dj is the deadline by which it must be completed, and wj is
the work to be completed. As a shorthand, we sometimes refer to these two problems as the uniform
deadlines case and the general deadlines case. As mentioned before, Yao et al. [17] provide a simple
optimal greedy algorithm that runs in polynomial time. As for the online setting, we emphasize that
both the general and the uniform speed scaling problem are non-trivial. More specifically, we prove
that no online algorithm can have a competitive ratio better than Ω((6/5)α) even in the uniform
case (see Theorem 9 in Appendix B). We provide a few additional insights on the performance of
online algorithms for the uniform deadline case. Although the AVR algorithm was proved to be
2α−1 · αα-competitive by Yao et al. [17] with a quite technical proof ; we show, with a simple proof,
that AVR is in fact 2α-competitive in the uniform deadlines case and we provide an almost matching
lower bound on the competitive ratio (see Theorem 10 and Theorem 11 in appendix).

Note that in both problems the processor is allowed to run multiple jobs in parallel. However, we
underline that restricting the problem to the case where the processor is only allowed to run at most
one job at any given point in time is equivalent. Indeed, given a feasible solution s(t) =

∑
i si(t)

in the parallel setting, rescheduling jobs sequentially according to the earliest deadline first (EDF)
policy creates a feasible solution of the same (energy) cost where at each point in time only one job is
processed.

Prediction model and error measure. In the following, we present the model of prediction we are
considering. Recall an instance of the problem is defined as a time horizon [0, T], a duration D, and
a vector of workloads wi, i = 1, . . . , T −D. A natural prediction is simply to give the algorithm a
predicted instance (wpred, T,D) at time t = 0. From now on, we will refer to the ground truth work
vector as wreal and to the predicted instance as wpred.We define the error err of the prediction as

err(wreal, wpred) = ||wreal − wpred||αα =
∑
i

|wreal
i − wpred

i |α.

We simply write err, when wreal and wpred are clear from the context. The motivation for using α in
the definition of err and not some other constant p comes from strong impossibility results. Clearly,
guarantees for higher values p are weaker than for lower p. Therefore, we would like to set p as low
as possible. However, we show that p needs to be at least α in order to make a sensible use of a
prediction (see Theorem 13 in the supplementary material). We further note that it may seem natural
to consider a predictor that is able to renew its prediction over time, e.g., by providing our algorithm a
new prediction at every integral time i. To this end, in Appendix D, we show how to naturally extend

3

all our results from the single prediction to the evolving prediction model. Finally we restate some
desirable properties previously defined in [13, 15] that a learning augmented algorithm should have.
Recall that the prediction is a source of unreliable information on the remaining instance and that
the algorithm is oblivious to the quality of this prediction. In the following we denote by OPT the
energy cost of the optimal offline schedule and by ε > 0 a robustness parameter of the algorithm, the
smaller ε is the more we trust the prediction.

If the prediction is perfectly accurate, i.e., the entire instance can be derived from the prediction, then
the provable guarantees should be better than what a pure online algorithm can achieve. Ideally, the
algorithm produces an offline optimal solution or comes close to it. By close to optimal, we mean that
the cost of the algorithm (when the prediction is perfectly accurate) should be at most c(α, ε) ·OPT,
where c(α, ε) tends to 1 as ε approaches 0. This characteristic will be called consistency.

The competitive ratio of the algorithm should always be bounded even for arbitrarily bad (adversarial)
predictions. Ideally, the competitive ratio is somewhat comparable to the competitive ratio of
algorithms from literature for the pure online case. Formally, the cost of the algorithm should always
be bounded by r(α, ε) ·OPT for some function r(α, ε). This characteristic will be called robustness.

A perfect prediction is a strong requirement. The consistency property should transition smoothly for
all ranges of errors, that is, the algorithm’s guarantees deteriorate smoothly as the prediction error
increases. Formally, the cost of the algorithm should always be at most c(α, ε)·OPT +f(α, ε, err) for
some function f such that f(α, ε, 0) = 0 for any α, ε. This last property will be called smoothness.

Note that our definitions of consistency and robustness depend on the problem specific constant α
which is unavoidable (see Theorem 9 in the appendix). The dependence on the robustness parameter
ε is justified, because no algorithm can be perfectly consistent and robust at the same time (see
Theorem 12 in the appendix), hence a trade-off is necessary.

3 Algorithm

In this section we develop two modular building blocks to obtain a consistent, smooth, and robust
algorithm. The first block is an algorithm which computes a schedule online taking into account the
prediction for the future. This algorithm is consistent and smooth, but not robust. Then we describe
a generic method how to robustify an arbitrary online algorithm at a small cost. Finally, we give a
summary of the theoretical qualities for the full algorithm and a full description in pseudo-code. We
note that in Appendix H and Appendix F we present additional building blocks (see Section 3.4 for
an overview).

3.1 A Consistent and Smooth Algorithm

In the following we describe a learning-augmented online algorithm, which we call LAS-TRUST.

Preparation. We compute an optimal schedule spred for the predicted jobs. An optimal schedule
can always be normalized such that each workload wpred

i is completely scheduled in an interval
[ai, bi] at a uniform speed ci, that is,

spred
i (t) =

{
ci if t ∈ [ai, bi],

0 otherwise.

Furthermore, the intervals [ai, bi] are non-overlapping. For details we refer the reader to the optimal
offline algorithm by Yao et al. [17], which always creates such a schedule.

The online algorithm. At time i we first schedule wreal
i at uniform speed in [ai, bi], but we cap the

speed at ci. If this does not complete the job, that is, wreal
i > ci(bi − ai) = wpred

i , we uniformly
schedule the remaining work in the interval [i, i+D]

More formally,we define si(t) = s′i(t) + s′′i (t) where

s′i(t) =

{
min

{
wreal
i

bi−ai , ci

}
if t ∈ [ai, bi],

0 otherwise.

4

and

s′′i (t) =

{
1
D max{0, wreal

i − wpred
i } if t ∈ [i, i+D],

0 otherwise.

Analysis. It is easy to see that the algorithm is consistent: If the prediction of wreal
i is perfect

(wpred
i = wreal

i), the job will be scheduled at speed ci in the interval [ai, bi]. If all predictions are
perfect, this is exactly the optimal schedule.
Theorem 2. For every 0 < δ 6 1, the cost of the schedule produced by the algorithm LAS-TRUST
is bounded by (1 + δ)α OPT +(12/δ)α · err .

Proof. Define w+
i = max{0, wreal

i − wpred
i } as the additional work at time i as compared to the

predicted work. Likewise, define w−i = max{0, wpred
i − wreal

i }. We use OPT(w+) and OPT(w−)
to denote the cost of optimal schedules of these workloads w+ and w−, respectively. We will
first relate the energy of the schedule s(t) to the optimal energy for the predicted instance, i.e.,
OPT(wpred). Then we will relate OPT(wpred) to OPT(wreal).

For the former let s′i and s′′i be defined as in the algorithm. Observe that s′i(t) 6 spred
i (t) for all i and

t. Hence, the energy for the partial schedule s′ (by itself) is at most OPT(wpred). Furthermore, by
definition we have that s′′i (t) = w+

i /D. In other words, s′′i is exactly the AVR schedule on instance
w+. By analysis of AVR, we know that the total energy of s′′i is at most 2α OPT(w+). Since the
energy function is non-linear, we cannot simply add the energy of both speeds. Instead, we use
the following inequality: For all x, y > 0 and 0 < γ 6 1, it holds that (x + y)α 6 (1 + γ)αxα +(

2
γ

)α
yα.This follows from a simple case distinction whether y 6 γx. Thus, (substituting γ for δ/3)

the energy of the schedule s is bounded by∫
(s′(t) + s′′(t))αdt 6 (1 + δ/3)α

∫
s′i(t)

αdt+ (6/δ)α
∫
s′′i (t)αdt

6 (1 + δ/3)α OPT(wpred) + (12/δ)α OPT(w+). (1)

For the last inequality we used that the competitive ratio of AVR is 2α.

In order to relate OPT(wpred) and OPT(wreal), we argue similarly. Notice that scheduling wreal

optimally (by itself) and then scheduling w− using AVR forms a valid solution for wpred. Hence,

OPT(wpred) 6 (1 + δ/3)α OPT(wreal) + (12/δ)α OPT(w−).

Inserting this inequality into (1) we conclude that the energy of the schedule s is at most

(1 + δ/3)2α OPT(wreal) + (12/δ)α(OPT(w+) + OPT(w−))

6 (1 + δ)α OPT(wreal) + (12/δ)α · err .

This inequality follows from the fact that the error function ‖·‖αα is always an upper bound on the
energy of the optimal schedule (by scheduling every job within the next time unit).

3.2 Robustification

In this section, we describe a method ROBUSTIFY that takes any online algorithm which guarantees
to complete each job in (1 − δ)D time, that is, with some slack to its deadline, and turns it into a
robust algorithm without increasing the energy of the schedule produced. Here δ > 0 can be chosen
at will, but it impacts the robustness guarantee. We remark that the slack constraint is easy to achieve:
In Appendix E we prove that decreasing D to (1− δ)D increases the energy of the optimum schedule
only very mildly. Specifically, if we let OPT(wreal, (1− δ)D,T) and OPT(wreal, D, T) denote the
costs of optimal schedules of workload wreal with durations (1− δ)D and D, respectively, then:

Claim 3. For any instance (wreal, D, T) we have that OPT(wreal, (1 − δ)D,T) 6
1

(1−δ)α−1 OPT(wreal, D, T).

Hence, running a consistent algorithm with (1− δ)D will not increase the cost significantly. Alterna-
tively, we can run the online algorithm with D, but increase the generated speed function by 1/(1− δ)

5

δD
time

speed

Figure 1: A schedule and its convolution.

and reschedule all jobs using EDF. This also results in a schedule where all jobs are completed in
(1− δ)D time.

For a schedule s of (wreal, (1 − δ)D,T) we define the δ-convolution operator which returns the
schedule s(δ) of the original instance (wreal, D, T) by

s
(δ)
i (t) =

1

δD

∫ t

t−δD
si(r) dr

for each i ∈ T (letting si(r) = 0 if r < 0). See Figure 1 for an illustration. The name comes from
the fact that this operator is the convolution of si(t) with the function f(t) that takes value 1/(δD) if
0 6 t 6 δD and value 0 otherwise.

Next we state three key properties of the convolution operator, all of which follow from easy
observations or standard arguments that are deferred to Appendix G.

Claim 4. If s is a feasible schedule for (wreal, (1 − δ)D,T) then s(δ) is a feasible schedule for
(wreal, D, T).

Claim 5. The cost of schedule s(δ) is not higher than that of s, that is,∫ T

0

(s(δ)(t))αdt 6
∫ T

0

(s(t))αdt.

Let sAVR
i (t) denote the speed of workload wreal

i of the AVERAGE RATE heuristic, that is, sAVR
i (t) =

wreal
i /D if i 6 t 6 i+D and sAVR

i (t) = 0 otherwise. We relate s(δ)i (t) to sAVR
i (t).

Claim 6. Let s be a feasible schedule for (wreal, (1− δ)D,T). Then s(δ)i (t) 6 1
δ s

AVR
i (t).

