
A Implementation Details

In this section, we provide the implementation details of our proposed algorithm, including the
motivating examples we described in Sec 4 and large-scale experiments in Atari in Sec 5.

A.1 Motivating Examples

In our investigations, a wide range of hyperparameters work well in the motivating examples and we
provide the specific one we used to show our results.

Bootstrapping: For the bootstrapping experiment, we use an LSTM [16] with 256 hidden units as
meta network. The inputs to the meta network include reward Rt+1, discount γt+1, value from the
next state v(St+1), which were fed in reverse-time order into the LSTM. The agent network is a two
layer MLP with 256 hidden units. Both agent optimiser and the meta optimiser are RMSProp [35],
where learning rate is 1e−3 and meta learning rate is 1e−4. M = 5 inner updates are performed
to the agent then the metagradient is obtained. We perform 10 independent runs with 10 different
random seeds and report average performance with standard deviation.

Non-stationarity: For the non-stationarity experiment, we use an LSTM with 32 hidden units as
meta network. Each trajectory from the environment has 16 transitions. The inputs to the meta
network include reward Rt+1, discount γt+1, value from the next state v(St+1), which were fed in
reverse-time order into the LSTM. Both agent optimiser and the meta optimiser are RMSProp [35],
where learning rate is 1e−1 and meta learning rate is 1e−2. We use larger learning rates here to
enable rapid learning in the simple random walk environment. Same as above, M = 5 inner updates
are performed to the agent then the metagradient is obtained. For our baseline TD(λ) experiment, we
use the same learning rate 1e−1 and report convergent result from all λs from [ 0., 0.4, 0.8, 0.9, 0.99,
1 ]. We perform 10 independent runs with 10 different random seeds and report average performance
with standard deviation.

A.2 Large-Scale Experiments

In the large-scale Atari experiments, we compare FRODO with the corresponding baseline IM-
PALA [10], where we keep all the hyper-parameters on the agent learning the same in the two agents.
In Table 1, we show the shared hyper-parameter between FRODO and IMPALA agents in “IMPALA
hyper-parameter”, which includes network architecture, batch size, learning rate, etc, and we show
the FRODO specific hyper-parameter in the bottom, such as inner update steps, meta learning rate,
etc.

B Computing Infrastructure

We run our experiments using a distributed infrastructure implemented in JAX [5]. The computing
infrastructure is based on an actor-learner decomposition [10], where multiple actors generate
experience in parallel, and this experience is channelled into a learner via a small queue. Both the
actors and learners are co-located on a single machine, where the host is equipped with 56 CPU cores
and connected to 8 TPU cores [19]. To minimise the effect of Python’s Global Interpreter Lock,
each actor-thread interacts with a batched environment; this is exposed to Python as a single special
environment that takes a batch of actions and returns a batch of observations, but that behind the
scenes steps each environment in the batch in C++. The actor threads share 2 of the 8 TPU cores
(to perform inference on the network), and send batches of fixed size trajectories of length T to a
queue. The learner threads takes these batches of trajectories and splits them across the remaining
6 TPU cores for computing the parameter update (these are averaged with an all reduce across the
participating cores). Updated parameters are sent to the actor TPU devices via a fast device to
device channel as soon as the new parameters are available. This minimal unit can be replicates
across multiple hosts, each connected to its own 56 CPU cores and 8 TPU cores, in which case the
learner updates are synced and averaged across all learner cores (again via fast device to device
communication).

It took approximately 1.5 hours to learn from 1 billion Atari environment frames with the two-layer
ConvNet we used.
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IMPALA hyper-parameter Value
Network architecture Two-layer ConvNet
ConvNet channels 32, 64
ConvNet kernel sizes 4, 4
ConvNet kernel strides 4, 4
Unroll length 30
Batch size 30
Baseline loss scaling 0.5
Entropy cost 0.01
Learning rate 1e−3
RMSProp momentum 0.0
RMSProp decay 0.99
RMSProp ε 0.1
Clip global gradient norm 1e4

FRODO hyper-parameter Value
Inner update steps M 5
Meta learning rate 5e−4
Meta optimiser RMSProp
Clip Meta gradient norm 1e4
Meta batch size 30

Table 1: Detailed hyper-parameters for Atari experiments.

