
Appendices

Table 1: Explanation of the notations

tV kh uptQ
k
huq the value (Q-) function at the beginning of the k-th episode;

tV ref,k
h u the reference value function at the beginning of the k-th episode;

tNk
h ps, aqu the number of visits to ps, a, hq before the beginning of the k-th episode;

tŇk
h ps, aqu

the number of visits to ps, a, hq in the current stage (at the beginning of the
k-th episode) with respect to the same triple;

tµref,k
h uptσref,k

h uq the accumulator for the mean (variance) of the reference value function;

tµ̌khuptσ̌
k
hu)

the accumulator for the mean (variance) of the advantage (i.e., the difference
between the value and the reference value function) in the current stage;

tv̌khu the accumulator for the mean of the value function in the current stage;
tb̄khu, tb

k
hu the exploration bonuses for the two types of updates;

tV REF
h u the final reference value function;

tV ˚h uptQ
˚
huq the optimal value (Q-) function;

nkh
the number of visits to pskh, a

k
h, hq before the current stage with respect to the

same triple;

ňkh
the number of visits to pskh, a

k
h, hq in the stage immediately before the current

stage with respect to the same triple;

lkh,i
the index (time step) of the i-th episode among the nkh episodes of that
visited pskh, a

k
h, hq before the current stage with respect to the same triple;

ľkh,i
the index (time step) of the i-th episode among the ňkh episodes in the stage
immediately before the current stage with respect to pskh, a

k
h, hq.

A Basic Lemmas

Lemma 8 (Azuma-Hoeffding Inequality). Suppose tXkuk“0,1,2,... is a martingale and |Xk ´

Xk´1| ď ck almost surely. Then for all positive integers N and all positive reals ε, it holds
that

P r|XN ´X0| ě εs ď 2 exp

˜

´ε2

2
řN
k“1 c

2
k

¸

.

Lemma 9 (Freedman’s Inequality, Theorem 1.6 of [Freedman et al., 1975]). Let pMnqně0 be a
martingale such that M0 “ 0 and |Mn ´Mn´1| ď c. Let Varn “

řn
k“1 ErpMk ´Mk´1q

2|Fk´1s

for n ě 0, where Fk “ σpM0,M1,M2, ...,Mkq. Then, for any positive x and for any positive y,

P rDn : Mn ě x and Varn ď ys ď exp

ˆ

´
x2

2py ` cxq

˙

. (20)

Lemma 10. Let pMnqně0 be a martingale such that M0 “ 0 and |Mn ´Mn´1| ď c for some
c ą 0 and any n ě 1. Let Varn “

řn
k“1 ErpMk ´ Mk´1q

2|Fk´1s for n ě 0, where Fk “
σpM1,M2, ...,Mkq. Then for any positive integer n, and any ε, p ą 0, we have that

P
„

|Mn| ě 2

c

Varn logp
1

p
q ` 2

c

ε logp
1

p
q ` 2c logp

1

p
q



ď

ˆ

2nc2

ε
` 2

˙

p. (21)

Proof. For any fixed n, we apply Lemma 9 with y “ iε and x “ ˘p2
b

y logp 1
p q ` 2c logp 1

p qq. For

each i “ 1, 2, . . . , rnc
2

ε s, we get that

P
„

|Mn| ě 2

c

pi´ 1qε logp
1

p
q ` 2

c

ε logp
1

p
q ` 2c logp

1

p
q,Varn ď iε



ď P
„

|Mn| ě 2

c

iε logp
1

p
q ` 2c logp

1

p
q,Varn ď iε
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ď 2p. (22)
Then via a union bound, we have that

P
„

|Mn| ě 2

c

Varn logp
1

p
q ` 2

c

ε logp
1

p
q ` 2c logp

1

p
q



ď

rnc
2

ε s
ÿ

i“1

P
„

|Mn| ě 2

c

pi´ 1qε logp
1

p
q ` 2

c

ε logp
1

p
q ` 2c logp

1

p
q, pi´ 1qε ď Varn ď iε



ď

rnc
2

ε s
ÿ

i“1

P
„

|Mn| ě 2

c

pi´ 1qε logp
1

p
q ` 2

c

ε logp
1

p
q ` 2c logp

1

p
q,Varn ď iε



ď

ˆ

2nc2

ε
` 2

˙

p. (23)