By using that the competitive ratio of AVERAGE RATE is at most 2α (see Appendix B), we get∫ T

0

(s(δ)(t))αdt 6

(
1

δ

)α ∫ T

0

(sAVR(t))αdt 6

(
2

δ

)α
OPT .

We conclude with the following theorem, which follows immediately from the previous claims.

Theorem 7. Given an online algorithm that produces a schedule s for (wreal, (1− δ)D,T), we can
compute online a schedule s(δ) with∫ T

0

(s(δ)(t))αdt 6 min

{∫ T

0

(s(t))αdt,

(
2

δ

)α
OPT

}
.

3.3 Summary of the Algorithm

By combining LAS-TRUST and ROBUSTIFY, we obtain an algorithm LAS (see Algorithm 1) which
has the following properties. See Appendix A for a formal argument.

Theorem 8. For any given ε > 0, algorithm LAS constructs a schedule of cost at most
min

{
(1 + ε) OPT +O

(
α
ε

)α
err, O

(
α
ε

)α
OPT

}
.

6

Algorithm 1 LEARNING AUGMENTED SCHEDULING (LAS)

Input: T , D, and wpred initially and wreal in an online fashion
Output: A feasible schedule (si)

T−D
i=0

Let δ > 0 with
(
1+δ
1−δ
)α

= 1 + ε.
Compute optimal offline schedule for (wpred, T, (1−δ)D) where the jobs wpred

i are run at uniform
speeds ci an disjoint intervals [ai, bi] using [17].

on arrival of wreal
i do

Let s′i(t) =

{
min

{
wreal
i

bi−ai , ci

}
if t ∈ [ai, bi],

0 otherwise.

Let s′′i (t) =

{
1
D max{0, wreal

i − wpred
i } if t ∈ [i, i+D],

0 otherwise.

Let si(t) = 1
δD

∫ t
t−δD s

′
i(r) + s′′i (r) dr

end on

3.4 Other Extensions

In Appendix H we also consider General Speed Scheduling (the problem with general deadlines) and
show that a more sophisticated method allows us to robustify any algorithm even in this more general
setting. Hence, for this case we can also obtain an algorithm that is almost optimal in the consistency
case and always robust.

The careful reader may have noted that one can craft instances so that the used error function err
is very sensitive to small shifts in the prediction. An illustrative example is as follows. Consider
a predicted workload wpred defined by wpred

i = 1 for those time steps i that are divisible by a
large constant, say 1000, and let wpred

i = 0 for all other time steps. If the real instance wreal

is a small shift of wpred say wreal
i+1 = wpred

i then the prediction error err(wreal, wpred) is large
although wpred intuitively forms a good prediction of wreal. To overcome this sensitivity, we first
generalize the definition of err to errη which is tolerant to small shifts in the workload. In particular,
errη(wreal, wpred) = 0 for the example given above. We then give a generic method for transforming
an algorithm so as to obtain guarantees with respect to errη instead of err at a small loss. Details can
be found in Appendix F.

4 Experimental analysis

In this section, we will test the LAS algorithm on both synthetic and real datasets. We will calculate
the competitive ratios with respect to the offline optimum. We fix α = 3 in all our experiments as
this value models the power consumption of modern processors (see Bansal et al. [2]). For each
experiment, we compare our LAS algorithm to the three main online algorithms that exist for this
problem which are AVR and OA by Yao et al. [17] and BKP by Bansal et al. [2]. We note that the
code is publicly available at https://github.com/andreasr27/LAS.

Artificial datasets. In the synthetic data case, we will mimic the request pattern of a typical data
center application by simulating a bounded random walk. In the following we write Z ∼ U{m,M}
when sampling an integer uniformly at random in the range [m,M]. Subsequently, we fix three
integers s,m,M where [m,M] define the range in which the walk should stay. For each integral
time i we sample Xi ∼ U{−s, s}. Then we set w0 ∼ U{m,M} and wi+1 to be the median value
of the list {m,wi + Xi,M}, that is, if the value wi + Xi remains in the predefined range we do
not change it, otherwise we round it to the closest point in the range. For this type of ground truth
instance we test our algorithm coupled with three different predictors. The accurate predictor for
which we set w̃i ∼ wi + U{−s, s}, the random predictor where we set w̃i ∼ U{m,M} and the
misleading predictor for which w̃i = (M − wi) +m. In each case we perform 20 experiment runs.
The results are summarized in Table 1. In the first two cases (accurate and random predictors) we
present the average competitive ratios of every algorithm over all runs. In contrast, for the last column

7

https://github.com/andreasr27/LAS

Figure 2: From top to bottom: The first two graphs show the performance of LAS when ε = 0.01
and ε = 0.8 with respect to the online algorithms AVR and OA. The bottom graph presents the
prediction error. The timeline was discretized in chunks of ten minutes and D was set to 20.

Table 1: Artificial dataset results

Algorithm Accurate Random Misleading

AVR 1.268 1.268 1.383
BKP 7.880 7.880 10.380
OA 1.199 1.199 1.361
LAS, ε = 0.8 1.026 1.203 1.750
LAS, ε = 0.6 1.022 1.207 1.758
LAS, ε = 0.4 1.018 1.213 1.767
LAS, ε = 0.2 1.013 1.224 1.769
LAS, ε = 0.01 1.008 1.239 1.766

We used m = 20, M = 80, s = 5, T = 220 and D = 20.

(misleading predictor) we present the maximum competitive ratio of each algorithm taken over the 20
runs to highlight the worst case robustness of LAS. We note that in the first case, where the predictor
is relatively accurate but still noisy, LAS is consistently better than any online algorithm achieving a
competitive ratio close to 1 for small values of ε. In the second case, the predictor does not give us
useful information about the future since it is completely uncorrelated with the ground truth instance.
In such a case, LAS experiences a similar performance to the best online algorithms. In the third case,
the predictor tries to mislead our algorithm by creating a prediction which constitutes a symmetric
(around (m + M)/2) random walk with respect to the true instance. When coupled with such a
predictor, as expected, LAS performs worse than the best online algorithm, but it still maintains
an acceptable competitive ratio. Furthermore, augmenting the robustness parameter ε, and thereby
trusting less the predictor, improves the competitive ratio in this case.

Real dataset. We provide additional evidence that the LAS algorithm outperforms purely online
algorithms by conducting experiments on the login requests to BrightKite [5], a no longer functioning
social network. We note that this dataset was previously used in the context of learning augmented
algorithms by Lykouris and Vassilvitskii [13]. In order to emphasize the fact that even a very
simple predictor can improve the scheduling performance drastically, we will use the arguably most
simple predictor possible. We use the access patterns of the previous day as a prediction for the
current day. In Figure 2 we compare the performance of the LAS algorithm for different values
of the robustness parameter ε with respect to AVR and OA. We did not include BKP, since its
performance is substantially worse than all other algorithms. Note that our algorithm shows a
substantial improvement with respect to both AVR and OA, while maintaining a low competitive

8

ratio even when the prediction error is high (for instance in the last days). The first 100 days, where
the prediction error is low, by setting ε = 0.01 (and trusting more the prediction) we obtain an average
competitive ratio of 1.134, while with ε = 0.8 the average competitive ratio slightly deteriorates to
1.146. However, when the prediction error is high, setting ε = 0.8 is better. On average from the first
to the last day of the timeline, the competitive ratio of AVR and OA is 1.36 and 1.24 respectively,
while LAS obtains an average competitive ratio of 1.116 when ε = 0.01 and 1.113 when ε = 0.8,
thus beating the online algorithms in both cases.

More experiments regarding the influence of the α parameter in the performance of LAS algorithm
can be found in Appendix I.

Broader impact

As climate change is a severe issue, trying to minimize the environmental impact of modern computer
systems has become a priority. High energy consumption and the CO2 emissions related to it are
some of the main factors increasing the environmental impact of computer systems. While our work
considers a specific problem related to scheduling, we would like to emphasize that a considerable
percentage of real-world systems already have the ability to dynamically scale their computing
resources2 to minimize their energy consumption. Thus, studying models (like the one presented in
this paper) with the latter capability is a line of work with huge potential societal impact. In addition
to that, although the analysis of the guarantees provided by our algorithm is not straightforward,
the algorithm itself is relatively simple. The latter fact makes us optimistic that insights from this
work can be used in practice contributing to minimizing the environmental impact of computer
infrastructures.

Acknowledgments and Disclosure of Funding

This research is supported by the Swiss National Science Foundation project 200021-184656 “Ran-
domness in Problem Instances and Randomized Algorithms”. Andreas Maggiori was supported by
the Swiss National Science Fund (SNSF) grant no 200020_182517/1 “Spatial Coupling of Graphical
Models in Communications, Signal Processing, Computer Science and Statistical Physics”.

References
[1] Lachlan LH Andrew, Minghong Lin, and Adam Wierman. Optimality, fairness, and robustness

in speed scaling designs. In Proceedings of the ACM SIGMETRICS international conference on
Measurement and modeling of computer systems, pages 37–48, 2010.

[2] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Speed scaling to manage energy and temperature.
J. ACM, 54(1):3:1–3:39, 2007. doi: 10.1145/1206035.1206038. URL https://doi.org/10.
1145/1206035.1206038.

[3] Nikhil Bansal, David P. Bunde, Ho-Leung Chan, and Kirk Pruhs. Average rate speed scaling.
In LATIN 2008: Theoretical Informatics, 8th Latin American Symposium, Búzios, Brazil, April
7-11, 2008, Proceedings, pages 240–251, 2008. doi: 10.1007/978-3-540-78773-0_21. URL
https://doi.org/10.1007/978-3-540-78773-0_21.

[4] Jeff Barr. New – predictive scaling for ec2, powered by machine learning. AWS News
Blog, November 2018. URL https://aws.amazon.com/blogs/aws/new-predictive-
scaling-for-ec2-powered-by-machine-learning/.

[5] Eunjoon Cho, Seth A. Myers, and Jure Leskovec. Friendship and mobility: User movement
in location-based social networks. In Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’11, page 1082–1090, New
York, NY, USA, 2011. Association for Computing Machinery. ISBN 9781450308137. doi:
10.1145/2020408.2020579. URL https://doi.org/10.1145/2020408.2020579.

[6] Marco E. T. Gerards, Johann L. Hurink, and Philip K. F. Hölzenspies. A survey of offline
algorithms for energy minimization under deadline constraints. J. Scheduling, 19(1):3–19, 2016.

2CPU Dynamic Voltage and Frequency Scaling (DVFS) in modern processors and autoscaling of cloud
applications

9

https://doi.org/10.1145/1206035.1206038
https://doi.org/10.1145/1206035.1206038
https://doi.org/10.1007/978-3-540-78773-0_21
https://aws.amazon.com/blogs/aws/new-predictive-scaling-for-ec2-powered-by-machine-learning/
https://aws.amazon.com/blogs/aws/new-predictive-scaling-for-ec2-powered-by-machine-learning/
https://doi.org/10.1145/2020408.2020579

doi: 10.1007/s10951-015-0463-8. URL https://doi.org/10.1007/s10951-015-0463-
8.

