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A Preliminary results

The following Proposition is an intermediate result, which is need to prove Lemmas C.3 and D.1.

Proposition A.1. Define

An =
1

n

n∑
i=1

∆i1{Xi<Ti}(π̂
c(Xi, Ti)− πc(Xi, Ti))

2. (9)

Then, the following results hold: i) An → 0 almost surely as n grows to infinity and ii) |An| ≤ c, for
some constant c, for all large n.

Proof: Since π̂c and πc are both bounded by 1, we have |An| = An ≤ 4 for all n and, thus, ii) is
proven.

Let us consider the statement i). It is easy to see that E(1{Xm≤x,Tm≥t}) = πc(x, t). In particular, we
have E(g(m, i)|Xi, Ti,∆i) = 0 for i 6= m, where g(m, i) = 1{Xm≤Xi,Tm≥Ti} − πc(Xi, Ti). Now,
notice that we can rewrite An as V -statistic of order 3:

An =
1

n

n∑
i=1

∆i1{Xi≤Ti}

(
1

n

n∑
m=1

(1{Xm≤Xi,Tm≥Ti} − π
c(Xi, Ti))

)2

=
1

n3

n∑
i=1

n∑
m=1

n∑
k=1

∆i1{Xi≤Ti}g(m, i)g(k, i).

Combining this and the law of large numbers for V -statistics yields

An
a.s.→ E(∆1g(1, 2)g(1, 3)) = E(∆1E(g(2, 1)g(3, 1)|X1, T1,∆1))

(independence) = E (∆1E(g(2, 1)|X1, T1,∆1)E(g(3, 1)|X1, T1,∆1))

= 0.

�

B Proofs of sections 2 and 3

B.1 Proof of Proposition 2.1

Proof: From Equation (4), we have

Ψn = sup
ω∈B(H)

1

n

n∑
i=1

(
ω(Xi, Yi)π̂(Xi, Yi)−

n∑
k=1

ω(Xi, Yk)Aik

)
,

whereAik = 1{Xk≤Xi<Yk≤Yi}/n.
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The previous result and the reproducing kernel property yield

Ψ2
n = sup

ω∈B1(H)

(
1

n

n∑
i=1

(
ω(Xi, Yi)π̂(Xi, Yi)−

n∑
k=1

ω(Xi, Yk)Aik

))2

= sup
ω∈B1(H)

〈
ω(·), 1

n

n∑
i=1

K(Xi, ·)

(
L(Yi, ·)π̂ii −

n∑
k=1

L(Yk, ·)Aik

)〉2

=

∥∥∥∥∥ 1

n

n∑
i=1

K(Xi, ·)

(
L(Yi, ·)π̂ii −

n∑
k=1

L(Yk, ·)Aik

)∥∥∥∥∥
2

H

=
1

n2

n∑
i,j=1

KijLijπ̂iiπ̂jj −
2

n2

n∑
i,j,l=1

KijLilπ̂iiAjl +
1

n2

n∑
i,j,k,l=1

KijLklAikAjl

=
1

n2
trace(Kπ̂Lπ̂ − 2Kπ̂LAᵀ +KALAᵀ),

where the second to last equality follows from

1

n2

n∑
i=1

n∑
j=1

KijLijπ̂iiπ̂jj =
1

n2

n∑
i=1

n∑
j=1

Kij(π̂Lπ̂)ij =
1

n2
trace(Kπ̂Lπ̂),

2

n2

n∑
i,j,l=1

KijLilπ̂iiAjl =
2

n2

n∑
j=1

n∑
l=1

(
n∑
i=1

Kij(π̂L)il

)
Ajl

=
2

n2

n∑
j=1

n∑
l=1

(Kπ̂L)jlA
ᵀ
lj

=
2

n2
trace(Kπ̂LAᵀ),

and

1

n2

n∑
i,j,k,l=1

KijLklAikAjl =
1

n2

n∑
k=1

n∑
j=1

(
n∑
i=1

KijAik

)(
n∑
l=1

LklAjl

)

=
1

n2

n∑
k=1

n∑
j=1

(KA)jk (LAᵀ)kj

=
1

n2
trace(KALAᵀ).

�

B.2 Proof of Proposition 3.3

Proof: Equation (6) yields

Ψc,n = sup
ω∈B1(H)

1

n

n∑
i=1

(
∆iω(Xi, Ti)π̂

c(Xi, Ti)−
1

n

n∑
k=1

∆kω(Xi, Tk)1{Xk≤Xi≤Tk≤Ti}

)

= sup
ω∈B1(H)

1

n

n∑
i=1

(
∆iω(Xi, Ti)π̂

c
ii −

n∑
k=1

∆kω(Xi, Tk)Bik

)
,

whereBik = 1{Xk≤Xi<Tk≤Ti}/n and π̂c is a diagonal matrix with entries π̂cii = π̂c(Xi, Ti).

Then, by following the exact same computations of the proof of Proposition 2.1, we deduce

Ψ2
c,n =

1

n2
trace(Kπ̂L̃π̂ − 2Kπ̂L̃Bᵀ +KBL̃Bᵀ),

where L̃ik = ∆i∆kL(Ti, Tk). �
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B.3 Proof of Proposition 3.2

Proof: Under Assumption 3.1, we have that for all x ≤ y,

πc1(x, y) = P(X ≤ x, T ≥ y,∆ = 1) = E
(
1{X≤x,Y≥y}E

(
1{C≥Y }|X,Y

))
= E

(
1{X≤x,Y≥y}SC|X(Y )

)
=

∫ x

0

∫ ∞
y

SC|X=x′(y
′)fXY (x′, y′)dx′, dy′,

and

πc(x, y) = P(X ≤ x, T ≥ y) = E
(
1{X≤x}SC|X(y)SY |X(y)

)
=

∫ x

0

SC|X=x′(y)SY |X=x′(y)fX(x′)dx′.

The null hypothesis states fXY (x, y) = f̃X(x)f̃Y (y) for all x ≤ y such that ST |X=x(y) > 0. Thus

πc1(x, y) =

∫ x

0

∫ ∞
y

SC|X=x′(y
′)f̃X(x′)f̃Y (y′)dx′dy′,

πc(x, y) = S̃Y (y)

∫ x

0

SC|X=x′(y)f̃X(x′)dx′.

By using the previous result, it is easy to see that, under the null,

− πc(x, y)
∂2

∂x∂y
πc1(x, y) =

(
S̃Y (y)

∫ x

0

SC|X=x′(y)f̃X(x′)dx′
)
SC|X=x(y)f̃X(x)f̃Y (y),

and
∂πc(x, y)

∂x

∂πc1(x, y)

∂y
= −

(
S̃Y (y)SC|X=x(y)f̃X(x)

)∫ x

0

SC|X=x′(y)f̃X(x′)dx′f̃Y (y)

= −
(
S̃Y (y)

∫ x

0

SC|X=x′(y)f̃X(x′)dx′
)
SC|X=x(y)f̃X(x)f̃Y (y),

from which it follows that ρc = 0, and thus Ψ = 0. �

C Proof of Theorem 4.1

Before proving Theorem 4.1 we give some essential definitions which will be used by our proofs. We
will first introduce Lemma C.1, which is an essential step in the proof of Theorem 4.1. A full proof
for Lemma C.1 is given later in this section.