Lemma 11. For any non-negative weights twhps, aqusPS,aPA,hPrHs and α P p0, 1q, it holds that
K
ÿ

k“1

H
ÿ

h“1

whps
k
h, a

k
hq

pnkhq
α

ď
2α

1´ α

ÿ

s,a,h

whps, aqpN
K`1
h ps, aqq1´α, (24)

and
K
ÿ

k“1

H
ÿ

h“1

whps
k
h, a

k
hq

pňkhq
α

ď
22αHα

1´ α

ÿ

s,a,h

whps, aqpN
K`1
h ps, aqq1´α.

In the case α “ 1, it holds that
K
ÿ

k“1

H
ÿ

h“1

whps
k
h, a

k
hq

nkh
ď 2

ÿ

s,a,h

whps, aq logpNK`1
h ps, aqq, (25)

and
K
ÿ

k“1

H
ÿ

h“1

whps
k
h, a

k
hq

ňkh
ď 4H

ÿ

s,a,h

whps, aq logpNK`1
h ps, aqq.

Proof. By the definition of L, for any h, k such that nkh ą 0, there exists j such that ňkh “ ej and
nkh “

řj
i“1 ei. Therefore, 1

2Hn
k
h ď ňkh ď

3
Hn

k
h. So it suffices to prove (24) and (25). By basic

calculus, for two positive numbers x, y such that y{2 ď x ď y and any α P p0, 1q, we have that

y1´α ´ x1´α ě p1´ αqpy ´ xqy´α ě p1´ αqpy ´ xq2´αx´α, (26)
and

logpyq ´ logpxq ě
y ´ x

y
ě 2

y ´ x

x
. (27)

By applying (26) and p27q with y “
řj`1
i“1 ei and x “

řj
i“1 ei for j “ 1, 2, ... and taking sum, we

have
K
ÿ

k“1

H
ÿ

h“1

whps
k
h, a

k
hq

pnkhq
α

ď
ÿ

s,a,h

whps, aq
ÿ

j:
řj
i“1 eiďN

K`1
h ps,aq

mintej`1, N
K`1
h ps, aq ´

řj
i“1 eiu

p
řj
i“1 ejq

α

ď
2α

1´ α

ÿ

s,a,h

whps, aqpN
K`1
h ps, aqq1´α

and
K
ÿ

k“1

H
ÿ

h“1

whps
k
h, a

k
hq

nkh
ď

ÿ

s,a,h

whps, aq
ÿ

j:
řj
i“1 eiďN

K`1
h ps,aq

mintej`1, N
K`1
h ps, aq ´

řj
i“1 eiu

p
řj
i“1 ejq

ď 2
ÿ

s,a,h

whps, aq logpNK`1
h ps, aqq.
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B Missing Proofs in the Regret Analysis
B.1 Proof of Proposition 4

We prove Q˚hps, aq ď Qkhps, aq for all k, h, s, a, by induction on k. Firstly, the conclusion holds
when k “ 1. For k ě 2, assume Q˚hps, aq ď Quhps, aq for any h, s, a and 1 ď u ď k. Let ps, a, hq
be fixed. If we do not update Qhps, aq in the k-th episode, then Qk`1

h ps, aq “ Qkhps, aq ě Q˚hps, aq.
Otherwise, we have

Qk`1
h ps, aq “ min

!

rhps, aq `
µref

n
`
µ̌

ň
` b

loooooooooooooomoooooooooooooon

piq

, rhps, aq `
υ̌

ň
` b

looooooooomooooooooon

piiq

, Qkhps, aq
)

,
(28)

where µref , µ̌, σref , σ̌ , n, ň, b and b are given by respectively the values of µref , µ̌, σref , σ, n, ň, b
and b to compute Qk`1

h ps, aq in (9). We use li to denote the episode index of the i-th sample and ľi
to denote the episode index of the i-th sample of the last stage with respect to the triple ps, a, hq.
Besides the last Qkhps, aq term, there are two non-trivial cases to discuss (corresponding to (i) and
(ii)).