[7] Sreenivas Gollapudi and Debmalya Panigrahi. Online algorithms for rent-or-buy with expert
advice. In Proceedings of the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA, pages 2319–2327, 2019. URL http:
//proceedings.mlr.press/v97/gollapudi19a.html.

[8] Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-based frequency estimation
algorithms. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019, 2019. URL https://openreview.net/forum?id=
r1lohoCqY7.

[9] Craig Kitterman. Autoscaling windows azure applications. Microsoft Azure Blog,
June 2013. URL https://azure.microsoft.com/de-de/blog/autoscaling-windows-
azure-applications/.

[10] Rohan Kodialam. Optimal algorithms for ski rental with soft machine-learned predictions.
CoRR, abs/1903.00092, 2019. URL http://arxiv.org/abs/1903.00092.

[11] Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online schedul-
ing via learned weights. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 1859–1877, 2020.
doi: 10.1137/1.9781611975994.114. URL https://doi.org/10.1137/1.9781611975994.
114.

[12] Russell Lee, Mohammad H. Hajiesmaili, and Jian Li. Learning-assisted competitive algorithms
for peak-aware energy scheduling. CoRR, abs/1911.07972, 2019. URL http://arxiv.org/
abs/1911.07972.

[13] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned ad-
vice. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pages 3302–3311, 2018. URL
http://proceedings.mlr.press/v80/lykouris18a.html.

[14] Andres Muñoz Medina and Sergei Vassilvitskii. Revenue optimization with approximate
bid predictions. In Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach,
CA, USA, pages 1858–1866, 2017. URL http://papers.nips.cc/paper/6782-revenue-
optimization-with-approximate-bid-predictions.

[15] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ML
predictions. In Advances in Neural Information Processing Systems 31: Annual Confer-
ence on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018,
Montréal, Canada, pages 9684–9693, 2018. URL http://papers.nips.cc/paper/8174-
improving-online-algorithms-via-ml-predictions.

[16] Yinfeng Xu and Weijun Xu. Competitive algorithms for online leasing problem in probabilistic
environments. In Advances in Neural Networks - ISNN 2004, International Symposium on
Neural Networks, Dalian, China, August 19-21, 2004, Proceedings, Part II, pages 725–730,
2004. doi: 10.1007/978-3-540-28648-6_116. URL https://doi.org/10.1007/978-3-
540-28648-6_116.

[17] F. Frances Yao, Alan J. Demers, and Scott Shenker. A scheduling model for reduced CPU
energy. In 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin,
USA, 23-25 October 1995, pages 374–382, 1995. doi: 10.1109/SFCS.1995.492493. URL
https://doi.org/10.1109/SFCS.1995.492493.

10

https://doi.org/10.1007/s10951-015-0463-8
https://doi.org/10.1007/s10951-015-0463-8
http://proceedings.mlr.press/v97/gollapudi19a.html
http://proceedings.mlr.press/v97/gollapudi19a.html
https://openreview.net/forum?id=r1lohoCqY7
https://openreview.net/forum?id=r1lohoCqY7
https://azure.microsoft.com/de-de/blog/autoscaling-windows-azure-applications/
https://azure.microsoft.com/de-de/blog/autoscaling-windows-azure-applications/
http://arxiv.org/abs/1903.00092
https://doi.org/10.1137/1.9781611975994.114
https://doi.org/10.1137/1.9781611975994.114
http://arxiv.org/abs/1911.07972
http://arxiv.org/abs/1911.07972
http://proceedings.mlr.press/v80/lykouris18a.html
http://papers.nips.cc/paper/6782-revenue-optimization-with-approximate-bid-predictions
http://papers.nips.cc/paper/6782-revenue-optimization-with-approximate-bid-predictions
http://papers.nips.cc/paper/8174-improving-online-algorithms-via-ml-predictions
http://papers.nips.cc/paper/8174-improving-online-algorithms-via-ml-predictions
https://doi.org/10.1007/978-3-540-28648-6_116
https://doi.org/10.1007/978-3-540-28648-6_116
https://doi.org/10.1109/SFCS.1995.492493

A Omitted Proofs from Section 3

Theorem 8. For any given ε > 0, algorithm LAS constructs a schedule of cost at most
min

{
(1 + ε) OPT +O

(
α
ε

)α
err, O

(
α
ε

)α
OPT

}
.

Proof. We choose δ such that (1+δ
1−δ)α = 1 + ε. Note that δ 6 ε/(6α). By Claim 3 we know that

OPT(wreal, (1− δ)D,T) 6

(
1

1− δ

)α
OPT .

Hence, by Theorem 2 algorithm LAS-TRUST constructs a schedule with cost at most(
1 + δ

1− δ

)α
OPT +O

(
1

δ

)α
err

Finally, we apply ROBUSTIFY and with Theorem 7 obtain a bound of

min

{(
1 + δ

1− δ

)α
OPT +O

(
1

δ

)α
err, O

(
1

δ

)α
OPT

}
6 min

{
(1 + ε) OPT +O

(α
ε

)α
err, O

(α
ε

)α
OPT

}
.

B Pure online algorithms for uniform deadlines

Since most related results concern the general speed scaling problem, we give some insights about
the uniform speed scaling problem in the online setting without predictions. We first give a lower
bound on the competitive ratio for any online algorithm for the simplest case where D = 2 and then
provide an almost tight analysis of the competitive ratio of AVR.
Theorem 9. There is no (randomized) online algorithm with an (expected) competitive ratio better
than Ω ((6/5)

α
).

Proof. Consider D = 2 and two instances J1 and J2. Instance J1 consists of only one job that is
released at time 0 with workload 1 and J2 consists of the same first job with a second job which starts
at time 1 with workload 2.

In both instances, the optimal schedule runs with uniform speed at all time. In the first instance, it
runs the single job for 2 units of time at speed 1/2. The energy-cost is therefore 1/2α−1. In the
second instance, it first runs the first job at speed 1 for one unit of time and then the second job at
speed 1 for 2 units of time. Hence, it has an energy-cost of 3.

Now consider an online algorithm. Before time 1 both instances are identical and the algorithm
therefore behaves the same. In particular, it has to decide how much work of job 1 to process between
time 0 and 1. Let us fix some γ > 0 as a threshold for the amount of work dedicated to job 1 by the
algorithm before time 1. We have the following two cases depending on the instance.

1. If the algorithm processes more that γ units of work on job 1 before time 1 then for instance
J1 the energy cost is at least γα. Hence the competitive ratio is at least γα · 2α−1.

2. On the contrary, if the algorithm works less than γ units of work before the release of the
second job then in instance J2 the algorithm has to complete at least 3− γ units of work
between time 1 and 3. Hence, its competitive ratio is at least 2/3 · ((3− γ)/2)α.

Choosing γ such that these two competitive ratios are equal gives γ = 3
31/α41−1/α+1

and yields a
lower bound on the competitive ratio of at least:

2α−1
(

3

31/α41−1/α + 1

)α
.

This term asymptotically approaches 1/2·(6/5)α and this already proves the theorem for deterministic
algorithms. More precisely, it proves that any deterministic algorithm has a competitive ratio of

11

at least Ω ((6/5)α) on at least one of the two instances J1 or J2. Hence, by defining a probability
distribution over inputs such that p(J1) = p(J2) = 1

2 and applying Yao’s minimax principle we get
that the expected competitive ratio of any randomized online algorithm is at least

(1/2) · 2α−1
(

3

31/α41−1/α + 1

)α
.

which again gives Ω ((6/5)α) as lower bound, this time against randomized algorithms.

We now turn ourselves to the more specific case of the AVR algorithm with the following two results.
We recall that the AVR algorithm was shown to be 2α−1 · αα-competitive by Yao et al. [17] in the
general deadlines case. In the case of uniform deadlines, the competitive ratio of AVR is actually
much better and proofs are much less technical than the original analysis of Yao et al. Recall that for
each job i with workload wi, release ri, and deadline di ; AVR defines a speed si(t) = wi/(di − ri)
if t ∈ [ri, di] and 0 otherwise.

Theorem 10. AVR is 2α-competitive for the uniform speed scaling problem.

Proof. Let (w,D, T) be a job instance and sOPT be the speed function of the optimal schedule for
this instance. Let sAVR be the speed function produced by the AVERAGE RATE heuristic on the same
instance. It suffices to show that for any time t we have

sAVR(t) 6 2 · sOPT(t).

Fix some t. We assume w.l.o.g. that the optimal schedule runs each job j isolated for a total time of
p∗j . By optimality of the schedule, the speed during this time is uniform, i.e., exactly wj/p∗j . Denote
by jt the job that is processed in the optimal schedule at time t.

Let j be some job with rj 6 t 6 rj +D. It must be that

wj
p∗j

6
wjt
p∗jt

= sOPT(t). (2)

Note that all jobs j with rj 6 t 6 rj + D are processed completely between t − D and t + D.
Therefore, ∑

Jj :rj6t6rj+D

p∗j 6 2D.

With (2) it follows that∑
Jj :rj6t6rj+D

wj 6 sOPT(t)
∑

Jj :rj6t6rj+D

p∗j 6 2D · sOPT(t).

We conclude that
sAVR(t) =

∑
Jj :rj6t6rj+D

wj
D

6 2 · sOPT(t).

Next, we show that our upper bound on the exponential dependency in α of the competitive ratio for
AVR (in Theorem 10) is tight for the uniform deadlines case.

Theorem 11. Asymptotically (α approaches∞), the competitive ratio of the AVR algorithm for the
uniform deadlines case is at least

2α

eα

Proof. Assume α > 2 and consider a two-job instance with one job arriving at time 0 of workload 1
and one job arriving at time (1− 2/α)D with workload 1. One can check that the optimal schedule
runs at constant speed throughout the whole instance for a total energy of(

2

(2− 2/α)D

)α
· (2− 2/α)D.

12

On the other hand, on interval [(1− 2/α)D,D], AVR runs at speed 2/D. This implies the following
lower bound on the competitive ratio:

(2/D)α · (2/α)D(
2

(2−2/α)D

)α
· (2− 2/α)D

=
2α

α

(
1− 1

α

)α−1
which approaches to 2α/(eα) as α tends to infinity.

C Impossibility results for learning augmented speed scaling

This section is devoted to prove some impossibility results about learning augmented algorithms in
the context of speed scaling. We first prove that our trade-offs between consistency and robustness
are essentially optimal. Again, we describe an instance as a triple (w,D, T).
Theorem 12. Assume a deterministic learning enhanced algorithm is (1 + ε/3)α−1-consistent for
any α > 1 and any small enough constant ε > 0 (independently of D). Then the worst case
competitive ratio of this algorithm cannot be better than Ω

(
1
ε

)α−1
.

Proof. Fix D big enough so that dεDe 6 2 · (εD). Consider two different job instances J1 and
J2: J1 contains only one job of workload 1 released at time 0 and J2 contains an additional job of
workload 1/ε released at time dεDe. On the first instance, the optimal cost is 1/Dα−1 while the
optimum energy cost for J2 is (1/dεDe)α−1 +D/(εD)α 6 (1/ε)α · ((1 + ε)/Dα−1).