Our data are considered to live in a common filtrated probability space (Ω,F , (Ft)t≥0,P), where F
is the natural σ-algebra, and Ft is the filtration generated by{

1{Ti≤s,∆i=1},1{Ti≤s,∆i=0}, Xi : 0 ≤ s ≤ t, i ∈ [n]
}
,

and the P-null sets of F .

We define τn = max{T1, . . . , Tn}. For each i ∈ [n], we define the i-th individual counting and
risk processes, Ni(t) and Yi(t), by Ni(t) = ∆i1{Ti≤t} and Yi(t) = 1{Ti≥t}, respectively. For each
individual i, we define the process (Mi(t))t≥0 by

Mi(t) = Ni(t)−
∫

(0,t]

1{Xi≤s}Yi(s)λ̃Y (s)ds.

It is standard to verify that Mi(t) is an (Ft)-martingale under the null hypothesis, and that, for any
bounded predictable process (Hi(t))t≥0,

∫
(0,t]

Hi(s)dMi(s) is also an (Ft)-martingale under the
null hypothesis.

Let (T ′1,∆
′
1, X

′
1) and (T ′2,∆

′
2, X

′
2) be independent copies of our data ((Ti,∆i, Xi))

n
i=1. Sometimes

our results are written in terms of Ẽ which is defined by Ẽ(·) = E (·|((Ti,∆i, Xi))
n
i=1). Additionally,
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we denote by Y ′1 and Y ′2 , the individual risk functions associated to T ′1 and T ′2, which are defined by
Y ′1(t) = 1{T ′1≥t} and Y ′2(t) = 1{T ′2≥t}, respectively. Finally, we define Zi(t) = ω(Xi, t)1{Xi≤t}
for all i ∈ [n], and, based on (T ′1,∆

′
1, X

′
1) and (T ′2,∆

′
2, X

′
2), we define Z ′1(t) = ω(X ′1, t)1{X′1≤t}

and Z ′2(t) = ω(X ′2, t)1{X′2≤t}.
Lemma C.1. Assume that K is bounded. Then, under the null hypothesis

√
nΨn,c = sup

ω∈B1(H)

1√
n

n∑
i=1

∫ τn

0

(
Zi(t)π

c(Xi, t)− Ẽ
(
Z ′1(t)Y ′1(t)1{Xi≤X′1}

))
dMi(t) + op(1).

C.1 Proof of Theorem 4.1

By Lemma C.1,

√
nΨn,c = sup

ω∈B1(H)

1√
n

n∑
i=1

∫ τn

0

(
Zi(t)π

c(Xi, t)− Ẽ
(
Z ′1(t)Y ′1(t)1{Xi≤X′1}

))
dMi(t) + op(1).

Observe that, by the reproducing kernel property, we have Zi(t) = 〈ω,K((Xi, t), ·)〉H1{Xi≤t} and
Z ′1(t) = 〈ω,K((X ′1, t), ·)〉H1{X′1≤t}. Thus,(

Zi(t)π
c(Xi, t)− Ẽ

(
Z ′1(t)Y ′1(t)1{Xi≤X′1}

))
=
(
〈ω,K((Xi, t), ·)〉H1{Xi≤t}π

c(Xi, t)− Ẽ
(
〈ω,K((X ′1, t), ·)〉H1{X′1≤t}Y

′
1(t)1{Xi≤X′1}

))
=
〈
ω,K((Xi, t), ·)1{Xi≤t}π

c(Xi, t)− Ẽ
(
K((X ′1, t), ·)1{X′1≤t}Y

′
1(t)1{Xi≤X′1}

)〉
H
,

where the second equality follows from the linearity of expectation, assuming Bochner integrability
of the feature map (true for bounded K). To ease notation, we define the functions a : R2 → R and
b : R3 → R by a(Xi, t) = 1{Xi≤t}π

c(Xi, t) and b(X ′1, Xi, t) = Y ′1(t)1{Xi≤X′1≤t}, respectively,
and write (

Zi(t)π
c(Xi, t)− Ẽ

(
Z ′1(t)Y ′1(t)1{Xi≤X′1}

))
=
〈
ω,K((Xi, t), ·)a(Xi, t)− Ẽ (K((X ′1, t), ·)b(X ′1, Xi, t))

〉
H
. (10)

From the previous result, it is easy to see that

1√
n

n∑
i=1

∫ τn

0

(
Zi(t)π

c(Xi, t)− Ẽ
(
Z ′1(t)Y ′1(t)1{Xi≤X′1}

))
dMi(t)

=

〈
ω,

1√
n

n∑
i=1

∫ τn

0

(
K((Xi, t), ·)a(Xi, t)− Ẽ (K((X ′1, t), ·)b(X ′1, Xi, t))

)
dMi(t)

〉
H

,

and thus

sup
ω∈B1(H)

(
1√
n

n∑
i=1

∫ τn

0

(
Zi(t)π

c(Xi, t)− Ẽ
(
Z ′1(t)Y ′1(t)1{Xi≤X′1}

))
dMi(t)

)2

∥∥∥∥∥ 1√
n

n∑
i=1

∫ τn

0

(
K((Xi, t), ·)a(Xi, t)− Ẽ (K((X ′1, t), ·)b(X ′1, Xi, t))

)
dMi(t)

∥∥∥∥∥
2

H

=
1

n

n∑
i=1

n∑
j=1

J((Ti,∆i, Xi), (Tj ,∆j , Xj)), (11)

where the function J : (R× {0, 1} ×R)2 → R is defined by

J((s, r, x), (s′, r′, x′)) =

∫ s

0

∫ s′

0

A((t, x), (t′, x′))dms′,r′,x′(t
′)dms,r,x(t),
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dms,r,x(t) = rδs(t)− 1{s≥t}1{x≤t}λ̃Y (t)dt (notice that dMi(t) = dmTi,∆i,Xi(t)), and A : (R×
R)2 → R is defined as

A((t, x), (t′, x′))

=
〈
K((x, t), ·)a(x, t)− Ẽ (K((X ′1, t), ·)b(X ′1, x, t))

,K((x′, t′), ·)a(x′, t′)− Ẽ (K((X ′2, t
′), ·)b(X ′2, x′, t′))

〉
H

= K((x, t), (x′, t′))a(x, t)a(x′, t′)− Ẽ(K((X ′1, t), (x
′, t′))b(X ′1, x, t)a(x′, t′))

− Ẽ(K((x, t), (X ′2, t
′))a(x, t)b(X ′2, x

′, t′)) + Ẽ(K((X ′1, t), (X
′
2, t
′))b(X ′1, x, t)b(X

′
2, x
′, t′)).