For the first case, we have that

Qk`1
h ps, aq “ rhps, aq `

µref

n
`
µ̌

ň
` b

“ rhps, aq ` Ps,a,h

˜

1

n

n
ÿ

i“1

V
ref,li
h`1

¸

` Ps,a,h

˜

1

ň

ň
ÿ

i“1

pV
ľi
h`1 ´ V

ref,ľi
h`1 q

¸

` χ1 ` χ2 ` b

ě rhps, aq ` Ps,a,h

˜

1

ň

ň
ÿ

i“1

V
ľi
h`1

¸

` χ1 ` χ2 ` b (29)

ě rhps, aq ` Ps,a,hV
˚
h`1 ` χ1 ` χ2 ` b (30)

“ Q˚hps, aq ` χ1 ` χ2 ` b

where

χ1 :“
1

n

n
ÿ

i“1

´

V
ref,li
h`1 ps

li
h`1q ´ Ps,a,hV

ref,li
h`1

¯

, (31)

W l
h`1 :“ V lh`1 ´ V

ref,l
h`1 , @l ě 1 (32)

χ2 :“
1

ň

ň
ÿ

i“1

´

W
ľi
h`1ps

ľi
h`1q ´ Ps,a,hW

ľi
h`1

¯

. (33)

Here, Inequality (29) holds because V ref,u
h`1 is non-increasing in u, Inequality (30) is by the induction

V u ě V ˚ for any 1 ď u ď k.
Define Vpx, yq :“ xJpy2q ´ pxJyq2 for two vectors x, y of the same dimension, where y2 is
obtained by squaring each entry of y. By Lemma 10 with ε “ 1

T 2 , we have that with probability
p1´ 2pH2T 3 ` 1qpq it holds that

|χ1| ď 2

d

p
řn
i“1 VpPs,a,h, V

ref,li
h`1 qqι

n2
` 2

?
ι

Tn
`

2Hι

n
(34)

|χ2| ď 2

g

f

f

e

p
řň
i“1 VpPs,a,h,W

ľi
h`1qqι

ň
` 2

?
ι

T ň
`

2Hι

ň
. (35)

We now bound
řň
i“1 VpPs,a,h, V

ref,li
h`1 q in order to upper bound |χ1|. Define

νref :“
σref

n
´

˜

µref

n

¸2

.
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We claim that,
Lemma 12. With probability p1´ 2pq, it holds that

n
ÿ

i“1

VpPs,a,h, V
ref,li
h`1 q ď n ¨ νref ` 3H2?nι. (36)

Proof. We have that
n
ÿ

i“1

VpPs,a,h, V
ref,li
h`1 q :“

n
ÿ

i“1

´

Ps,a,hpV
ref,li
h`1 q

2 ´ pPs,a,hV
ref,li
h`1 q

2
¯

“

n
ÿ

i“1

pV
ref,li
h`1 ps

li
h`1qq

2 ´
1

n

˜

n
ÿ

i“1

V
ref,li
h`1 ps

li
h`1q

¸2

` χ3 ` χ4 ` χ5

“ n ¨ νref ` χ3 ` χ4 ` χ5, (37)

where

χ3 :“

n
ÿ

i“1

´

Ps,a,hpV
ref,li
h`1 q

2 ´ pV
ref,li
h`1 ps

li
h`1qq

2
¯

, (38)

χ4 :“
1

n

˜

n
ÿ

i“1

V
ref,li
h`1 ps

li
h`1q

¸2

´
1

n

˜

n
ÿ

i“1

Ps,a,hV
ref,li
h`1

¸2

, (39)

χ5 :“
1

n

˜

n
ÿ

i“1

Ps,a,hV
ref,li
h`1

¸2

´

n
ÿ

i“1

´

Ps,a,hV
ref,li
h`1

¯2

. (40)

By Azuma’s inequality, we have |χ3| ď H2
?

2nι with probability at least p1´pq. We apply Azuma’s
inequality again to obtain that with probability at least p1´ pq, it holds that

|χ4| “
1

n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˜

n
ÿ

i“1

V
ref,li
h`1 ps

li
h`1q

¸2

´

˜

n
ÿ

i“1

Ps,a,hV
ref,li
h`1

¸2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2H ¨

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

V
ref,li
h`1 ps

li
h`1q ´

n
ÿ

i“1

Ps,a,hV
ref,li
h`1

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2H2
a

2nι. (41)

On the other hand, we have that χ5 ď 0 by Cauchy-Schwartz inequality. The proof then is completed
by (37).