Assume the algorithm is given the job of workload 1 released at time 0 and additionally the prediction
consists of one job of workload 1/ε released at time dεDe. Note that until time dεDe the algorithm
cannot tell the difference between instances J1 and J2.

Depending on how much the algorithm works before time dεDe, we distinguish the following cases.

1. If the algorithm works more that 1/2 then the energy spent by the algorithm until time dεDe
is at least

(1/2)α/(dεDe)α−1 = Ω

(
1

εD

)α−1
.

2. However, if it works less than 1/2 then on instance J2, a total work of at least (1/ε+ 1−
1/2) = (1/2 + 1/ε) remains to be done in D time units. Hence the energy consumption on
instance J2 is at least

(1/2 + 1/ε)α

Dα−1 .

If the algorithm is (1 + ε/3)α−1-consistent, then it must be that the algorithm works more that 1/2
before time dεDe otherwise, by the second case of the analysis, the competitive ratio is at least

(1/2 + 1/ε)α

(1/ε)α(1 + ε)
=

(1 + ε/2)α

1 + ε
> (1 + ε/3)α−1,

where the last inequality holds for α > 4 and ε small enough.

However it means that if the algorithm was running on instance J1 (i.e. the prediction is incorrect)
then by the first case the approximation ratio is at least Ω

(
1
ε

)α−1
.

We then argue that one cannot hope to rely on some lp norm for p < α to measure error.
Theorem 13. Fix some α and D and let p such that p < α. Suppose there is an algorithm which on
some prediction wpred computes a solution of value at most

C ·OPT +C ′ · ‖w − wpred‖pp.

Here C and C ′ are constants that can be chosen as an arbitrary function of α and D.

Then it also exists an algorithm for the online problem (without predictions) which is (C + ε)-
competitive for every ε > 0.

13

In other words, predictions do not help, if we choose p < α.

Proof. In the online algorithm we use the prediction-based algorithm AP as a black box. We set
the prediction w̃ to all 0. We forward each job to AP , but scale its work by a large factor M . It is
obvious that by scaling the optimum of the instance increases exactly by a factor Mα. The error in
the prediction, however, increases less:

‖M · w −M · wpred‖pp = Mp · ‖w − wpred‖pp.

We run the jobs as AP does, but scale them down by M again. Thus, we get a schedule of value

M−α(Mα · C ·OPT +Mp · C ′ · ‖w − wpred‖pp) = C ·OPT +Mp−α · C ′ · ‖w − wpred‖pp. (3)

Now if we choose M large enough, the second term in (3) becomes insignificant. First, we relate the
prediction error to the optimum. First note that

OPT > (1/Dα) · ||w||αα
since the optimum solution cannot be less expensive than running all jobs i disjointly at speed wi/D
for time D. Second note that ‖w‖pp 6 ||w||αα since |x|p 6 |x|α for any x > 1 (recall that we assumed
our workloads to be integral). Hence we get that,

‖w − wpred‖pp = ‖w‖pp 6 Dα ·OPT .

Choosing M sufficiently large gives Mp−αC ′Dα < ε, which implies that (3) is at most (C +
ε) OPT.

D Extension to evolving predictors

In this section, we extend the result of Section 3 to the case where the algorithm is provided several
predictions over time. In particular, we assume that the algorithm is provided a new prediction at each
integral time t. The setting is natural as for a very long timeline, it is intuitive that the predictor might
renew its prediction over time. Since making a mistake in the prediction of a very far future seems
also less hurtful than making a mistake in predicting an immediate future, we define a generalized
error metric incorporating this idea.

Let 0 < λ < 1 be a parameter that describes how fast the confidence in a prediction deteriorates
with the time until the expected arrival of the predicted job. Define the prediction received at time t
as a workload vector wpred(t). Recall we are still considering the uniform deadlines case hence an
instance is defined as a triplet (w,D, T).

We then define the total error of a series of predictions as

err(λ) =
∑
t

∞∑
i=t+1

|wreal
i − wpred

i (t)|α · λi−t.

In the following we reduce the evolving predictions model to the single prediction one.

We would like to prove similar results as in the single prediction setting with respect to err(λ). In order
to do so, we will split the instance into parts of bounded time horizon, solve each one independently
with a single prediction, and show that this also gives a guarantee based on err(λ). In particular, we
will use the algorithm for the single prediction model as a black box.

The basic idea is as follows. If no job were to arrive for a duration of D, then the instance before this
interval and afterwards can be solved independently. This is because any job in the earlier instance
must finish before any job in the later instance can start. Hence, they cannot interfere. At random
points, we ignore all jobs for a duration of D, thereby split the instance. The ignored jobs will be
scheduled sub-optimally using AVR. If we only do this occasionally, i.e., after every intervals of
length� D, the error we introduce is negligible.

We proceed by defining the splitting procedure formally. Consider the timeline as infinite in both
directions. To split the instance, we define some interval length 2kD, where k ∈ N will be specified
later. We split the infinite timeline into contiguous intervals of length 2kD. Moreover, we choose

14

an offset x ∈ {0, · · · , k − 1} uniformly at random. Using these values, we define intervals Ii =
[2((i − 1)k − x)D, 2(ik − x)D). We will denote by ti = (2(i − 1)k − x)D the start time of the
interval Ii. Consequently, the end of Ii is ti+1.

In each interval Ii, we solve the instance given by the jobs entirely contained in this interval using
our algorithm with the most recent prediction as of time ti, i.e., wpred(ti), and schedule the jobs
accordingly. We write sALG(i) for this schedule. For the jobs that are overlapping with two contiguous
intervals we schedule them independently using the AVERAGE RATE heuristic. The schedule for the
jobs overlapping with intervals Ii and Ii+1 will be referred to as sAVR(i).

It is easy to see that this algorithm is robust: The energy of the produced schedule is∫ (∑
i

[
sALG(i)(t) + sAVR(i)(t)

])α
dt

6 2α
∫ (∑

i

sALG(i)(t)

)α
dt+ 2α

∫ (∑
i

sAVR(i)(t)

)α
dt.

Moreover, the first term can be bounded by 2α ·O(α/ε)α OPT using Theorem 8 and the second term
can be bounded by 2α · 2α OPT because of Theorem 10. This gives an overall bound of O(α/ε)α on
the competitive ratio.

In the rest of the section we focus on the consistency/smoothness guarantee. We first bound the costs
of sALG(i) and sAVR(i) isolated (ignoring potential interferences). Using these bounds, we derive an
overall guarantee for the algorithm’s cost.
Lemma 14.

E

(∑
i

∫
sAVR(i)(t)α

)
6

2α

k
OPT

Proof. Fix some i > 0 and let us call Oi the job instance consisting of jobs overlapping with both
intervals Ii and Ii+1. By Theorem 10 the energy used by AVR is at most a 2α-factor from the
optimum schedule. Hence, ∫

sAVR(i)(t)αdt 6 2α OPT(Oi).

Now denote by sOPT the speed function of the optimum schedule over the whole instance. Then

OPT(Oi) 6
∫ ti+D

ti−D
sOPT(t)αdt.

This holds because sOPT processes some work during [ti −D, ti +D] which has to include all of
Oi. Hence, we have that

E

(∑
i

OPT(Oi)

)

6
1

k

k−1∑
x=0

∑
i

∫ 2(ik−x)D+D

2(ik−x)D−D
sOPT(t)αdt

6
1

k

∫
sOPT(t)αdt =

1

k
OPT

The second inequality holds, because the integrals are over disjoint ranges. Together, with the bound
on sAVR(i) we get the claimed inequality.

Lemma 15. ∑
i

∫
sALG(i)(t)αdt 6 (1 + ε) OPT +O

(α
ε

)α
· λ−2kD · err(λ) .

15

Proof. Note that for any i
t(i+1)∑

t=(ti)+1

|wreal
t − wpred

t (ti)|α 6 λ−2kD
t(i+1)∑

t=(ti)+1

|wreal
t − wpred

t (ti)|αλt−ti .

Hence, ∑
i

ti+1∑
t=ti

|wreal
t − wpred

t (ti)|α 6 λ−2kD err(λ) .

Using Theorem 8 for each
∫
s
(i)
ALG(t)αdt, we get a bound depending on

∑ti+1

t=ti
|wreal
t − wpred

t (ti)|α.
Summing over i and using the inequality above finishes the proof of the lemma.

We are ready to state the consistency/smoothness guarantee of the splitting algorithm.
Theorem 16. With robustness parameter O(ε/α) the splitting algorithm produces in expectation a
schedule of cost at most

(1 + ε) OPT +O
(α
ε

)α
· λ−D/ε·O(α/ε)α · err(λ) .

In other words, we get the same guarantee as in the single prediction case, except that the dependency
on the error is larger by a factor of λ−D/ε·O(α/ε)α . The exponential dependency on D may seem
unsatisfying, but (1) it cannot be avoided (see Theorem 17) and (2) for moderate values of λ, e.g.
λ = 1− 1/D, this exponential dependency vanishes.

Proof. We will make use of the following inequality: For all a, b > 0 and 0 < δ 6 1, it holds that

(a+ b)α 6 (1 + δ)aα +

(
3α

δ

)α
bα.

This follows from a simple case distinction whether b 6 a · δ/(2α). In expectation, the cost of the
algorithm is bounded by

E
[∫ (∑

i

[sALG(i)(t) + sAVR(i)(t)]

)α
dt

]
6 (1 + ε)E

[∫ ∑
i

(sALG(i)(t))αdt

]
+

(
3α

ε

)α
E
[∫ ∑

i

(sAVR(i)(t))αdt

]
6 (1 + ε)

∫ ∑
i

sALG(i)(t))αdt

+
1

k

(
6α

ε

)α
OPT .

By choosing k = 1/ε(6α/ε)α the latter term becomes εOPT. With Lemma 15 we can bound the
term above by

(1 + ε)3 OPT +O
(α
ε

)α
· λ−D/ε·O(α/ε)α · err(λ) .

Scaling ε by a constant yields the claimed guarantee.

We complement the result of this section with an impossibility result. We allow the parameter λ in
the definition of err(λ) to be a function of D and we write λ(D).
Theorem 17. Let err (λ) the error in the evolving prediction model be defined with some 0 <
λ(D) < 1 that can depend on D. Suppose there is an algorithm which computes a solution of value
at most

C ·OPT +C ′(D) · err(λ),

where C is independent of D and C ′(D) = o
(

1−λ(D)D

λ(D)D
· 1
Dα

)
. Then there also exists an algorithm

for the online problem (without predictions) which is (C + ε)-competitive for every ε > 0.

16

In particular, note that for λ independent of D, it shows that an exponential dependency in D is
needed in C ′(D) as we get in Theorem 16.

Proof. The structure of the proof is similar to that of Theorem 13. We pass an instance to the assumed
algorithm, but set the prediction to all 0. Unlike the previous proof, we keep the same workloads
when passing the jobs, but subdivide D in to D · k time steps where k will be specified later. This
will decrease the cost of every solution by kα.

Take an instance with interval length D. Like in the proof of Theorem 13 we have that

‖wreal‖αα 6 Dα ·OPT .