It is not difficult to verify that the sum in Equation (11) is a degenerate V -statistic. Indeed, the
degeneracy property can be verified by noticing that

E(J((Ti,∆i, Xi), (s
′, r′, x′)))

= E

(∫ Ti

0

(∫ s′

0

A((t,Xi), (t
′, x′))dms′,r′,x(t′)

)
dMi(t)

)
= E(Q(Ti)),

where Q(s) =
∫ s

0

(∫ s′
0
A((t,Xi), (t

′, x′))dms′,r′,x(t′)
)
dMi(t) is a zero mean (Fs)-martingale,

and thus, by the optional stopping Theorem, E(Q(Ti)) = E(Q(0)) = 0. Then, by [23, Theorem
4.3.2], we deduce

1

n

n∑
i=1

n∑
j=1

J((Ti,∆i, Xi), (Tj ,∆j , Xj))
D→ E(J((T1,∆1, X1), (T1,∆1, X1))) + Y,

where Y =
∑∞
i=1 λi(ξ

2
i − 1), ξ1, ξ2, . . . are independent standard normal random variables, and

λ1, λ2, . . . are positive constants.

The previous result, together with Lemma C.1, allow us to deduce

Ψ2
c,n

D→ µ+ Y,

where µ = E(J((T1,∆1, X1), (T1,∆1, X1))). Notice that all integrability conditions are satisfied
as we assume the reproducing kernel is bounded.

C.2 Proof of Lemma C.1

In order to prove Lemma of C.1, we require some intermediate results.

Recall that our test-statistic is computed as the supremum over ω ∈ B1(H) of sums

1

n

n∑
i=1

∆iω(Xi, Ti)π̂
c(Xi, Ti)−

1

n2

n∑
i=1

n∑
k=1

∆kω(Xi, Tk)1{Xk≤Xi<Tk≤Ti}.

By using the notation introduced at the beginning of Section C, the previous sum can be rewritten as

1

n

n∑
i=1

(
∆iω(Xi, Ti)π̂

c(Xi, Ti)−
1

n

n∑
k=1

∆iω(Xk, Ti)1{Xi≤Xk<Ti≤Tk}

)

=
1

n

n∑
i=1

∫ Ti

0

(
ω(Xi, y)1{Xi≤y}π̂

c(Xi, y)− 1

n

n∑
k=1

ω(Xk, y)1{Xk≤y}1{y≤Tk}1{Xi≤Xk}

)
dNi(y)

=
1

n

n∑
i=1

∫ Ti

0

(
Zi(y)π̂c(Xi, y)− 1

n

n∑
k=1

Zk(y)Yk(y)1{Xi≤Xk}

)
dNi(y)

=
1

n

n∑
i=1

∫ Ti

0

Hi(y)dNi(y),
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where Hi(y) = Zi(y)π̂c(Xi, y)− 1
n

∑n
k=1 Zk(y)Yk(y)1{Xi≤Xk}. Thus,

Ψn,c = sup
ω∈B1(H)

1

n

n∑
i=1

∫ τn

0

Hi(y)dNi(y), (12)

where recall that τn = max{T1, . . . , Tn}.
Proposition C.2. Assume that K is bounded. Then, under the null hypothesis, the process (W (t))t≥0,
defined by W (t) = 1

n

∑n
i=1

∫ t
0
Hi(y)dNi(y), is an (Ft)-martingale, and can be rewritten as

W (t) =
1

n

n∑
i=1

∫ t

0

Hi(y)dMi(y).

Notice that the previous proposition, and Equation (12) suggest the result of Lemma C.1. It remains
to prove that the process Hi(y) may be approximated by its “population limit". We prove this result
in two steps in the two lemmas below.

Lemma C.3. Assume that K is bounded. Then, under the null hypothesis

sup
ω∈B1(H)

1√
n

n∑
i=1

∫ τn

0

Zi(y) (π̂c(Xi, y)− πc(Xi, y)) dMi(y) = op(1),

Lemma C.4. Assume that K is bounded. Then, under the null hypothesis

sup
ω∈B1(H)

1√
n

n∑
i=1

∫ τn

0

 1

n

n∑
j=1

Zj(y)Yj(y)1{Xi≤Xj} − Ẽ(Z ′1(y)Y ′1(y)1{Xi≤X′1})

 dMi(y) = op(1),

Proof of Lemma C.1: Equation (12) and Lemma C.2 yield

√
nΨn,c = sup

ω∈B1(H)

1√
n

n∑
i=1

∫ τn

0

Hi(y)dMi(y),

where (recall) Hi(y) = Zi(y)π̂c(Xi, y) − 1
n

∑n
k=1 Zk(y)Yk(y)1{Xi≤Xk}. Notice that to ob-

tain the result, we need to replace π̂c by its population version πc, and, given (Ti,∆i, Xi), we
need to replace the i.i.d. sum 1

n

∑n
k=1 Zk(y)Yk(y)1{Xi≤Xk} by its limit, which is given by

Ẽ(Z ′1(y)Y ′1(y)1{Xi≤X′1}). By the triangular inequality, this result follows from lemmas C.3 and C.4.

C.3 Proofs of Proposition C.2, and Lemmas C.3 and C.4

C.3.1 Proof of Proposition C.2

Recall that dMi(y) = dNi(y) − 1{Xi≤y}Yi(y)λ̃Y (y)dy. A straightforward computation verifies
1
n

∑n
i=1

∫ t
0
Hi(y)1{Xi≤y}Yi(y)λ̃Y (y)dy = 0 for all t ≥ 0, and thus

W (t) =
1

n

n∑
i=1

∫ t

0

Hi(y)dMi(y).

Also, notice that (Hi(t))t≥0 (with ω ∈ B1(H)) is bounded and (Ft)-predictable, and that Mi(t) is
an (Ft)− martingale under the null hypothesis. Then, by standard martingale results we deduce that
(W (t))t≥0 is an (Ft)-martingale.