Combing (34) with (36) we have

|χ1| ď 2

d

νrefι

n
`

5Hι
3
4

pnq
3
4

`
2
?
ι

Tn
`

2Hι

n
. (42)

We now bound
řň
i“1 VpPs,a,h,W

ľi
h`1q for |χ2|. Define

ν̌ :“
σ̌

ň
´

ˆ

µ̌

ň

˙2

.

Similarly to Lemma 12, we have that
Lemma 13. With probability p1´ 2pq, it holds that

ň
ÿ

i“1

VpPs,a,h,W
ľi
h`1q ď ň ¨ ν̌ ` 3H2

a

ňι. (43)
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Therefore, given (35), it holds with probability p1´ 2pq that

|χ2| ď 2

c

ν̌ι

ň
`

5Hι
3
4

pňq
3
4

`
2
?
ι

T ň
`

2Hι

ň
. (44)

Finally, combining (42), (44), and the definition of b with rc1, c2, c3s “ r2, 2, 5s, and collecting
probabilities, we have that with probability at least p1´ 2pH2T 3 ` 3qqp, it holds that

b ě |χ1| ` |χ2|, (45)

which means that Qk`1
h ps, aq ě Q˚hps, aq.

For the second case, by Hoeffding’s inequality, with probability p1´ pq it holds that

Qk`1
h ps, aq “ rhps, aq `

υ̌

ň
` b

ě rhps, aq `
1

ň

ň
ÿ

i“1

V ˚h`1psľi,h`1q ` 2

d

H2

ň
ι

ě rhps, aq ` Ps,a,hV
˚
h`1

“ Q˚hps, aq. (46)

Combining the two cases, and via a union bound over all time steps, we prove the proposition.

B.2 Proof of Lemma 5

First, by Hoeffding’s inequality, for every k and h, we have that

P

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

ňkh

ňkh
ÿ

i“1

V ˚h`1ps
ľi
h`1q ´ Pskh,akh,hV

˚
h`1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď b
k

h

fi

fl ą 1´ p. (47)

Now the whole proof will be conditioned on that (47) holds for every k and h, which happens with
probability at least p1´ Tpq. For every k and h, we let δkh :“ V kh ps

k
hq ´ V

˚
h ps

k
hq (which aligns with

the definition for δkh in the proof of Theorem 1).

For any weight sequence twkuKk“1 such that wk ě 0, let }w}8 “ maxKk“1 w
k and }w}1 “

řK
k“1 w

k.
We will prove that

K
ÿ

k“1

wkδkh ď 240H
5
2

a

}w}8 ¨ SA}w}1ι` 3SAH3}w}8. (48)

Once we have established (48), we let wk “ Irδkh ě εs and we have

K
ÿ

k“1

Irδkh ě εsδkh ď 240H
5
2

g

f

f

e}w}8 ¨ SAι
K
ÿ

k“1

Irδkh ě εs ` 3SAH3}w}8.

Note that }w}8 is either 0 or 1. In either cases, we are able to derive that

K
ÿ

k“1

Irδkh ě εs ď OpSAH5ι{ε2q,

and concludes the proof of the lemma. Therefore, we only need to prove (48), and the rest of the
proof is devoted to establishing (48).
By the update rule (9) and (10), that V k always upper bounds V ˚ (conditioned on the successful
event of Proposition 4), and that we have conditioned on (47), we have that

δkh “ V kh ps
k
hq ´ V

˚
h ps

k
hq

ď Qkhps
k
h, a

k
hq ´Q

˚
hps

k
h, a

k
hq
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ď Irnkh “ 0sH `
`

b
k

h `
1

ňkh

ňkh
ÿ

i“1

V ľih`1ps
ľi
h`1q ´ Pskh,akh,hV

˚
h`1

˘

ď Irnkh “ 0sH `
`

2b
k

h `
1

ňkh

ňkh
ÿ

i“1

pV ľih`1ps
ľi
h`1q ´ V

˚
h`1ps

ľi
h`1qq

˘

“ Irnkh “ 0sH `
`

2b
k

h `
1

ňkh

ňkh
ÿ

i“1

δľih`1

˘

. (49)