Consider the error parameter err(λ)′ for the instance with D′ = D · k. We observe that

err(λ)′ =
∑
t

∞∑
i=t+1

|wreal
k·i |α · λ(D′)k(i−t)

6 ||wreal||αα ·
∞∑
i=1

λ(D′)k·i

6 ||wreal||αα
λ(D′)k

1− λ(D′)k

6 Dα λ(D′)k

1− λ(D′)k
·OPT

Hence, by definition the algorithm produces a solution of cost

C ·OPT /kα + C ′(D′) err(λ)′ 6 (C/kα +Dα λ(D′)k

1− λ(D′)k
C ′(D′)) ·OPT

for the subdivided instance. Transferring it to the original instance, we get a cost of

(C + kαDα λ(D′)k

1− λ(D′)k
C ′(D′)) ·OPT

Therefore, if kα λ(D·k)k
1−λ(D·k)kC

′(D · k) tends to 0 as k grows, for any ε > 0, we can fix k big enough so
that the cost of the algorithm is at most (C + ε) OPT.

E A shrinking lemma

Recall that by applying the earliest-deadline-first policy, we can normalize every schedule to run
at most one job at each time. We say, it is run isolated. Moreover, if a job is run isolated, it is
always better to run it at a uniform speed (by convexity of x 7→ xα on x > 0). Hence, an optimal
schedule can be characterized solely by the total time pj each job is run. Given such pj we will give
a necessary and sufficient condition of when a schedule that runs each job isolated for pj time exists.
Note that we assume we are in the general deadline case, each job j comes with a release rj and
deadline dj and the EDF policy might cause some jobs to be preempted.
Lemma 18. Let there be a set of n jobs with release times rj and deadlines dj for each job j. Let pj
denote the total duration that j should be processed. Scheduling the jobs isolated earliest-deadline-
first, with the constraint to never run a job before its release time, will complete every job j before
time dj if and only if for every interval [t, t′] it holds that∑

j:t6rj ,dj6t′

pj 6 t′ − t (4)

Proof. For the one direction, let t, t′ such that (4) is not fulfilled. Since the jobs with t 6 rj cannot
be processed before t, the last such job j′ to be completed must finish after

t+
∑

j:t6rj ,dj6t′

pj > t+ t′ − t = t′ > dj′

17

For the other direction, we will schedule the jobs earliest-deadline-first and argue that if the schedule
completes some job after its deadline, then (4) is not satisfied for some interval [t, t′].

To this end, let j′ be the first job that finishes strictly after dj′ and consider the interval I0 = [rj′ , dj′].
We now define the following operator that transforms our interval I0 into an interval I1. Consider
tinf to be the smallest release time among all jobs that are processed in interval I0 and define
I1 = [tinf, dj′]. We apply iteratively this operation to obtain interval Ik+1 from interval Ik. We claim
the following properties that we prove by induction.

1. For any k > 0, the machine is never idle in interval Ik.

2. For any k > 0, all jobs that are processed in Ik have a deadline 6 dj′ .

For I0 = [rj′ , dj′], since job j′ is not finished by time dj′ it must be that the machine is never idle in
that interval. Additionally, if a job is processed in this interval, it must be that its deadline is earlier
that dj′ since we process in EDF order. Assume both items hold for Ik and then consider Ik+1 that
we denote by [ak+1, dj′]. By construction, there is a job denoted jk+1 released at time ak+1 that is
not finished by time ak. Therefore the machine cannot be idle at any time in [ak+1, ak] hence at any
time in Ik+1 by the induction hypothesis. Furthermore, consider a job processed in Ik+1 \ Ik. It must
be that its deadline is earlier that the deadline of job jk+1. But job jk+1 is processed in interval Ik
which implies that its deadline is earlier than dj′ and ends the induction.

Denote by k′ the first index such that Ik′ = Ik′+1. We define I∞ = Ik′ . By construction, it must be
that all jobs processed in I∞ have release time in I∞ and by induction the machine is never idle in
this interval and all jobs processed in I∞ have deadline in I∞.

Since job j′ is not finished by time dj′ and by the previous remarks we have that∑
j:rj ,dj∈I∞

pj > |I∞|

which yields a counter example to (4).

We can now prove two shrinking lemmas that are needed in the procedure ROBUSTIFY and its
generalization to general deadlines.
Lemma 19. Let 0 6 µ < 1. For any instance I consider the instance I ′ where the deadline of job j
is set to d′j = rj + (1− µ)(dj − rj) (i.e. we shrink each job by a (1− µ) factor). Then

OPT(I ′) 6 OPT(I)

(1− µ)α−1

Additionally, assuming 0 6 µ < 1/2, consider the instance I ′′ where the deadline of job j is set to
d′′j = rj + (1− µ)(dj − rj) and the release time is set to r′′j = rj + µ(dj − rj). Then

OPT(I ′′) 6 OPT(I)

(1− 2µ)α−1

Proof. W.l.o.g. we can assume that the optimal schedule s for I runs each job isolated and at a
uniform speed. By optimality of the schedule and convexity, each job j must be run at a constant
speed sj for a total duration of pj . Consider the first case and define a speed s′j =

sj
1−µ for all j

(hence the total processing time becomes p′j = (1− µ) · pj).

Assume now in the new instance I ′ we run jobs earliest-deadline-first with the constraint that no job
is run before its release time (with the processing times p′j). We will prove using Lemma 18 that all
deadlines are satisfied. Consider now an interval [t, t′] we then have that∑

j:t6rj ,d′j6t
′

p′j = (1− µ) ·
∑

j:t6rj ,d′j6t
′

pj 6 (1− µ) ·
∑

j:t6rj ,dj6
t′−µt
1−µ

pj

where the last inequality comes from the fact that t′ > d′j = dj − µ(dj − rj) which implies that

dj 6
t′−µrj
1−µ 6 t′−µt

1−µ by using rj > t. By Lemma 18 and the fact that s is a feasible schedule for I

18

we have that ∑
j:t6rj ,d′j6t

′

p′j 6 (1− µ) ·
(
t′ − µt
1− µ

− t
)

= (1− µ) · t
′ − t

1− µ
= t′ − t

which implies by Lemma 18 that running all jobs EDF with processing time p′j satisfies all deadlines
d′j . Now notice the cost of this schedule is at most 1

(1−µ)α−1 times the original schedule s which ends
the proof (each job is ran 1

1−µ times faster but for a time (1− µ) times shorter).

The proof of the second case is similar. Note that for any [t, t′], if

d′′j = rj + (1− µ)(dj − rj) = (1− µ)dj + µrj 6 t′

r′′j = rj + µ(dj − rj) = (1− µ)rj + µdj > t

then we have

(1− µ)dj 6 t′ − µrj 6 t′ − µ

1− µ
(t− µdj)

⇐⇒ (1− µ)dj −
µ2

1− µ
dj 6 t′ − µ

1− µ
· t

⇐⇒ dj((1− µ)2 − µ2) 6 (1− µ)t′ − µt

⇐⇒ dj 6
(1− µ)t′ − µt

1− 2µ

Similarly, we have

(1− µ)rj > t− µdj > t− µ

1− µ
(t′ − µrj)

⇐⇒ (1− µ)rj −
µ2

1− µ
rj > t− µ

1− µ
· t′

⇐⇒ rj >
(1− µ)t− µt′

1− 2µ

Notice that (1−µ)t′−µt
1−2µ − (1−µ)t−µt′

1−2µ = t′−t
1−2µ

Therefore, if we set the speed that each job s′′j is processed to s′′j =
sj

1−2µ then we have a processing
time p′′j = (1− 2µ) · pj and we can write∑

j:t6r′′j ,d
′′
j 6t

′

p′′j = (1− 2µ) ·
∑

j:t6r′′j ,d
′′
j 6t

′

pj

6 (1− 2µ) ·
∑

j:
(1−µ)t−µt′

1−2µ 6rj ,dj6
(1−µ)t′−µt

1−2µ

pj

6 (1− 2µ) · t
′ − t

1− 2µ
= t′ − t

by Lemma 18. Hence we can conclude similarly as in the previous case.

F Making an algorithm noise tolerant

The idea for achieving noise tolerance is that by Lemma 19 we know that if we delay each job’s
arrival slightly (e.g., by ηD) we can still obtain a near optimal solution. This gives us time to reassign
arriving jobs within a small interval in order to make the input more similar to the prediction. We first,
in Section F.1, generalize the error function err to a more noise tolerant error function errη . We then,
in Section F.2, give a general procedure for making an algorithm noise tolerant (see Theorem 20).

19

F.1 Noise tolerant measure of error

For motivation, recall the example given in the main body. Specifically, consider a predicted workload
wpred defined by wpred

i = 1 for those time steps i that are divisible by a large constant, say 1000,
and let wpred

i = 0 for all other time steps. If the real instance wreal is a small shift of wpred say
wreal
i+1 = wpred

i then the prediction error err(wreal, wpred) is large although wpred intuitively forms a
good prediction of wreal. To overcome this sensitivity to noise, we generalize the definition of err.

For two workload vectors w,w′, and a parameter η > 0, we say that w is in the η-neighborhood
of w′, denoted by w ∈ Nη(w′), if w can be obtained from w′ by moving the workload at most ηD
time steps forward or backward in time. Formally w ∈ N(w′) if there exists a solution {xij} to the
following system of linear equations3:

wi =

i+ηD∑
j=i−ηD

xij ∀i

w′j =

j+ηD∑
i=j−ηD

xij ∀j

The concept of η-neighborhood is inspired by the notion of earth mover’s distance but is adapted to
our setting. Intuitively, the variable xij denotes how much of the load wi has been moved to time
unit j in order to obtain w′. Also note that it is a symmetric and reflexive relation, i.e., if w ∈ Nη(w′)
then w′ ∈ Nη(w) and w ∈ Nη(w).

We now generalize the measure of prediction error as follows. For a parameter η > 0, an instance
wreal, and a prediction wpred, we define the η-prediction error, denoted by errη , as

errη(wreal, wpred) = min
w∈Nη(wpred)

err(wreal, w) .

Note that by symmetry we have that errη(wreal, wpred) = errη(wpred, wreal). Furthermore, we have
that errη = err if η = 0 but it may be much smaller for η > 0. To see this, consider the vectors
wpred and wreal

i = wpred
i+1 given in the motivational example above. While err(wpred, wreal) is large,

we have errη(wpred, wreal) = 0 for any η with ηD > 1. Indeed the definition of errη is exactly so as
to allow for a certain amount of noise (calibrated by the parameter η) in the prediction.

F.2 Noise tolerant procedure

We give a general procedure for making an algorithm A noise tolerant under the mild condition that
A is monotone: we say that an algorithm is monotone if given a predictor wpred and duration D, the
cost of scheduling a workload w is at least as large as that of scheduling a workload w′ if w > w′

(coordinate-wise). That increasing the workload should only increase the cost of a schedule is a
natural condition that in particular all our algorithms satisfy.
Theorem 20. Suppose there is a monotone learning-augmented online algorithm A for the uniform
speed scaling problem, that given prediction wpred, computes a schedule of an instance wreal of
value at most

min{C ·OPT +C ′ err(wreal, wpred), C ′′OPT} .