C.3.2 Proof of Lemma C.3

Observe that

Zi(t)(π̂
c(Xi, t)− πc(Xi, t)) = 〈ω,K((Xi, t), ·)〉H 1{Xi≤t}(π̂

c(Xi, t)− πc(Xi, t))

since Zi(t, ω) = ω(Xi, t)1{Xi≤t} = 〈ω,K((Xi, t), ·)〉H1{Xi≤t} due to the reproducing property.
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Then,

sup
ω∈B1(H)

(
1√
n

n∑
i=1

∫ τn

0

Zi(t) (π̂c(Xi, t)− πc(Xi, t)) dMi(t)

)2

= sup
ω∈B1(H)

(
1√
n

n∑
i=1

∫ τn

0

〈ω,K((Xi, t), ·)〉H 1{Xi≤t}(π̂
c(Xi, t)− πc(Xi, t))dMi(t)

)2

= sup
ω∈B1(H)

〈
ω,

1√
n

n∑
i=1

∫ τn

0

K((Xi, t), ·)1{Xi≤t}(π̂
c(Xi, t)− πc(Xi, t))dMi(t)

〉2

H

=
1

n

n∑
i=1

n∑
k=1

∫ τn

0

∫ τn

0

J((Xi, t), (Xk, s))dMi(t)dMk(s),

where

J((Xi, t), (Xk, s))

= K((Xi, t), (Xk, s))1{Xi≤t}1{Xk≤s}(π̂
c(Xi, t)− πc(Xi, t))(π̂

c(Xk, s)− πc(Xk, s)) (13)

Define the process (Q(y))y≥0 by

Q(y) =
1

n

n∑
i=1

n∑
k=1

∫ y

0

∫ y

0

J((Xi, t), (Xk, s))dMi(t)dMk(s),

and notice that we wish to prove that Q(τn) = op(1). Let δ > 0, then, by Markov’s inequality,

P(Q(τn) > δ) ≤ E(Q(τn))

δ
=
E(QD(τn))

δ
+

2E(QDc(τn))

δ
,

where the last equality holds since, by symmetry, Q(y) = QD(y) + 2QDc(y), where

QD(y) =
1

n

n∑
i=1

n∑
k=1

∫ y

0

∫ y

0

1{s=t}J((Xi, t), (Xk, s))dMi(t)dMk(s), (14)

and

QDc(y) =
1

n

n∑
k=1

n∑
i=1

∫ y

0

∫
(0,s)

J((Xi, t), (Xk, s))dMi(t)dMk(s).

By [10, Theorem 6.8], QDc(y) is an (Fy)-martingale, and, by the optional stopping theorem,
E(QDc(τn)) = E(QDc(0)) = 0. Thus

P(Q(τn) > δ) ≤ E(QD(τn))

δ
,

where

QD(τn) =
1

n

n∑
i=1

n∑
k=1

∫ τn

0

J((Xi, t), (Xk, t))d[Mi,Mk](t)

=
1

n

n∑
i=1

∫ τn

0

J((Xi, t), (Xi, t))d[Mi](t)

=
1

n

n∑
i=1

∫ τn

0

J((Xi, t), (Xi, t))Ni(t)

=
1

n

n∑
i=1

∆iJ((Xi, Ti), (Xi, Ti))

follows from considering continuous survival and censoring times.
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We finish the proof by proving E(QD(τn))→ 0 as n tends to infinity. Observe that

E(QD(τn))

= E

(
1

n

n∑
i=1

∆iJ((Xi, Ti), (Xi, Ti))

)
≤ c1E

(
1

n

n∑
i=1

∆i1{Xi≤Ti}(π̂
c(Xi, Ti)− πc(Xi, Ti))

2

)
follows from substituting the function J with the expression given in Equation (13), and by as-
suming the reproducing kernel is bounded by some constant c1 > 0. By Proposition A.1, the sum
1
n

∑n
i=1 ∆i1{Xi≤Ti}(π̂

c(Xi, Ti)− πc(Xi, Ti))
2 converges to 0 almost surely, and it is bounded by

some constant c > 0, then the desired result follows from an application of dominated convergence.

C.3.3 Proof of Lemma C.4

Notice that, by the reproducing property,

1

n

n∑
j=1

Zj(t)Yj(t)1{Xi≤Xj} − Ẽ(Z ′1(t)Y ′1(t)1{Xi≤X′1})

=
1

n

n∑
j=1

〈ω,K((Xj , t), ·)〉HYj(t)1{Xi≤Xj≤t} − Ẽ
(
〈ω,K((X ′1, t), ·)〉HY ′1(t)1{Xi≤X′1≤t}

)
=

〈
ω,

1

n

n∑
j=1

K((Xj , t), ·)Yj(t)1{Xi≤Xj≤t} − Ẽ
(
K((X ′1, t), ·)Y ′1(t)1{Xi≤X′1≤t}

)〉
H

.

To ease notation, we define aij(t) = Yj(t)1{Xi≤Xj≤t} and b′i1(t) = Y ′1(t)1{Xi≤X′1≤t} (similarly, we
define b′i2(t) = Y ′2(t)1{Xi≤X′2≤t}, where recall that (T ′1,∆

′
1, X

′
1) and (T ′2,∆

′
2, X

′
2) are independent

copies of our data). Then, the previous term can be rewritten as

1

n

n∑
j=1

Zj(t)Yj(t)1{Xi≤Xj} − Ẽ(Z ′1(t)Y ′1(t)1{Xi≤X′1})

=

〈
ω,

1

n

n∑
j=1

K((Xj , t), ·)aij(t)− Ẽ (K((X ′1, t), ·)b′i1(t))

〉
H

.

By using the fact we take supremum on the unit ball of an RKHS, it is not difficult to deduce,

sup
ω∈B1(H)

 1√
n

n∑
i=1

∫ τn

0

 1

n

n∑
j=1

Zj(t)Yj(t)1{Xi≤Xj} − Ẽ(Z ′1(t)Y ′1(t)1{Xi≤X′1})

 dMi(y)

2

=
1

n

n∑
i=1

n∑
k=1

∫ τn

0

∫ τn

0

J((Xi, t), (Xk, s))dMi(t)dMk(s), (15)

where

J((Xi, t), (Xk, s))

=
1

n2

n∑
j=1

n∑
l=1

K ((Xj , t), (Xl, s)) aij(t)akl(s)−
1

n

n∑
l=1

Ẽ(K((X ′1, t), (Xl, s))b
′
i1(t)akl(s)

− 1

n

n∑
j=1

Ẽ(K((Xj , t), (X
′
2, s))aij(t)b

′
k2(s) + Ẽ(K((X ′1, t), (X

′
2, s))b

′
i1(t)b′k2(s)), (16)

Following the same steps of the proof of Lemma C.3, we can prove that Equation (15) is op(1) by
proving that

E

(
1

n

n∑
i=1

J((Xi, Ti), (Xi, Ti))

)
→ 0. (17)
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For this purpose, first observe that

1

n

n∑
i=1

J((Xi, Ti), (Xi, Ti))

=
1

n3

n∑
i,j,l=1

K ((Xj , Ti), (Xl, Ti)) aij(Ti)ail(Ti)−
2

n2

n∑
i,l=1

Ẽ(K((X ′1, Ti), (Xl, Ti))b
′
i1(Ti)ail(Ti)

+
1

n

n∑
i=1

Ẽ(K((X ′1, Ti), (X
′
2, Ti))b

′
i1(Ti)b

′
i2(Ti).