Using the similar trick we do for (15) and (16), we have

K
ÿ

k“1

wk

ňkh

ňkh
ÿ

i“1

δľih`1 “

K
ÿ

j“1

wj

ňjh

ňjh
ÿ

i“1

δ
ľjh,i
h`1

“

K
ÿ

j“1

wj

ňjh

K
ÿ

k“1

δkh`1

ňjh
ÿ

i“1

Irk “ ľjh,is “
K
ÿ

k“1

δkh`1

K
ÿ

j“1

wj

ňjh

ňjh
ÿ

i“1

Irk “ ľjh,is, (50)

where if we let

w̃k “
K
ÿ

j“1

wj

ňjh

ňjh
ÿ

i“1

Irk “ ľjh,is, (51)

we have that

}w̃}8 “ max
k

w̃k ď p1`
1

H
q}w}8, and }w̃}1 “

ÿ

k

w̃k “
ÿ

k

wk “ }w}1. (52)

Therefore, combining (49), (50), and (51), and plugging them into
ř

k w
kδkh, we have that

ÿ

k

wkδkh ď 2
ÿ

k

wkb
k

h `
ÿ

k

w̃kδkh`1 `H
ÿ

k

wkI
“

nkh “ 0
‰

ď 2
ÿ

k

wkb
k

h `
ÿ

k

w̃kδkh`1 ` SAH
2}w}8, (53)

We now bound the first term of (53). Define wps, a, jq :“
řK
k“1 w

kIrňkh “ ej , ps
k
h, a

k
hq “ ps, aqs

and wps, aq :“
ř

jě1 wps, a, jq. We have wps, a, jq ď }w}8p1` 1
H qej and

ř

s,awps, aq “
ř

k w
k.

We then have

ÿ

k

wkb
k

h “
ÿ

k

2
?
H2ιwk

d

1

ňkh

“ 2
?
H2ι

ÿ

s,a,j

d

1

ej

K
ÿ

k“1

wkIrňkh “ ej , ps
k
h, a

k
hq “ ps, aqs “ 2

?
H2ι

ÿ

s,a

ÿ

jě1

wps, a, jq

d

1

ej
.

We fix ps, aq and consider the sum
ř

jě1 wps, a, jq
b

1
ej

. Notice that
a

1{ej is monotonically

decreasing in j. Given that
ř

jě0 wps, a, jq “ wps, aq is fixed, by rearrangement inequality we have
that

ÿ

jě1

wps, a, jq

d

1

ej
ď

ÿ

jě1

d

1

ej
¨ }w}8p1`

1

H
qej ¨ I

«

j´1
ÿ

i“1

}w}8p1`
1

H
qei ď wps, aq

ff

“ }w}8p1`
1

H
q
ÿ

j

?
ej ¨ I

«

j´1
ÿ

i“1

}w}8ei ď wps, aq

ff

ď 10p1`
1

H
q
a

}w}8H ¨wps, aq.
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Therefore, by Cauchy-Schwartz, we have that
ÿ

k

wkb
k

h ď 2
?
H2ι

ÿ

s,a

10p1`
1

H
q
a

}w}8H
a

wps, aq ď 20
?
H2ιp1`

1

H
q
a

}w}8 ¨ SAH}w}1.

(54)

Combining (53) and (54), we have that
ÿ

k

wkδkh ď 80H
a

}w}8 ¨ SAH}w}1ι` SAH
2}w}8 `

ÿ

k

w̃kδkh`1. (55)

With (55) and (52) in hand, applying induction on h with the base case that h “ H , one may deduce
that

ÿ

k

wkδkh ď p1` 1{HqH ¨H ¨
´

80H
a

}w}8 ¨ SAH}w}1ι` SAH
2}w}8

¯

ď 240H2
a

}w}8 ¨ SAH}w}1ι` 3SAH3}w}8.