C Pseudo-code

In this section, we provide pseudo-code in Python format which show how we implemented the key
ideas in our proposed FRODO algorithm. Our algorithm is implemented with neural network library
Haiku [12], reinforcement learning library RLax [6] and optimiser library Optax [13] in JAX [5]. We
first use the prediction task of toy problems in Sec 4 as an example to show how we implemented the
algorithm by a few small functions. Then, we show a base class for FRODO agents and concrete
instantiation for our Atari experiments. LICENCE shown in Sec C.1 applies to all the provided code.

C.1 LICENCE

Copyright 2020 “Meta-Gradient Reinforcement Learning with an Objective Discover Online” Au-
thors.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied. See the License for the specific language governing permissions and
limitations under the License.

C.2 Prediction task in toy problems

In the prediction task of non-stationary “5-state random walk” (Sec 4), the meta network gη takes a
trajectory τ as input and outputs Gη(τ) as the update target (shown in outer_loss_fn), then the
agent use squared TD error between Gη(τ) and the values to update the value function (shown in
agent_update). The agent applies a few steps of updates then obtains a differentiable outer loss
(shown in agent_updates_and_outer_loss). Finally we have the two_level_update to update the
meta network η and complete the algorithm.

def inner_loss_fn(theta, eta, traj):
"""Inner loss function."""
obs = traj.observation
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rewards = traj.reward[1:]
discounts = traj.discount[1:]
v = v_net_apply(theta, obs)

eta_inputs = {
'obs': obs[:-1],
'reward': rewards,
'discount': discounts,
'v': v[1:],

}
g_eta = eta_net_apply(eta, eta_inputs)
td_error = g_eta - v[:-1]
return jnp.mean(jnp.square(td_error))

def outer_loss_fn(theta, traj):
"""Outer loss function."""
obs = traj.observation
rewards = traj.reward[1:]
discounts = traj.discount[1:]
v = v_net_apply(theta, obs)
g = discounted_return_fn(rewards, discounts, v[-1, :][None, ...])
td_error = jax.lax.stop_gradient(g) - v[:-1]
return jnp.mean(jnp.square(td_error))

def agent_update(theta, opt_state, eta, traj, optim):
"""Update the agent parameter."""
loss, g = jax.value_and_grad(inner_loss_fn)(theta, eta, traj)
delta, opt_state = optim.update(g, opt_state)
theta = optix.apply_updates(theta, delta)
return theta, opt_state, loss

def agent_updates_and_outer_loss(eta, theta, opt_state, traj_arr, optim):
# M steps of inner updates to the agent
for traj in traj_arr[:-1]:

theta, opt_state, unused_loss = agent_update(theta, opt_state, eta, traj,
optim)

val_traj = traj_arr[-1]
# Take outer loss from the updated theta and validation trajectory
outer_loss = outer_loss_fn(theta, val_traj)
return outer_loss, (theta, opt_state)

def two_level_update(theta, opt_state, eta, eta_opt_state, traj_arr, optim,
eta_optim):

# Obtain the meta gradient and perform two-level update
(loss, (theta, opt_state)), meta_g = jax.value_and_grad(

agent_updates_and_outer_loss, has_aux=True)(eta, theta, opt_state,
traj_arr, optim)

# Update eta with metagradient
delta_eta, eta_opt_state = eta_optim.update(meta_g, eta_opt_state)
eta = optix.apply_updates(eta, delta_eta)
return theta, opt_state, eta, eta_opt_state, loss
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C.3 FRODO Base Class

In this section, we provide a FRODOAgent base class to show how to implement the agent for large-
scale experiments. Similarly to the toy example code above, we use two_level_update function as
the entry point of the algorithm. To instantiate specific algorithms, we only need to implement the
abstract functions inner_loss and outer_loss, which we are showing an example in C.4 and C.5.
Different inner loss and outer loss other than what we used can be instantiated in the subclass.

import jax
from jax import lax
from jax import numpy as jnp
from jax.experimental import optimizers
from jax.tree_util import tree_multimap

class FRODOAgent:
"""Base class for FRODO Agents."""
def __init__(self, ...):