Each sum on the right-hand side of the previous equation is a V -statistic of order 3, 2 and 1,
respectively. It can easily be seen that they all converge to the same limit. Consequently, the law of
large numbers for V -statistics implies that

1

n

n∑
i=1

J((Xi, Ti), (Xi, Ti))→ 0

almost surely. Since the reproducing kernel is assumed to be bounded and, thus, the sum is bounded
as well, we can deduce, finally, (17) from the dominated convergence theorem.

D Proof of Theorem 4.2

The consistency proof relies on the interpretation of the test statistic Ψc,n and the KQIC Ψc as the
Hilbert space distances of embeddings of certain positive measures. These distances measure the
degree of (quasi)-dependence. In this spirit, this approach is connected to the well-established Hilbert
Schmidt Independence Criterion, see e.g. [5, 16, 27, 29].

Now, let us become more concrete and introduce the following measures ν0 and ν1 on R2
+ given by

ν0(dx, dy) = πc(x, y)πc1(dx, dy)

= πc(x, y)SC|X=x(y)fXY (x, y)dxdy,

ν1(dx, dy) = πc(dx, y)πc1(x, dy)

=
(
SY |X=x(y)SC|X=x(y)fX(x)

)(∫ x

0

SC|X=t(y)fXY (t, y)dt

)
dxdy

as well as their empirical counterparts νn0 and νn1 defined as

νn0 (dx, dy) =
π̂c(x, y)

n

n∑
i=1

∆iδXi
(x)δTi

(y)

νn1 (dx, dy) =
1{x≤y}

n2

(
n∑
i=1

δXi(x)1{Ti≥y}

)(
n∑
k=1

∆kδTk
(y)1{Xk≤x}

)
.

Moreover, set ρ̂c = νn0 −νn1 , which is the empirical counterpart of the measure induced by the density
ρc. Then the embeddings of the (empirical) measures into the underlying RKHS are given by

φj(·) =

∫∫
x≤y

K((x, y), ·)νj(dx, dy) and φnj (·) =

∫∫
x≤y

K((x, y), ·)νnj (dx, dy).

By straightforward calculations, we obtain

Ψ2
c,n = sup

ω∈B1(H)

(∫∫
x≤y

ω(x, y)ρ̂c(dx, dy)

)2

= ‖φn0 − φn1‖
2
H

and

Ψ2
c = sup

ω∈B1(H)

(∫∫
x≤y

ω(x, y)ρc(dx, dy)

)2

= ‖φ0 − φ1‖2H .

Consequently, the first part of Theorem 4.2 follows from convergence of the aforementioned distances:
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Lemma D.1. We have ‖φn0 − φn1‖
2
H → ‖φ0 − φ1‖2H in probability.

The proof of Lemma D.1 is given below. For the second part of Theorem 4.2, recall that by
assumption the chosen kernel K is c0-universal and, thus, the embedding of finite signed Borel
measures is injective, see [31] for details. In particular, Ψ2

c = ‖φ0 − φ1‖2H equals zero if and only if
ν0 ≡ ν1 , or equivalently ρc(x, y) = 0 for almost all x ≤ y. Consequently, it remains to verify the
following lemma, which is proven below.

Lemma D.2. ρc(x, y) = 0 for almost all x ≤ y if and only if the null hypothesis of quasi indepen-
dence is fulfilled.

D.1 Proof of Lemma D.1

First, observe that

Ψ2
c,n = sup

ω∈B1(H)

(∫∫
x≤y

ω(x, y)ρ̂c(dx, dy)

)2

= ‖φn0 − φn1‖
2
H = V0,0 − 2V0,1 + V1,1,

where

V0,0 = ‖φn0‖
2
H =

1

n2

n∑
j,i=1

K((Xi, Ti), (Xj , Tj))∆i∆j π̂
c(Xi, Ti)π̂

c(Xj , Tj),

V0,1 = 〈φn0 , φn1 〉H =
1

n3

n∑
i,j,k=1

K((Xi, Ti), (Xj , Tk))∆i∆kπ̂
c(Xi, Ti)1{Xk≤Xj<Tk≤Tj},

V1,1 = ‖φn1‖
2
H =

1

n4

n∑
i,j,k,`=1

K((Xi, T`), (Xj , Tk))∆k∆`1{X`≤Xi<T`≤Ti}1{Xk≤Xj<Tk≤Tj}.

By Proposition A.1 we can replace π̂c by πc for all asymptotic considerations, a detailed explanation
for V0,0 is given below. Thus, V0,0, V0,1 and V1,1 are asymptotically equivalent to V -statistics of
order 2, 3 and 4, respectively. For the desired statement, it remains to show that (i) V0,0 → ‖φ0‖2H
(ii) V0,1 → 〈φ0, φ1〉H (iii) V1 → ‖φ1‖2H. All three convergences follow from the strong law of large
numbers for V -statistics and Proposition A.1, as explained exemplary for (i):

Since the kernel K and π̂c are bounded by some c1 > 0 and 1, respectively, we can deduce from
Proposition A.1 and the triangular inequality that almost surely∣∣∣ 1

n2

n∑
j,i=1

K((Xi, Ti), (Xj , Tj))∆i∆j

(
π̂c(Xi, Ti)π̂

c(Xj , Tj)− πc(Xi, Ti)π
c(Xj , Tj)

)∣∣∣
≤ c1

1

n2

n∑
j,i=1

∆i∆j (|π̂c(Xi, Ti)− πc(Xi, Ti)|+ |π̂c(Xj , Tj)− πc(Xj , Tj)|)

≤ 2c1
n2

n∑
j,i=1

∆i∆j

∣∣∣π̂c(Xi, Ti)− πc(Xi, Ti)
∣∣∣

≤ 2c1
n

n∑
i=1

∆i

∣∣∣π̂c(Xi, Ti)− πc(Xi, Ti)
∣∣∣→ 0.

Thus, we can replace for further asymptotic investigations π̂c by πc. Finally, by the strong law of
large numbers

V0,0 → E
(
K((X1, T1), (X2, T2))∆1∆2π

c(X1, T1)πc(X2, T2)
)

=

∫∫
x1<t2

∫∫
x2<t2

K((x1, t1), (x2, t2))dν0(x1, t1)dν0(x2, t2).
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D.2 Proof of Lemma D.2

The first implication was already shown in the proof of Proposition 3.2. Now, assume that ρc = 0.
Then

πc(x, y)
∂2πc1(x, y)

∂x∂y
=
∂πc(x, y)

∂x

∂πc1(x, y)

∂y
. (18)

Define M(x, y) =
∂πc

1(x,y)
∂y =

∫ x
0
SC|X=x′(y)fXY (x′, y)dx′, then Equation (18) can be rewritten as

πc(x, y)
∂M(x, y)

∂x
=
∂πc(x, y)

∂x
M(x, y). (19)

Set Q(x, y) = 1{M(x,y) 6=0}π
c(x, y)/M(x, y). From (18) we can conclude that M(x, y) = 0 implies

πc(x, y) = 0 or

0 =
∂2πc1(x, y)

∂x∂y
= −SC|X=x(y)fXY (x, y).