B.3 Proof of Lemma 7

The entire proof is conditioned on the successful events of Proposition 4 and Lemma 5 which
happen with probability at least p1´ 2T pH2T 3 ` 5qpq. For convenience, we define λkh as λkhpsq “
I
“

nkhpsq ă N0

‰

for all state s and all k and h.

By the definition of Λkh`1, we have that
řH
h“1

řK
k“1p1`

1
H q

h´1Λkh`1 by the definition that

H
ÿ

h“1

K
ÿ

k“1

p1`
1

H
qh´1Λkh`1 “

H
ÿ

h“1

K
ÿ

k“1

p1`
1

H
qh´1ψkh`1 `

H
ÿ

h“1

K
ÿ

k“1

p1`
1

H
qh´1ξkh`1

`

H
ÿ

h“1

K
ÿ

k“1

p1`
1

H
qh´1φkh`1 ` 2

H
ÿ

h“1

K
ÿ

k“1

p1`
1

H
qh´1bkh. (56)

We will bound the four terms separately.

B.3.1 The ψkh`1 Term

Lemma 14. With probability at least p1´ pq, it holds that
H
ÿ

h“1

K
ÿ

k“1

p1`
1

H
qh´1ψkh`1 ď OplogpT qq ¨ pH2SN0 `H

?
Tιq.

Proof. Because ψkh`1 is always non-negative, we have that with probability p1´ pq it holds that

K
ÿ

k“1

H
ÿ

h“1

p1`
1

H
qh´1ψkh`1

ď 3
K
ÿ

k“1

H
ÿ

h“1

ψkh`1

“ 3
K
ÿ

k“1

H
ÿ

h“1

1

nkh

nkh
ÿ

i“1

Pskh,akh,hpV
ref,li
h`1 ´ V REF

h`1 q

ď 3H
K
ÿ

k“1

H
ÿ

h“1

1

nkh

nkh
ÿ

i“1

Pskh,akh,hλ
li
h`1

ď 3H
H
ÿ

h“1

K
ÿ

j“1

K
ÿ

k“1

Pskh,akh,hλ
j
h`1 ¨

1

nkh

nkh
ÿ

i“1

Irlkh,i “ js

ď 3H
H
ÿ

h“1

K
ÿ

j“1

Psjh,a
j
h,h
λjh`1 ¨

K
ÿ

k“1

1

nkh

nkh
ÿ

i“1

Irlkh,i “ js (57)
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ď 6
`

logpT q ` 1
˘

¨H
H
ÿ

h“1

K
ÿ

k“1

Pskh,akh,hλ
k
h`1 (58)

“ 6
`

logpT q ` 1
˘

¨H
´

K
ÿ

k“1

H
ÿ

h“1

λkh`1ps
k
h`1q `

K
ÿ

k“1

H
ÿ

h“1

pPskh,akh,h ´ 1skh`1
qλkh`1

¯

ď 6
`

logpT q ` 1
˘

¨H
´

HSN0 `

K
ÿ

k“1

H
ÿ

h“1

pPskh,akh,h ´ 1skh`1
qλkh`1

¯

ď 6
`

logpT q ` 1
˘

¨H
´

HSN0 ` 2
?
Tι

¯

. (59)

Here, Inequality (57) is because 1
nkh

řnkh
i“1 Irlkh,i “ js ‰ 0 only if pskh, a

k
hq “ ps

j
h, a

j
hq. Inequality (58)

is because

K
ÿ

k“1

1

nkh

nkh
ÿ

i“1

I
“

lkh,i “ j
‰

ď
ÿ

z:jď
řz´1
i“1 eiďT

ez
řz´1
i“1 ei

ď 2plogpT q ` 1q.

Inequality (59) holds with probability p1´ pq due to Azuma’s inequality.

B.3.2 The ξkh`1 Term

Lemma 15. With probability at least p1´ pT ` 1qpq, it holds that

K
ÿ

k“1

H
ÿ

h“1

p1`
1

H
qh´1ξkh`1 ď OpH

?
SATιq.