Then, for every η > 0, ζ > 0 there is a learning-augmented online algorithm NOISE-ROBUST(A),
that given prediction wpred, computes a schedule of wreal of value at most ((1+η)(1+ ζ))O(α) times

min{C ·OPT +(1/ζ)O(α)(C + C ′) errη(wreal, wpred), C ′′OPT} .

The pseudo-code of the online algorithm NOISE-ROBUST(A), obtained from A, is given in Algo-
rithm 2.

3To simplify notation, we assume that ηD evaluates to an integer and we have extended the vectors w and w′

to take value 0 outside the range [0, T −D].

20

Algorithm 2 NOISE-ROBUST(A)

Input: Algorithm A, prediction wpred, and η > 0, ζ > 0

1: Initialize A with prediction wpred
i = (1 + ζ)wpred

i−ηD and duration (1− 2η)D

2: Let wonline and wreal be workload vectors, initialized to 0
3: on time step i do
4: W ← wreal

i
5: for j ∈ {i− ηD, . . . , i+ ηD} do
6: if wonline

j +W 6 (1 + ζ)wpred
j then

7: xij ←W
8: W ← 0
9: wonline

j ← wonline
j +W

10: else if wonline
j < (1 + ζ)wpred

j then
11: xij ← (1 + ζ)wpred

j − wonline
j

12: W ←W − xij
13: wonline

j ← (1 + ζ)wpred
j

14: end if
15: end for
16: // Distribute remaining workload W evenly
17: for j ∈ {i− ηD, . . . , i+ ηD} do
18: xij ← xij +W/(2ηD + 1)
19: wonline

j ← wonline
j +W/(2ηD + 1)

20: end for
21: wreal

i ← wonline
i−ηD

22: Feed the job with workload wreal
i to A

23: end on

i

wpred
i

1

2

3

0 1 2 3 4 5
i

wreal
i

1

2

3

0 1 2 3 4 5
i

wonline
i

1

2

3

0 1 2 3 4 5

Figure 3: An example of the construction of the vector wonline from wreal and wpred.

The algorithm constructs a vector wonline ∈ Nη(wreal) while trying to minimize err(wonline, wpred).
Each component wonline

i will be finalized at time i+ ηD. Hence, we forward the jobs to A with a
delay of ηD.

The vector is constructed as follows. Suppose a job wreal
i arrives. The algorithm first (see Steps 4-15)

greedily assigns the workload to the time steps j = i−ηD, i−ηD+ 1, . . . , i+ηD from left-to-right
subject to the constraint that no time step receives a workload higher than (1 + ζ)wpred

j . If not all
workload of wreal

i was assigned in this way, then the overflow is assigned uniformly to the time steps
from i− ηD to i+ ηD (Steps 17-20). Since each wonline

j can only receive workloads during time
steps j − ηD, . . . , j + ηD, it will be finalized at time j + ηD. Thus, at time i we can safely forward
wonline
i−ηD to the algorithmA. Hence, we set the workload of the algorithm’s instance to wreal

i = wonline
i−ηD

(Steps 21-22). This shift together with the fact that a job wreal
i may be assigned to wonline

i+ηD , i.e., ηD
time steps forward in time, is the reason why we run each job with an interval of length (1− 2η)D.
Shrinking the interval of each job allows to make this shift and reassignment while still guaranteeing
that each job is finished by its original deadline.

21

For an example, consider Figure 3. Here we assume that ηD = 1 and for illustrative purposes that
ζ = 0. At time 0, a workload wreal

0 = 1 is released. The algorithm NOISE-ROBUST(A) then greedily
constructs wonline by filling the available slots in wpred

−1 , wpred
0 , and wpred

1 . Since wpred
0 = 3, it fits all

of the workload of wreal
0 at time 0. Similarly the workloads wreal

2 and wreal
3 both fit under the capacity

given by wpred. Now consider the workload wreal
4 = 2 released at time 4. At this point, the available

workload at time 2 is fully occupied and one there is one unit of workload left at time 3. Hence,
NOISE-ROBUST(A) will first assign the one unit of wreal

4 to the third time slot and then split the
remaining unit of workload unit uniformly across the time steps 3, 4, 5. The obtained vector wonline is
depicted on the right of Figure 3. The workload wonline is then fed online to the algorithmA (giving a
schedule of wonline and thus of wreal) so that at time i, A receives the job wreal

i = wonline
i+ηD = wonline

i+1

with a deadline of i+ (1− 2η)D = i+D − 2. This deadline is chosen so as to guarantee that a job
is finished by A within its original deadline. Indeed, by this selection, the last part of the job wreal

4

that was assigned to wonline
5 is guaranteed to finish by time 6 +D − 2 = 4 +D which is its original

deadline.

Having described the algorithm, we proceed to analyze its guarantees which will prove Theorem 20.

Analysis. We start by analyzing the noise tolerance of NOISE-ROBUST(A).
Lemma 21. The schedule computed by NOISE-ROBUST(A) has cost at most (1 +O(η))αC ′′OPT.

Proof. Let OPT and OPT′ denote the cost of an optimum schedule of the original instance wreal

with duration D and the instance wreal with duration (1− 2η)D fed to A, respectively. The lemma
then follows by showing that

OPT′ 6 (1 +O(η))α OPT .

To show this inequality, consider an optimal schedule s of wreal subject to the constraint that every
job wreal

i is scheduled within the time interval [i+ 2ηD, i+ (1− 2η)D]. By Lemma 19, we have
that the cost of this schedule is at most (1 + O(η))α OPT. The statement therefore follows by
arguing that s also gives a feasible schedule of wreal with duration (1− 2η)D. To see this note that
NOISE-ROBUST(A) moves the workload wreal

i to a subset of wreal
i , wreal

i+1, . . . , w
real
i+2ηD. All of these

jobs are allowed to be processed during [i+2ηD, i+(1−2η)D]. It follows that the part of these jobs
that corresponds to wreal

i can be processed in the computed schedule s (whenever it processes wreal
i)

since s process that job in the time interval [i+2ηD, i+(1−2η)D]. By doing this “reverse-mapping”
for every job, we can thus use s as a schedule for the instance wreal with duration (1− 2η)D.

We now proceed to analyze the consistency and smoothness. The following lemma is the main
technical part of the analysis. We use the common notation (a)+ for max{a, 0}.
Lemma 22. The workload vector wonline produced by NOISE-ROBUST(A) satisfies∑

i

[(
wonline
i − (1 + ζ)wpred

i

)+]α
6 O(1/ζ)3α · min

w∈Nη(wreal)

∑
i

[(
wi − wpred

i

)+]α
.

The more technical proof of this lemma is given in Section F.2.1. Here, we explain how it implies the
consistency and smoothness bounds of Theorem 20. For a workload vector w, we use the notation
OPT(w) and OPT′(w) to denote the cost of an optimal schedule of workload w with duration D
and (1− 2η)D, respectively. Now let ŵonline be the workload vector defined by

ŵonline
i = max{wonline

i , (1 + ζ)wpred
i } .

We analyze the cost of the schedule produced by A for ŵonline (shifted by ηD). This also bounds
the cost of running A with wreal: Since A is monotone, the cost of the schedule computed for the
workload ŵonline (shifted by ηD) can only be greater than that computed for wreal which equals
wonline (shifted by ηD). Furthermore, we have by Lemma 22 that

err(ŵonline, (1 + ζ)wpred) =
∑
i

[(
wonline
i − (1 + ζ)wpred

i

)+]α
(5)

6 O(1/ζ)3αerrη(wreal, wpred) .

22

It follows by the assumptions on A that the schedule computed by NOISE-ROBUST(A) has cost at
most

C ·OPT′(ŵonline) + C ′ · err(ŵonline, (1 + ζ)wpred)

6 C ·OPT′(ŵonline) +O(1/ζ)3α · C ′ · errη(wreal, wpred) .

The following lemma implies the consistency and smoothness, as stated in Theorem 20, by relating
OPT′(ŵonline) with the cost OPT = OPT(wreal).
Lemma 23. We have

OPT′(ŵonline) 6 ((1 + η)(1 + ζ))O(α)
(
OPT(wreal) +O(1/ζ)4α errη(wreal, wpred)

)
.

Proof. By the exact same arguments as in the proof of Theorem 2, we have that for any η′ > 0

OPT′(ŵonline) 6 (1 + η′)α OPT′((1 + ζ)wpred) +O(1/η′)α err(ŵonline, (1 + ζ)wpred)

6 (1 + η′)α OPT′((1 + ζ)wpred) +O(1/η′)αO(1/ζ)3α errη(wreal, wpred) ,

where we used (5) for the second inequality.

By Lemma 19, we have that decreasing the duration by a factor (1− 2η) only increases the cost by
factor (1 +O(η))α and so OPT′((1 + ζ)wpred) 6 (1 +O(η))α OPT((1 + ζ)wpred). Furthermore,
as a schedule for a workload wpred gives a schedule for (1 + ζ)wpred by increasing the speed by a
factor (1 + ζ), we get

OPT′((1 + ζ)wpred) 6 (1 +O(η))α(1 + ζ)α OPT(wpred) .

Hence, by choosing η′ = ζ,

OPT′(ŵonline) 6 (1 +O(η))α(1 + ζ)2α OPT(wpred) +O(1/ζ)4α errη(wreal, wpred).

It remains to upper bound OPT(wpred) by OPT(wreal). Let w = argminw∈Nη(wpred) err(w,wreal)

and so errη(wreal, wpred) = err(wreal, w). By again applying the arguments of Theorem 2, we have
for any η′ > 0

OPT(w) 6 (1 + η′)α OPT(wreal) +O(1/η′)α err(wreal, w) .

Now consider an optimal schedule of w subject to that for every time t the job wt is scheduled within
the interval [t + ηD, t + (1 − η)D]. By Lemma 19, we have that this schedule has cost at most
(1 +O(η))α OPT(w). Observe that this schedule for w also defines a feasible schedule for wpred

since the time of any job is shifted by at most ηD in w. Hence, by again selecting η′ = ζ,

OPT(wpred) 6 (1 +O(η))α OPT(w)

6 (1 +O(η))α
(
(1 + ζ)α OPT(wreal) +O(1/ζ)α errη(wreal, wpred)

)
Finally, by combining all inequalities, we get

OPT′(ŵonline) 6 (1 +O(η))2α
(
(1 + ζ)3α OPT(wreal) +O(1/ζ)4α errη(wreal, wpred)

)

F.2.1 Proof of Lemma 22

The lemma is trivially true if there were no jobs that had remaining workloads to be assigned
uniformly, i.e., if we always have W = 0 at Step 16 of NOISE-ROBUST(A). So suppose that there
was at least one such job and consider the directed bipartite graph G with bipartitions A and B
defined as follows:

• A contains a vertex for each component of wreal and B contains one for each component of
wonline. In other words, A and B contain one vertex for each time unit.

• There is an arc from i ∈ A to j ∈ B if |i− j| 6 ηD, that is, if wreal
i could potentially be

assigned to wonline
j .

23

• There is an arc from j ∈ B to i ∈ A if part of the workload of wreal
i was assigned to wonline

j

by NOISE-ROBUST(A), i.e., if xij > 0.