"""Init function."""
raise NotImplementedError

def actor_step(self, params, env_output, actor_state, rng_key, evaluation):
"""Compute actions."""
raise NotImplementedError

def build_eta(self, meta_net_type, meta_net_kwargs):
"""Build eta and eta optimizer."""
raise NotImplementedError

def inner_loss(self, theta, eta, rollout, first_actor_state):
"""Inner loss on the rollout, the loss contains learnable eta."""
raise NotImplementedError

def outer_loss(self, theta, rollout, first_actor_state):
"""Outer loss on the rollout."""
raise NotImplementedError

def inner_update(self, theta, theta_opt_state, eta, rollout,
first_actor_state):

"""Perform a step of inner update to the agent."""
# grad(inner_loss)
g, (last_actor_state, logs) = jax.grad(

self.inner_loss, has_aux=True)(theta, eta, rollout, first_actor_state)
# Gather gradients from all devices.
grads = tree_multimap(

lambda t: lax.psum(t, axis_name='i') / lax.psum(1., axis_name='i'), g)
# Clip the gradients according to global max norm.
grads = optimizers.clip_grads(grads, self.max_theta_grad_norm)
# Use the optimizer to apply a suitable gradient transformation.
updates, new_theta_opt_state = self._opt_update(grads, theta_opt_state)
# Update parameters.
new_theta = tree_multimap(lambda p, u: p + u, theta, updates)
return new_theta, new_theta_opt_state, last_actor_state, logs

def inner_updates_and_outer_loss(self, eta, theta, theta_opt_state,
rollout_arr):

"""Perform a few inner updates and have the outer loss of the last batch."""
logs_arr = []
# Perform inner updates on the rollout list.
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cons_loss = jnp.array(0.)
last_actor_states = []
for _, (rollout, first_actor_state) in enumerate(rollout_arr[:-1]):

theta, theta_opt_state, last_actor_state, logs = self.inner_update(
theta, theta_opt_state, eta, rollout, first_actor_state)

if 'cons_loss' in logs:
cons_loss += logs['cons_loss']

logs_arr.append(logs)
last_actor_states.append(last_actor_state)

# Use the final batch of rollout as validation data to form the outer loss.
val_rollout, val_first_actor_state = rollout_arr[-1]
loss, (last_actor_state, _) = self.outer_loss(theta, val_rollout,

val_first_actor_state)
last_actor_states.append(last_actor_state)
loss = loss + self.settings.cons_weight * cons_loss
last_actor_state = tree_multimap(lambda *inputs: jnp.concatenate(inputs),

*last_actor_states)
return loss, (theta, theta_opt_state, last_actor_state, logs)

def two_level_update(self, theta, theta_opt_state, eta, eta_opt_state,
rollout_arr):

"""Two level updates to eta and to theta."""
# Perform inner updates and compute meta gradient.
(unused_outer_loss_v, (new_theta, new_theta_opt_state, last_actor_state,

logs)), eta_g = jax.value_and_grad(
self.inner_updates_and_outer_loss,
has_aux=True)(eta, theta, theta_opt_state,

rollout_arr)
# Gather meta gradients from all devices.
eta_grads = tree_multimap(

lambda t: lax.psum(t, axis_name='i') / lax.psum(1., axis_name='i'),
eta_g)

eta_grads = optimizers.clip_grads(eta_grads, self.max_eta_grad_norm)
# Update eta.
eta_updates, new_eta_opt_state = self._eta_opt_update(

eta_grads, eta_opt_state)
new_eta = tree_multimap(lambda p, u: p + u, eta, eta_updates)
return (new_theta, new_theta_opt_state, new_eta, new_eta_opt_state,

last_actor_state, logs)