Proof. We have that

K
ÿ

k“1

H
ÿ

h“1

p1`
1

H
qh´1ξkh`1 “

K
ÿ

k“1

H
ÿ

h“1

p1`
1

H
qh´1

´ 1

ňkh

ňkh
ÿ

i“1

pPskh,akh,h ´ 1
s
ľi
h`1

qpV ľih`1 ´ V
˚
h`1q

¯

“

K
ÿ

k“1

H
ÿ

h“1

K
ÿ

j“1

p1`
1

H
qh´1

´ 1

ňkh

ňkh
ÿ

i“1

pPskh,akh,h ´ 1sjh`1
qpV jh`1 ´ V

˚
h`1q ¨ Irľkh,i “ js

¯

.

Note that in the expression above ľkh,i “ j if and only if pskh, a
k
hq “ ps

j
h, s

j
hq. Therefore, we have

K
ÿ

k“1

H
ÿ

h“1

p1`
1

H
qh´1ξkh`1

“

K
ÿ

k“1

H
ÿ

h“1

K
ÿ

j“1

p1`
1

H
qh´1

´ 1

ňkh

ňkh
ÿ

i“1

pPsjh,a
j
h,h
´ 1sjh`1

qpV jh`1 ´ V
˚
h`1q ¨ Irľkh,i “ js

¯

“

H
ÿ

h“1

K
ÿ

j“1

p1`
1

H
qh´1pPsjh,a

j
h,h
´ 1sjh`1

qpV jh`1 ´ V
˚
h`1q ¨

K
ÿ

k“1

1

ňkh

ňkh
ÿ

i“1

Irľkh,i “ js

“

K
ÿ

k“1

H
ÿ

h“1

θkh`1pPskh,akh,h ´ 1skh`1
qpV kh`1 ´ V

˚
h`1q, (60)

where we define θjh`1 :“ p1` 1
H q

h´1
řK
k“1

`

1
ňkh

řňkh
i“1 Irľkh,i “ js

˘

.

For pj, hq P rKs ˆ rHs, let xjh be the number of elements in current stage with respect to psjh, a
j
h, hq

and θ̃jh`1 :“ p1 ` 1
H q

h´1 tp1` 1
H qx

j
hu

xjh
ď 3. Define K “ tpk, hq : θkh`1 “ θ̃kh`1u. Note that if k

is before the second last stage (before the final episode K) of the triple pskh, a
k
h, hq, then we have
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θkh`1 “ θ̃kh`1 and pk, hq P K. Given that pk, hq P K, skh`1 still follows the transition distribution
Pskh,akh,h.

Let KKh ps, aq “ tk : pskh, a
k
hq “ ps, aq, k is in the second last stage of ps, a, hqu. Note that for two

different episodes j, k, if pskh, a
k
hq “ psjh, a

j
hq and j, k are in the same stage of pskh, a

k
h, hq, then

θkh`1 “ θjh`1 and θ̃kh`1 “ θ̃jh`1. Let θh`1ps, aq and θ̃h`1ps, aq to denote θkh`1 and θ̃kh`1 respectively
for some k P KKh ps, aq.
We rewrite as

K
ÿ

k“1

H
ÿ

h“1

p1`
1

H
qh´1ξkh`1

“
ÿ

pk,hq

θ̃kh`1pPskh,akh,h ´ 1skh`1
qpV kh`1 ´ V

˚
h`1q `

ÿ

pk,hqPK

pθkh`1 ´ θ̃
k
h`1qpPskh,akh,h ´ 1skh`1

qpV kh`1 ´ V
˚
h`1q.

(61)

Because θ̃kh`1 is independent from skh`1, by Azuma’s inequality, we have with probability p1´ pq, it
holds that

ÿ

pk,hq

θ̃kh`1pPskh,akh,h ´ 1skh`1
qpV kh`1 ´ V

˚
h`1q ď 6

?
TH2ι. (62)

For the second term in (61), we have that
ÿ

pk,hqPK

pθkh`1 ´ θ̃
k
h`1qpPskh,akh,h ´ 1skh`1

qpV kh`1 ´ V
˚
h`1q

“
ÿ

s,a,h

ÿ

k:pk,hqPK

Irpskh, akhq “ ps, aqspθkh`1 ´ θ̃
k
h`1qpPskh,akh,h ´ 1skh`1

qpV kh`1 ´ V
˚
h`1q

“
ÿ

s,a,h

pθh`1ps, aq ´ θ̃h`1ps, aqq
ÿ

kPKKh ps,aq

pPskh,akh,h ´ 1skh`1
qpV kh`1 ´ V

˚
h`1q

ď
ÿ

s,a,h

OpHq
b

|KKh ps, aq|ι (63)