Now let t be the last time step such that the online algorithm had to assign the remaining workload of
wreal
t uniformly. So, by selection, t+ ηD is the last time step so that wonline

t+ηD > (1 + ζ)wpred
t+ηD. For

k > 0, define the sets

Ak = {i ∈ A : the shortest path from t to i has length 2k in G},
Bk = {j ∈ B : the shortest path from t to j has length 2k + 1 in G}.

Here t stands for the corresponding vertex in A. The set Ak consists of those time steps, for which
the corresponding jobs in wreal have been moved in wonline to the time slots in Bk−1 but not to any
time slot in Bk−2, Bk−3, . . . , B0; and Bk are all the time slots where the jobs corresponding to Ak
could have been assigned (but no job in Ak−1, Ak−2, . . . , A0 could have been assigned). By the
selection of t, and the construction of wonline, these sets satisfy the following two properties:

Claim 24. The sets (Ak, Bk)k>0 satisfy

• For any time step j ∈
⋃
k Bk we have wonline

j > (1 + ζ)wpred
j .

• For any two time steps ik ∈ Ak and i` ∈ A` with k > `, we have ik − i` 6 2ηD(k− `+ 2).

Proof of claim. In the proof of the claim we use the notation `(Ak) and `(Bk) to denote the left-most
(earliest) time step in Ak and Bk, respectively. The proof is by induction on k > 0 with the following
induction hypothesis (IH):

1. For any time step j ∈ Bk we have wonline
j > (1 + ζ)wpred

j .

2. B0 = {t − ηD, . . . , t + ηD} and for any (non-empty) Bk with k > 1 we have Bk =
{`(Bk), . . . , `(Bk−1)− 1} and `(Bk)− `(Bk−1) 6 2ηD.

The first part of IH immediately implies the first part of the claim. The second part implies the second
part of the claim as follows: Any time step in A` has a time step in B` that differs by at most ηD.
Similarly, for any time step in Ak there is a time step in Bk−1 at distance at most ηD. Now by the
second part of the induction hypothesis, the distance between these time steps in Bk−1 and B` is at
most (k − `+ 1)2ηD.

We complete the proof by verifying the inductive hypothesis. For the base case when k = 0, we
have B0 = {t− ηD, . . . , t+ ηD} by definition since A0 = {t}. We also have that the first part of
IH holds by the definition of NOISE-ROBUST(A) and the fact that the overflow of job wreal(t) was
uniformly assigned to these time steps.

For the inductive step, consider a time step i ∈ Ak. By definition wreal
i was assigned to a time step

in Bk−1 but to no time step in Bk−2 ∪ . . . ∪B0. Now suppose toward contradiction that there is a
time step j ∈ Ak−1 such that j < i. But then by the greedy strategy of NOISE-ROBUST(A) (jobs
are assigned left-to-right), we reach the contradiction that wreal

i must have been assigned to a time
step in Bk−2 ∪ . . . ∪B0 if k > 2 since then wreal

j is assigned to a time step in Bk−2. For k = 1, we
have j = t and so all time steps in B0 were full (with respect to capacity (1 + ζ)wpred) after t was
processed. Hence, in this case, wreal

i could only be assigned to a time step in B0 if it it had overflow
that was uniformly assigned by NOISE-ROBUST(A), which contradicts the selection of t.

We thus have that each time step in Ak is smaller than the earliest time step in Ak−1. It follows that
Bk = {`(Bk), . . . , `(Bk−1)−1} where `(Bk) = `(Ak)−ηD. The bound `(Bk)−`(Bk−1) 6 2ηD
then follows since, by definition, {`(Ak) − ηD, . . . , `(Ak) + ηD} must intersect Bk−1. This
completes the inductive step for the second part of IH. For the first part, note that the job wreal

`(Ak)
was

also assigned to Bk−1 by NOISE-ROBUST(A). By the greedy left-to-right strategy, this only happens
if the capacity of all time steps Bk is saturated.

24

Now let p be the smallest index such that wreal(Ap+1) + wreal(Ap+2) 6 ζ ′
∑p
i=0 w

real(Ai) where
we select ζ ′ = ζ/10. We have

p+1∑
i=0

wreal(Ai) >
p∑
i=0

wonline(Bi) > (1 + ζ)

p∑
i=0

wpred(Bi) (6)

where the first inequality holds by the definition of the sets and the second is by the first part of the
above claim. In addition, by the selection of p,

p∑
i=0

wreal(Ai) > (1− ζ ′)
p+2∑
i=0

wreal(Ai) . (7)

Now let q = max{p− 4/(ζ ′)2, 0}. We claim the following inequality
p∑
i=q

wreal(Ai) > (1− ζ ′)
p∑
i=0

wreal(Ai) . (8)

The inequality is trivially true if q = 0. Otherwise, we have by the selection of p,
p∑
i=q

wreal(Ai) = (1− ζ ′)
p∑
i=q

wreal(Ai) + ζ ′
p∑
i=q

wreal(Ai)

> (1− ζ ′)
p∑
i=q

wreal(Ai) +
(p− q)

2
(ζ ′)2

q−1∑
i=0

wreal(Ai)

> (1− ζ ′)
p∑
i=q

wreal(Ai) + 2

q−1∑
i=0

wreal(Ai)

and so (8) holds.

We are now ready to complete the proof of the lemma. Let w∗ be a minimizer of the right-hand-side,
i.e.,

w∗ = argmin
w∈Nη(wreal)

∑
i

[(
wi − wpred

i

)+]α
Divide the time steps of the instance into T1, Bp+1, T2 and T3 where T1 contains all time steps earlier
than `(Bp+1), T2 contains the time steps in ∪pi=0Bi, and T3 contains the remaining time steps, i.e.,
those after t+ ηD. By the selection of t, we have wonline

i 6 (1 + ζ)wpred
i for all i ∈ T3. We thus

have that
∑
i

[(
wonline
i − (1 + ζ)wpred

i

)+]α
equals

∑
i∈T1

[(
wonline
i − (1 + ζ)wpred

i

)+]α
+

∑
i∈Bp+1∪T2

[(
wonline
i − (1 + ζ)wpred

i

)+]α
.

We start by analyzing the second sum. The only jobs in wreal that contribute to the workload
of wonline at the time steps in Bp+1 ∪ T2 are by definition those corresponding to time steps in
A0 ∪ . . . ∪Ap+2. In the worst case, we have that wpred is 0 during these time steps and that the jobs
in wreal are uniformly assigned to the same 2ηD + 1 time steps. This gives us the upper bound:∑

i∈Bp+1∪T2

[(
wonline
i − (1 + ζ)wpred

i

)+]α
6

(∑p+2
i=0 w

real(Ai)

2ηD + 1

)α
· (2ηD + 1)

6 (1 + ζ ′)α
(∑p

i=0 w
real(Ai)

2ηD

)α
2ηD .

At the same time, combining (6) (7), and (8) give us
p∑
i=q

wreal(Ai) > (1− ζ ′)2(1 + ζ)

p∑
i=0

wpred(Bi) > (1 + ζ/2)

p∑
i=0

wpred(Bi) .

25

By definition, the jobs in wreal corresponding to time steps ∪pk=qAk can only be assigned to wonline

during time steps T2 = ∪pk=0Bk. Therefore, as the difference between the largest time and smallest
time in ∪pk=qAk is at most 2ηD(p − q + 2) (second statement of the above claim) and thus the
workload of those time steps can be assigned to at most 2ηD(p− q + 4) time steps, we have∑

i∈T2

[(
w∗i − w

pred
i

)+]α
>

(∑p
i=q w

real(Ai)−
∑p
i=0 w

pred(Bi)

(p− q + 4) · 2ηD

)α
· (p− q + 4) · 2ηD

>
(
c · ζ3

)α(∑p
i=0 w

real(Ai)

2ηD

)α
· 2ηD

for an absolute constant c. It follows that∑
i∈Bp+1∪T2

[(
wonline
i − (1 + ζ)wpred

i

)+]α
6

(
1 + ζ ′

cζ3

)α ∑
i∈T2

[(
w∗i − w

pred
i

)+]α
.

We have thus upper bounded the sum on the left over time steps in Bp+1 ∪ T2 by the sum on the right
over only time steps in T2. Since NOISE-ROBUST(A) does not assign the workload wreal

i for i ∈ T1
to wonline on any of the time steps in T2, we can repeatedly apply the arguments on the time steps in
T1 to show∑

i∈T1

[(
wonline
i − (1 + ζ)wpred

i

)+]α
6

(
1 + ζ ′

cζ3

)α ∑
i∈T1∪Bp+1

[(
w∗i − w

pred
i

)+]α
,

yielding the statement of the lemma.

G ROBUSTIFY for uniform deadlines

Here we provide the proofs of Claim 4, Claim 5, Claim 6.

Claim 4. If s is a feasible schedule for (wreal, (1 − δ)D,T) then s(δ) is a feasible schedule for
(wreal, D, T).

Proof. Since s is a feasible schedule for (w, (1− δD), T), we have that∫ ri+D

ri

s
(δ)
i (t)dt =

∫ ri+D

ri

1

δD

(∫ t

t−δD
si(t
′)dt′

)
dt =

∫ ri+(1−δ)D

ri

si(t
′)

(∫ t′+δD

t′

1

δD
dt

)
dt′ = wi.

Claim 5. The cost of schedule s(δ) is not higher than that of s, that is,∫ T

0

(s(δ)(t))αdt 6
∫ T

0

(s(t))αdt.

Proof. The proof only uses Jensen’s inequality in the second line and the statement can be calculated
as follows. ∫ T

0

(
s(δ)(t)

)α
dt =

∫ T

0

(
1

δD

∫ t

t−δD
s(t′)dt′

)α
dt

6
∫ T

0

1

δD

(∫ t

t−δD
(s(t′))αdt′

)
dt

=

∫ T

0

(s(t′))α

(∫ t′+δD

t′

1

δD
dt

)
dt′

=

∫ T

0

(s(t))
α
dt

26

Claim 6. Let s be a feasible schedule for (wreal, (1− δ)D,T). Then s(δ)i (t) 6 1
δ s

AVR
i (t).

Proof. We have that

s
(δ)
i (t) =

1

δD

∫ t

t−δD
si(t
′)dt′ 6

1

δD

∫ ri+D

ri

si(t
′)dt′ =

wi
δD

=
sAVR
i (t)

δ
.

H ROBUSTIFY for general deadlines

In this section, we discuss generalizations of our techniques to general deadlines. Recall that an
instance with general deadlines is defined by a set J of jobs Jj = (rj , dj , wj), where rj is the time
the job becomes available, dj is the deadline by which it must be completed, and wj is the work to be
completed. For δ > 0, we use the notation J δ to denote the instance obtained from J by shrinking
the duration of each job by a factor (1− δ). That is, for each job (rj , dj , wj) ∈ J , J δ contains the
job (rj , rj + (1− δ)(dj − rj), wj).

Our main result in this section generalizes ROBUSTIFY to general deadlines.
Theorem 25. For any δ > 0, given an online algorithm for general deadlines that produces a
schedule for J δ of cost C, we can compute online a schedule for J of cost at most

min

{(
1

1− δ

)α−1
C, (2α/δ2)α/2 ·OPT

}
,

where OPT denotes the cost of an optimal schedule of J .