C.4 FRODO Actor-Critic Inner Loss

import rlax

def inner_loss(self, theta, eta, rollout, first_actor_state):
env_output, agent_output = self.preprocessing_rollout(rollout)
actions = agent_output.actions[self._action_name]
(logits, v, torso_out), last_actor_state = self.net_unroll(

theta, env_output, env_output['step_type'], first_actor_state)
logits = logits[self._action_name]
v_tm1 = jnp.squeeze(v[:-1], axis=-1)
v_t = jnp.squeeze(v[1:], axis=-1)

logpi = jax.nn.log_softmax(logits[:-1])) # [T,B,A]
logpi_a = rlax.batched_index(logpi, actions[:-1]) # [T, B]

logmu = jax.nn.log_softmax(agent_output.logits[:-1])) # [T,B,A]
logmu_a = rlax.batched_index(logmu, actions[:-1]) # [T,B]
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inputs = dict(
reward=env_output['reward'][1:],
discount=env_output['discount'][1:],
pi_a=jnp.exp(logpi_a),
mu_a=jnp.exp(logmu_a),
v_t=v_t,
torso_out=torso_out[:-1],

)
learned_return = self._eta_apply_fn(eta, inputs)
# Policy gradient loss.
advantages = learned_return - sg(v_tm1) # [T, B]
pi_loss = -jnp.sum(advantages * logpi_a)

# Baseline loss
baseline_loss = 0.5 * jnp.sum(jnp.square(learned_return - v_tm1))
# Entropy loss.
pi = jax.nn.softmax(logits[:-1])
logpi = jax.nn.log_softmax(logits[:-1])
entropy = jnp.sum(-pi * logpi, axis=-1)
entropy_loss = -jnp.sum(entropy)
# Sum and weight losses.
total_loss = pi_loss
total_loss += self.settings.baseline_weight * baseline_loss
total_loss += self.settings.entropy_weight * entropy_loss

# Consistency loss for G_eta
rewards = env_output['reward'][1:]
discounts = env_output['discount'][1:]
learned_return_tm1 = learned_return[:-1]

# n-step self-consistency.
batched_discounted_returns = jax.vmap(

rlax.discounted_returns, in_axes=1, out_axes=1)
target_tm1 = batched_discounted_returns(rewards, discounts,

learned_return[-1][None, ...])
cons_loss = 0.5 * jnp.sum(

jnp.square(sg(target_tm1[:-1]) - learned_return_tm1))

logs = {'cons_loss': cons_loss}
return total_loss, (last_actor_state, logs)

C.5 FRODO Actor-Critic Outer Loss

import rlax

def outer_loss(self, theta, rollout, first_actor_state):
env_output, agent_output = self.preprocessing_rollout(rollout)
actions = agent_output.actions[self._action_name]
# Apply net_unroll.
(logits, v, _), last_actor_state = self.net_unroll(

theta, env_output, env_output['step_type'], first_actor_state)
logits = logits[self._action_name]
tau = self.settings.temperature
logits = logits / tau
v_tm1 = jnp.squeeze(v[:-1], axis=-1)
v_t = jnp.squeeze(v[1:], axis=-1)
# Apply `vtrace` computation in batch.
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batched_vtrace = jax.vmap(
functools.partial(

rlax.vtrace_td_error_and_advantage,
lambda_=self.settings.lambda_,
clip_rho_threshold=self.settings.clip_rho_threshold,
clip_pg_rho_threshold=self.settings.clip_pg_rho_threshold),

in_axes=1, out_axes=1)
# Compute importance weighted td-errors and advantages.
reward = env_output['reward']
discount = env_output['discount']
rhos = rlax.categorical_importance_sampling_ratios(

logits, agent_output.logits, actions)
vtrace_output = batched_vtrace(

v_tm1, v_t, reward[1:], discount[1:], rhos[:-1])
# Policy gradient loss.
logpi = jax.nn.log_softmax(logits[:-1]) # [T,B,A]
logpi_a = rlax.batched_index(logpi, actions[:-1]) # [T, B]
advantages = sg(vtrace_output.pg_advantage) # [T, B]
pi_loss = -jnp.sum(advantages * logpi_a)
# Value loss.
baseline_loss = 0.5 * jnp.sum(jnp.square(vtrace_output.errors))
# Entropy loss.
pi = jax.nn.softmax(logits[:-1])
logpi = jax.nn.log_softmax(logits[:-1])
entropy = jnp.sum(-pi * logpi, axis=-1)
entropy_loss = -jnp.sum(entropy)
# Sum and weight losses.
total_loss = pi_loss
total_loss += self.settings.baseline_weight * baseline_loss
total_loss += self.settings.entropy_weight * entropy_loss
return total_loss, (last_actor_state, None)
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