But, the right-hand side of the equation is positive for all observable (x, y), i.e. such that
SC|X=x(y), f(x, y), f(x) > 0. Note that only these pairs are relevant and, thus, we restrict to
them subsequently. Thus, πc(x, y) = Q(x, y)M(x, y) and differentiation with respect to x leads to

∂πc(x, y)

∂x
=
∂Q(x, y)

∂x
M(x, y) +Q(x, y)

∂M(x, y)

∂x

=
∂Q(x, y)

∂x
M(x, y) +

πc(x, y)

M(x, y)

∂M(x, y)

∂x

=
∂Q(x, y)

∂x
M(x, y) +

∂πc(x, y)

∂x
.

Thus, ∂Q(x, y)/∂x = 0 for all (observable) x ≤ y. In particular, Q does not depend on x, and we
can write Q(y) instead of Q(x, y). Consequently, we can deduce from the definitions of Q, M and
πc that

−Q(y)

∫ x

0

SC|X=x′(y)fXY (x′, y)dx′ =

∫ x

0

SY |X=x′(y)SC|X=x′(y)fX(x′)dx′.

In particular, we can deduce that for all observable x ≤ y

−Q(y)SC|X=x(y)fXY (x, y) = SY |X=x(y)SC|X=x(y)fX(x).

From this we obtain

fXY (t, y) = −Q(y)−1SY |X=t(y)fX(t)

⇔ fX(t)fY |X=t(y) = −Q(y)−1SY |X=t(y)fX(t)

⇔ λY |X=x(y) = −Q(y)−1,

where λY |X=x denotes the hazard rate function, which does not depend on x. Note that SY |X=x(x) =
1 and

SY |X=x(y) =
SY |X=x(y)

SY |X=x(x)
= exp

(∫ y

x

Q(s)−1ds
)
.

Moreover, for t < x < y

SY |X=x(y)

SY |X=t(y)
= exp

(∫ y

x

Q(s)−1ds−
∫ y

t

Q(s)−1ds
)

=
g(t)

g(x)
,

where g(x) = exp(
∫ x
lX
Q(s)−1ds) and lX = inf{s ≥ 0 : fX(s) > 0} is the lower bound of the

support of X (given X ≤ Y ). Differentiation with respect to y leads to

fY |X=x(y) = fY |X=t(y)
g(t)

g(x)
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and, thus,

fXY (x, y) =
fXY (t, y)g(t)

fX(t)

fX(x)

g(x)
. (20)

Now, let (tn)n∈N be a strictly decreasing sequence with f(tn) > 0 and tn → lX as n → ∞. Set
t0 =∞. Then we can deduce from Equation (20) that

fXY (x, y) = f̃Y (y)f̃X(x),

where

f̃Y (y) =

∞∑
n=1

fXY (tn, y)g(tn)

fX(tn)
1{y∈(tn,tn−1)}, f̃X(x) =

fX(x)

g(x)
.

E Efficient implementation of wild bootstrap

Similarly to the work of [5], we can implement our Wild-Bootstrap efficiently by considering the
identity trace(AB) =

∑
ij(A�B)ij , where A and B denote n× n matrices, and � denotes the

element-wise product. By using this identity our test-statistic can be written as

Ψ2
c,n =

1

n2
trace(Kπ̂cL̃π̂c − 2Kπ̂cL̃Bᵀ +KBLBᵀ)

=
∑
ij

(
K � (π̂cL̃π̂c − 2π̂cL̃Bᵀ +BLBᵀ)

)
ij

=
∑
ij

M ij ,

whereM = K � (π̂cL̃π̂c − 2π̂cL̃Bᵀ +BLBᵀ) is a V -statistic matrix. Then, the wild-bootstrap
version of the preceding V -statistic is (ΨWB

c,n)2 = W ᵀMW where W = (W1, . . . ,Wn) ∈ Rn are
the wild bootstrap weights. In this way, we only need to compute O(n2) sum once, for each wild
bootstrap, instead of computing several (actually 6 times) O(n3) matrix multiplications and two
O(n2) matrix multiplications for KW .

F Review of related quasi independence tests

In this section, we review the quasi-independence tests implemented in Section 5 of the main text.

WLR refers to the weighted log-rank test discussed in [7], which is defined as

LW =

∫
x≤y

W (x, y)

{
N11(dx, dy)− N1•(dx, y)N•1(x, dy)

R(x, y)

}
,

where

N11(dx, dy) =
∑
j

1(Xj = x, Tj = y,∆j = 1), N•1(x, dy) =
∑
j

1(Xj ≤ x, Tj = y,∆j = 1),

N1•(dx, y) =
∑
j

1(Xj = x, Tj ≥ y), R(x, y) =
∑
j

1(Xj ≤ x, Tj ≥ y),

and W : R2
+ → R is the weight function given by W (x, y) = R(x, y). We note that, R(x, y) =

nπ̂c(x, y) defined in our notation. It is straightforward to see Ψ2
c,n = 1

n2L
2
W in the case K = 1.

WLR_SC refers to the previous log-rank test with weight W given by W (x, y) =
∫ x

0
ŜCR

((y −
u)−)−1π̂c(du, y), where ŜCR

is the Kaplan-Meier estimator based on the data ((Ci−Xi, 1−∆i))
n
i=1.

tis specific test was proposed to the general assumption Yi ⊥ Ci|Xi.

M&B refers to the conditional Kendall’s tau statistic in discussed in [25]. Let

Bij = {max(Xi, Xj) ≤ min(Ti, Tj)}
∩ {(∆i = ∆j = 1) ∪ (Tj > Ti,∆i = 1,∆j = 0) ∪ (Ti > Tj ,∆i = 1,∆j = 0)}.
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The conditional Kendall’s tau statistic is given by

τ̂b =
∑
i<j

1{Bij}sign((Xi −Xj)(Ti − Tj)).

MinP1 and MinP2 refers to the minimal p-value selection tests which are permutation based methods
proposed in [3]. These tests are based on the underlying principle that, under quasi-independence,
the distributions of Y |X ≤ t and Y |X > t should not differ, where t denotes some cut-point.
Given a collection of possible cut-points t, the authors perform several two-sample log-rank tests
for comparing {(Ti,∆i) : Xi ≤ t} and {(Ti,∆i) : Xi > t} (under right-censored data), and set as
their test-statistic the minimum log-rank p-value obtained. To guarantee meaningful comparisons, the
authors consider cut-points that yield at least E events in each group.