Since it is easy to design a consistent algorithm by just blindly following the prediction, we have the
following corollary.
Corollary 26. There exists a learning augmented online algorithm for the General Speed Scaling
problem, parameterized by ε > 0, with the following guarantees:

• Consistency: If the prediction is accurate, then the cost of the returned schedule is at most
(1 + ε) OPT .

• Robustness: Irrespective of the prediction, the cost of the returned schedule is at most
O(α3/ε2)α ·OPT.

Proof of Corollary. Consider the algorithm that blindly follows the prediction to do an optimal
schedule of J δ when in the consistent case. That is, given the prediction of J , it schedules all jobs
that agrees with the prediction according to the optimal schedule of the predicted J δ; the workload
of the remaining jobs j that were wrongly predicted is scheduled uniformly during their duration
from release time rj to deadline dj . In the consistent case, when the prediction is accurate, the cost
of the computed schedule equals thus the cost OPT(Jδ) of an optimal schedule of Jδ . Furthermore,
we have by Lemma 19

OPT(J δ) 6
(

1

1− δ

)α−1
OPT ,

where OPT denotes the cost of an optimal schedule to J . Applying Theorem 25 on this algorithm we
thus obtain an algorithm that is also robust. Specifically, we obtain an algorithm with the following
guarantees:

• If prediction is accurate, then the computed schedule has cost at most
(

1
1−δ

)2(α−1)
·OPT.

• The cost of the computed schedule is always at most (2α/δ2)α/2 ·OPT.

The corollary thus follows by selecting δ = Θ(ε/α) so that 1/(1− δ)2(α−1) = 1 + ε.

27

We remark that one can also define “smooth” algorithms for general deadlines as we did in the
uniform case. However, the prediction model and the measure of error quickly get complex and
notation heavy. Indeed, our main motivation for studying the Uniform Speed Scaling problem is that
it is a clean but still relevant version that allows for a natural prediction model.

We proceed by proving the main theorem of this section, Theorem 25.

The procedure GENERAL-ROBUSTIFY. We describe the procedure GENERAL-ROBUSTIFY that
generalizes ROBUSTIFY to general deadlines. Its analysis then implies Theorem 25. LetA denote the
online algorithm of Theorem 25 that produces a schedule of J δ of cost C. To simplify the description
of GENERAL-ROBUSTIFY, we fix ∆ > 0 and assume that the schedule s output by A only changes
at times that are multiples of ∆. This is without loss of generality as we can let ∆ tend to 0. To
simplify our calculations, we further assume that δ(dj − rj)/∆ evaluates to an integer for all jobs
(rj , dj , wj) ∈ J .

The time line is thus partitioned into time intervals of length ∆ so that in each time interval either
no job is processed by s or exactly one job is processed at constant speed by s. We denote by s(t)
the speed at which s processes the job j(t) during the t:th time interval, where we let s(t) = 0 and
j(t) = ⊥ if no job was processed by s (during this time interval).

To describe the schedule computed by GENERAL-ROBUSTIFY, we further divide each time interval
into a base part of length (1 − δ)∆ and an auxiliary part of length δ∆. In the t:th time interval,
GENERAL-ROBUSTIFY schedules job j(t) at a certain speed sbase(t) during the base part, and a
subset J (t) ⊆ J of the jobs is scheduled during the auxiliary part, each i ∈ J(t) at a speed saux

i (t).
These quantities are computed by GENERAL-ROBUSTIFY online at the start of the t:th time interval
as follows:

• Let saux(t) =
∑
i∈J (t) s

aux
i (t) be the current speed of the auxiliary part and let Dj(t) =

dj(t) − rj(t) be the duration of job j(t).

• If s(t)/(1− δ) 6 saux(t), then set sbase(t) = s(t)/(1− δ).

• Otherwise, set sbase(t) so that

(1− δ)∆sbase(t) +
(
sbase(t)− saux(t)

)
δ2Dj(t) = s(t)∆ (9)

and add j(t) to J(t), J(t + 1), . . . , J(t + δDj(t)/∆ − 1) with all auxiliary speeds
saux
j(t)(t), s

aux
j(t)(t+ 1), . . . , saux

j(t)(t+ δDj(t)/∆− 1) set to sbase(t)− saux(t).

This completes the formal description of GENERAL-ROBUSTIFY. Before proceeding to its analysis,
which implies Theorem 25, we explain the example depicted in Figure 4. Schedule s, illustrated
on the left, schedules a blue, red, and green job during the first, second, and third time interval,
respectively. We have that δ/∆ times the duration of the blue job and the red job are 3 and 4,
respectively. GENERAL-ROBUSTIFY now produces the schedule on the right where the auxiliary
parts are indicated by the horizontal stripes. When the the blue job is scheduled it is partitioned
among the base part of the first interval and evenly among the auxiliary parts of the first, second and
third intervals so that the speed at the first interval is the same in the base part and auxiliary part.
Similarly, when the red job is scheduled, GENERAL-ROBUSTIFY splits it among the base part of the
second interval and evenly among the auxiliary part of the second, third, fourth and fifth intervals so
that the speed during the base part equals the speed at the auxiliary part during the second interval.
Finally, the green job is processed at a small speed and is thus only scheduled in the base part of the
third interval (with a speed increased by a factor 1/(1− δ)).

Analysis. We show that GENERAL-ROBUSTIFY satisfies the guarantees stipulated by Theorem 25.
We first argue that GENERAL-ROBUSTIFY produces a feasible schedule to J . During the t:th
interval, the schedule s computed byA processes ∆ · s(t) work of job j(t). We argue that GENERAL-
ROBUSTIFY processes the same amount of work from this time interval. At the time when this
interval is considered by GENERAL-ROBUSTIFY, there are two cases:

• If s(t)/(1− δ) 6 saux(t) then sbase(t) = s(t)/(1− δ) so GENERAL-ROBUSTIFY processes
(1− δ)∆s(t)/(1− δ) = s(t)∆ work of j(t) during the base part of the t:th time interval.

28

Schedule by A

∆ 2∆ 3∆ 4∆ 5∆
time

speed

Schedule by GENERAL-ROBUSTIFY

∆ 2∆ 3∆ 4∆ 5∆
time

speed

Figure 4: Given the schedule on the left, GENERAL-ROBUSTIFY produces the schedule on the right.

• Otherwise, we have that GENERAL-ROBUSTIFY processes (1− δ)∆sbase(t) of j(t) during
the base part of the t:th time interval and δ∆

(
sbase(t)− saux(t)

)
during the auxiliary part of

each of the δDj(t)/∆ time intervals t, t+ 1, . . . , t+ δDj(t)/∆− 1. By the selection (9), it
thus follows that GENERAL-ROBUSTIFY processes all work s(t)∆ from this time interval.
in this case as well.

The schedule of GENERAL-ROBUSTIFY thus completely processes every job. Furthermore, since
each job is delayed at most δDj(t) time steps we have that it is a feasible schedule to J since we
started with a schedule for J δ, which completes each job j by time rj + (1− δ)Dj . It remains to
prove the robustness and soundness guarantees of Theorem 25
Lemma 27 (Robustness). GENERAL-ROBUSTIFY computes a schedule of cost at most (2α/δ2)α/2 ·
OPT.

Proof. By the definition of the algorithm we have, for each time interval, that the speed of the base
part is at most the speed of the auxiliary part. Letting sbase(t) and saux(t) denote the speed of the base
and auxiliary part of the t:th time interval, we thus have∑

t

(
(1− δ)sbase(t)α + δsaux(t)α

)
6
∑
t

saux(t)α .

Now we have that the part of a job j that is processed during the auxiliary part of a time interval has
been uniformly assigned to at least δ2Dj time steps. It follows that the speed at any auxiliary time
interval is at most 1/δ2 times the speed at that time of the AVERAGE RATE heuristic (AVR). The
lemma now follows since that heuristic is known [17] to have competitive ratio at most (2α)α/2.

Lemma 28 (Consistency). GENERAL-ROBUSTIFY computes a schedule of cost at most
(

1
1−δ

)α−1
·C

where C denotes the cost of the schedule s computed by A.

Proof. For t > 0, let h(t) be the schedule that processes the workload during the first t time intervals
as in the schedule computed by GENERAL-ROBUSTIFY, and the workload of the remaining time
intervals is processed during the base part of that time interval by increasing the speed by a factor
1/(1−δ). Hence, h(0) is the schedule that processes the workload of all time intervals during the base
part at a speed up of 1/(1− δ), and h(∞) equals the schedule produced by GENERAL-ROBUSTIFY.

By definition, the cost of h(0) equals
(

1
1−δ

)α
(1 − δ) · C and so the lemma follows by observing

that for every t > 1 the cost of h(t) is at most the cost of h(t−1). To see this consider the two cases of
GENERAL-ROBUSTIFY when considering the t:th time interval:

• If s(t)/(1− δ) 6 saux(t) then GENERAL-ROBUSTIFY processes all the workload during the
base part at a speed of sbase(t) = s(t)/(1− δ). Hence, in this case, the schedules h(t) and
h(t−1) processes the workload of the t:th time interval identically and so they have equal
costs.

29

• Otherwise, GENERAL-ROBUSTIFY partitions the workload of the t:th time interval among
the base part of the t:th interval and δDj(t)/∆ many auxiliary parts so that the speed at each
of these parts is strictly less than s(t)/(1− δ). Hence, since h(t) processes the workload of
the t:th time interval at a lower speed than h(t−1) we have that its cost is strictly lower if
α > 1 (and the cost is equal if α = 1).

I Additional Experiments

In this section we further explore the performance of LAS algorithm for different values of the
parameter α. We conduct experiments on the login requests of BrightKite using the same experimental
setup used in Section 4. The results are summarized in Table 2. In every column the average
competitive ratios of each algorithm for a fixed α are presented. We note that, as expected, higher
values of α penalize heavily wrong decisions deteriorating the competitive ratios of all algorithms.
Nevertheless, LAS algorithm consistently outperforms AVR and OA for all different values of α.

Table 2: Real dataset results with different α values

Algorithm α = 3 α = 6 α = 9 α = 12

AVR 1.365 2.942 7.481 21.029
OA 1.245 2.211 4.513 9.938
LAS, ε = 0.8 1.113 1.576 2.806 7.204
LAS, ε = 0.01 1.116 1.598 2.918 8.055

The timeline was discretized in chunks of ten minutes and D was set to 20.

30

	Introduction
	Model and Preliminaries
	Algorithm
	A Consistent and Smooth Algorithm
	Robustification
	Summary of the Algorithm
	Other Extensions

	Experimental analysis
	Omitted Proofs from Section 3
	Pure online algorithms for uniform deadlines
	Impossibility results for learning augmented speed scaling
	Extension to evolving predictors
	A shrinking lemma
	Making an algorithm noise tolerant
	Noise tolerant measure of error
	Noise tolerant procedure
	Proof of Lemma 22

	Robustify for uniform deadlines
	Robustify for general deadlines
	Additional Experiments