The first test proposed is the following:

MinP1:

1 Set m = 0

2 Set m = m+ 1 and split the data into two groups {i : Xi ≤ Xm} and {i : Xi > Xm}.
3 Check the groups are admissible by verifying E ≤

∑n
i=1 ∆i1{Xi<Xm} ≤ n − E. If the

latter holds, perform a two-sample log-rank test for comparing {(Ti,∆i) : Xi ≤ Xm} and
{(Ti,∆i) : Xi > Xm}, and record the p-value obtained. If the condition is not satisfied,
record a p-value equal to 1.

4 If m < n return to Step 2
5 Set as test-statistic minp1 the smallest p-value obtained.

Alternatively, the authors propose a second test, which splits the data according to whether or not,
the entry times belong to the interval (t − ε, t + ε), where t, again, denotes a cut-point and ε > 0.
Similarly to the previous case, we need to ensure that each group contains at least R data points, this
can be done by choosing a suitable ε > 0.

MinP2:

1 Set m = 0

2 Set m = m+ 1 and split the data into two groups {i : Xi ∈ (Xm − εm, Xm + εm)} and
{i : Xi 6∈ (Xm − εm, Xm + εm)}, where εm is the smallest ε > 0 such that there are at
least E data-points in each group. Record the value εm.

3 If m < n return to Step 2.
4 Set ε = maxm εm and m = 0

5 Set m = m+ 1. Verify E ≤
∑n
i=1 ∆i1{Tm−ε<Ti<Tm+ε} ≤ n− E which checks that the

partition of the data is admissible (under right-censoring). If the latter holds, perform a
two-sample log-rank test for comparing each group and record the p-value. If the partition
is not admissible record a p-value equal to 1.

6 If m < n return to Step 5.
7 Set as test-statistic minp2 the smallest p-value obtained.

The rejection regions for these tests are computed by using a permutation approach.

G Additional discussions for empirical results

In this section, we provide additional information and discussions on our empirical findings.

G.1 Computational runtime

As shown in Table 3, our proposed test, implemented as described in Appendix E, has a significantly
lower runtime when compared with the permutation approaches which require much longer run-time.
M&B implements the conditional Kendall’s tau statistic which has a closed-form expression for the
null distribution, therefore the runtime is much lower again.
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n 100 200 300 400 500 600 700 800 900

KQIC 0.012 0.019 0.031 0.041 0.063 0.085 0.130 0.152 0.200
MinP1 15.77 41.62 56.61 90.52 113.7 154.4 254.4 299.2 389.1
MinP2 20.33 35.08 59.09 101.4 123.7 174.3 242.4 300.9 354.2
M&B 0.002 0.002 0.002 0.003 0.004 0.006 0.006 0.009 0.021

Table 3: The runtime, in seconds, for a single trial using 500 wild bootstrap samples for KQIC and
500 permutations for MinP1 and MinP2. M&B does not require to approximate the null distribution.

G.2 Kernel choice

Parameter selection In kernel-based hypothesis testing, test power (i.e., the probability of rejecting
H0 when it is false) can vary for different choices of kernel parameters, such as the bandwidth in
Gaussian kernels [17]. Previous works [17, 19, 20, 21, 32] have proposed to choose the kernel
parameters by maximizing a proxy for the test power. In the uncensored setting, the test power is (to
a good approximation) increased by maximising the ratio of the test statistic to its standard deviation
under the alternative. We conjecture that the same ratio represents a good criterion in the setting of
left-truncation and right-censoring, for which we have strong empirical evidence. A formal proof
remains a topic for future work.

In the censored case, the test power criterion takes the form Ψ2
c

σH1
, where σH1 is the standard deviation

of Ψ2
c under the alternative hypothesis H1. Thus, to maximise the test power, we choose the kernel

parameter θ by

θ∗ = arg max
θ

Ψ2
c

σH1

.

In practice, we use part of the data to compute Ψ2
c,n/(σ̂H1

+ λ), where σ̂H1
is an empirical estimate

of σH1
and a regularisation parameter λ > 0 is added for numerical stability. We then perform the test

on the remaining data with the selected θ∗. A 20/80 train-test split is suggested in [21] for learning
the parameter. We use the regulariser λ = 0.01.

We next give our empirical estimate for the variance σ̂2
H1

. First, Ψ2
c,n can be written as Ψ2

c,n =
1
n2

∑n
i=1

∑n
j=1 Jn((Ti,∆i, Xi), (Tj ,∆j , Xj)), where Jn is defined by

Jn((Ti,∆i, Xi), (Tj ,∆j , Xj)) = ∆i∆jL(Ti, Tj)gn(Xi, Xj),

where

gn(Xi, Xj) = K(Xi, Xj)π̂
c
iiπ̂

c
jj − 2

n∑
l=1

K(Xi, Xl)π̂
c
iiBl,j +

n∑
l=1

n∑
k=1

K(Xk, Xl)Bk,iBl,j ,

and π̂c
ii = π̂c(Xi, Ti) and Bk,i = 1{Xi≤Xk<Ti≤Tk}/n. This “V -statistic" form suggests that the

variance can be estimated by

σ̂2
H1

=
1

n

n∑
i=1

 1

n

n∑
j=1

Jn(i, j)

2

−

 1

n2

n∑
i=1

n∑
j=1

Jn(i, j)

2

,

where Jn(i, j) = Jn((Ti,∆i, Xi), (Tj ,∆j , Xj)).

Finally, some remarks on the performance of our kernel selection heuristic in experiments. For simple
cases, our kernel selection procedure makes little difference, since a broad range of kernel bandwidths
yields good results, and the “median heuristic” (selection of the bandwidth as the pairwise inter-
sample distance) is adequate. On the other hand, our procedure results in large power improvements
for more complex cases such as periodic dependency at high frequencies, where the median distance
between samples does not correspond to the lengthscale at which dependence occurs. Similar
phenomena have also been observed previously in [32].
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Inverse Multi-Quadratic (IMQ) kernel We further study the performance of the IMQ kernel on
our proposed test. The IMQ kernel has the form k(x, y) = (c2 + ‖x− y‖2)b, for constant c > 0 and
b ∈ (−1, 0). As proposed in [12], we choose b = − 1

2 . We select the parameter c by maximizing a
heuristic proxy for test power, as discussed above. The controlled Type-I error is shown in Table 4,
where X and Y are independent samples from Exp(1). Truncation and right-censoring apply with
censoring time independently generated from exponential distribution. We report the test power of
KQIC with IMQ kernel in later sections.

n 50 100 150 200 250 300 350 400 450 500

KQIC_IMQ 0.08 0.05 0.03 0.05 0.04 0.05 0.05 0.07 0.07 0.05

Table 4: Type-I error for IMQ kernels, with α = 0.05, censoring level 25%, 100 trials, and increasing
sample size n.

G.3 Periodic dependencies

As briefly mentioned in the main text, the parameter β controls the frequency of sinusoidal dependence.
At a given sample size, dependence becomes harder to detect as the frequency β increases, both for
our test and for competing methods. We illustrate the datasets visually in Figure 7. For a fixed sample
size, the test power decreases as frequency increases, which is observed in our results in Figure 4. For
high frequency cases, larger sample size is required to correctly reject the null as shown in Figure 5.

Figure 7: Samples from periodic dependency model w.r.t. frequency coefficient β.

(a) Sample size: n = 50

(b) Sample size: n = 100

(c) Sample size: n = 300

Type-I error is reported in Table 5, and is close to the desired level (subject to finite sample effects).

G.4 Dependent censoring

In this section we show that our test achieves correct Type-I error under the null hypothesis even when
considering dependent censoring times C. As stated in Assumption 3.1, we only require Y ⊥ C|X ,
which is a standard assumption, as also considered in [7].
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n 100 300 500 700 900 1100 1300 1500 1700 1900

KQIC_Gauss 0.045 0.060 0.055 0.040 0.045 0.045 0.040 0.030 0.045 0.050
KQIC_IMQ 0.050 0.055 0.045 0.030 0.020 0.040 0.025 0.020 0.015 0.020
WLR 0.030 0.045 0.050 0.025 0.045 0.015 0.015 0.030 0.025 0.040
WLR_SC 0.035 0.060 0.030 0.025 0.060 0.070 0.045 0.055 0.050 0.060

Table 5: Type-I error with α = 0.05, censoring level 25%, 200 trials, and increasing sample size n.

Figure 8: Samples generated from H0 with periodic dependent censoring distributions.

We generate the data as follows: Sample Xi ∼ Exp(1), then generate Yi ∼ Exp(1) (independent
of Xi) and Ci|Xi ∼ Exp(ecos(2πγXi). Generate the observed data point (Ti,∆i, Xi), where Ti =
min{Yi, Ci} and ∆i = 1{Ti=Yi} and keep it as a valid sample only if Ti ≥ Xi. Notice that in
this case both left truncation and right-censoring are present in the data. Also, notice that the null
hypothesis holds since the survival times Yi are quasi-independent of the entry times Xi. In Figure 8,
we show the unobserved pairs (X,Y ) and the observed pairs (X,T ) where the censoring variable
is generated using different censoring frequencies γ. From the plot, we see that the entry times X
and survival times Y look quasi-independent, but, due to the periodic dependency of the censoring
distribution, the observed data (X,T ) show a periodic trend, which looks similar to the observations
in Figure 7. However, since this dependency is due to the censoring times C instead of the survival
times Y , our tests are able to recover H0 and achieve correct test level, as shown in Table 6. The
tests proposed in [7] are also valid under Assumption 3.1, thus we include the results for WLR and
WLR_SC as well. From Table 6, we observe that KQIC with both Guassian and IMQ kernels, as
well as WLR achieve the correct test level; however, WLR_SC has slightly higher type-I errors when
sample size is small and achieves correct test-level when sample size becomes large (recall that
WLR_SC uses a data dependent weight, thus convergence in this case might be slower).

G.5 Test performance w.r.t. censoring level

We report the Type-I error for different censoring percentages, see Table 7. With reasonable censoring
level (e.g. < 90%), the Type-I errors are well controlled. WLR_SC has higher Type-I with small
sample sizes, which is similarly observed in Table 6. However, the Type-I error is less controlled at
extremely high censoring percentages, due to the lack for useful information obtained. In practise, we
may need to be careful dealing with extremely high censoring when applying the quasi-independence
tests.
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Table 6: Type-I error for periodic dependent censoring distributions, with α = 0.05 and 100 trials.

n 100 200 300 400 500 600 700 800 900 1000

KQIC_Gauss 0.07 0.06 0.03 0.03 0.06 0.05 0.04 0.04 0.03 0.07
KQIC_IMQ 0.07 0.06 0.04 0.01 0.03 0.04 0.05 0.05 0.06 0.07
WLR 0.07 0.05 0.03 0.01 0.03 0.04 0.05 0.04 0.03 0.07
WLR_SC 0.10 0.08 0.09 0.13 0.13 0.04 0.09 0.05 0.04 0.06

(a) Censoring frequency γ = 0.5. Censoring level 30%

n 100 200 300 400 500 600 700 800 900 1000

KQIC_Gauss 0.03 0.02 0.01 0.04 0.05 0.06 0.05 0.04 0.06 0.04
KQIC_IMQ 0.02 0.03 0.03 0.03 0.04 0.05 0.05 0.04 0.04 0.04
WLR 0.02 0.02 0.03 0.05 0.04 0.04 0.04 0.04 0.05 0.05
WLR_SC 0.06 0.12 0.17 0.15 0.10 0.11 0.06 0.04 0.05 0.05

(b) Censoring frequency γ = 1.2. Censoring level 35%

n 100 200 300 400 500 600 700 800 900 1000

KQIC_Gauss 0.06 0.04 0.06 0.02 0.02 0.04 0.03 0.03 0.05 0.04
KQIC_IMQ 0.05 0.04 0.05 0.01 0.02 0.04 0.04 0.03 0.03 0.04
WLR 0.04 0.02 0.04 0.02 0.02 0.04 0.04 0.03 0.05 0.03
WLR_SC 0.09 0.10 0.13 0.15 0.10 0.08 0.05 0.03 0.03 0.04

(c) Censoring frequency γ = 3.0. Censoring level 40%

% censored 20 35 50 70 85 92 95

n = 200

KQIC_Gauss 0.040 0.025 0.015 0.045 0.035 0.085 0.115
KQIC_IMQ 0.040 0.060 0.050 0.055 0.070 0.100 0.185
WLR 0.055 0.035 0.040 0.050 0.030 0.075 0.120
WLR_SC 0.045 0.105 0.075 0.120 0.060 0.035 0.075

n = 300

KQIC_Gauss 0.055 0.040 0.055 0.045 0.060 0.090 0.065
KQIC_IMQ 0.045 0.050 0.070 0.050 0.050 0.105 0.115
WLR 0.030 0.055 0.055 0.040 0.050 0.075 0.065
WLR_SC 0.080 0.120 0.140 0.095 0.125 0.095 0.025

n = 500

KQIC_Gauss 0.040 0.050 0.035 0.030 0.030 0.050 0.090
KQIC_IMQ 0.065 0.030 0.050 0.040 0.080 0.100 0.050
WLR 0.035 0.035 0.050 0.035 0.040 0.060 0.075
WLR_SC 0.060 0.035 0.055 0.075 0.065 0.035 0.015

n = 800

KQIC_Gauss 0.045 0.030 0.030 0.065 0.030 0.065 0.080
KQIC_IMQ 0.065 0.050 0.050 0.060 0.060 0.090 0.140
WLR 0.015 0.010 0.025 0.055 0.065 0.085 0.100
WLR_SC 0.095 0.040 0.065 0.080 0.075 0.045 0.025

Table 7: Type-I error for different censoring level, with α = 0.05 and 200 trials,
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