“
ÿ

ps,a,hq

OpHq ¨

b

ŇK`1
h ps, aqι

ď OpHq ¨

d

SAHι
ÿ

ps,a,hq

ŇK`1
h ps, aq (64)

ď OpHq ¨
a

SAHι ¨ pT {Hq. (65)

Here, (63) happens with probability p1´ Tpq because of Azuma’s inequality and a union bound over
all times steps in K. (64) is due to Cauchy-Schwartz, and (65) is because the length of the last two
stages for each ps, a, hq triple is only Op1{Hq fraction of the total number of visits.
Combining (61), (62), (65), and collecting probabilities, we prove the desired result.

B.3.3 The φkh`1 Term

Lemma 16. With probability p1´ pq, it holds that

K
ÿ

k“1

H
ÿ

h“1

p1`
1

H
qh´1φkk`1 “

K
ÿ

k“1

H
ÿ

h“1

p1`
1

H
qh´1pPskh,akh,h´ 1skh`1

qpV ˚h`1´V
πk
h`1q ď Op

?
H2Tιq.

Proof. The lemma follows easily from Azuma’s inequality.
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B.3.4 The bkh Term
Lemma 17. With probability p1´ 9pq, it holds that

K
ÿ

k“1

H
ÿ

h“1

p1`
1

H
qh´1bkh ď O

´?
SAH2Tι`

a

SAH2βTι` SAH3
a

SN0ι logpT q

`
a

SAH3β2Tι` pSAιq
3
4H

5
2T

1
4

¯

.

Proof. Define νref,k
h “ σref,k

nkh
´ p

µref,k
h

nkh
q2 and ν̌kh “

σ̌kh
ňkh
´ p

µ̌kh
ňkh
q2. Since bkh is non-negative, we have

that

2
H
ÿ

h“1

K
ÿ

k“1

p1`
1

H
qh´1bkh

ď 6
H
ÿ

h“1

K
ÿ

k“1

´

c1

d

νref,k
h

nkh
ι` c2

d

ν̌kh
ňkh
ι` c3

`Hι

nkh
`
Hι

ňkh
`

Hι
3
4

pnkhq
3
4

`
Hι

3
4

pňkhq
3
4

˘

¯

(66)

ď O
´

H
ÿ

h“1

K
ÿ

k“1

p

d

νref,k
h

nkh
ι`

d

ν̌kh
ňkh
ιq
¯

`O
´

SAH3 logpT qι` pSAιq
3
4H

5
2T

1
4

¯

. (67)

Inequality (67) is due to Lemma 11 with α “ 3
4 and α “ 1 . Now we only need to analyze the first

term in (67).
We first present an upper bound for νref,k

h . Recall that Vpx, yq “ xJpy2q ´ pxJyq2.

Lemma 18. With probability p1´ 4pq, it holds that

νref,k
h ´ VpPskh,akh,h, V

˚
h`1q ď 4Hβ `

6H2SN0

nkh
` 14H2

c

ι

nkh
.

Proof. We prove by first bounding νref,k
h ´ 1

nkh

řnkh
i“1 VpPskh,akh,h, V

ref,li
h`1 q. Recall that by (37),

νref,k
h ´

1

nkh

nkh
ÿ

i“1

VpPskh,akh,h, V
ref,li
h`1 q “ ´

1

nkh
pχ6 ` χ7 ` χ8q,

where

χ6 :“

nkh
ÿ

i“1

´

Ps,a,hpV
ref,li
h`1 q

2 ´ pV ref,li
h`1 ps

li
h`1qq

2
¯

, (68)

χ7 :“
1

nkh

¨

˝

nkh
ÿ

i“1

V ref,li
h`1 ps

li
h`1q

˛

‚

2

´
1

nkh

¨

˝

nkh
ÿ

i“1

Ps,a,hV
ref,li
h`1

˛

‚

2

, (69)

χ8 :“
1

nkh

¨

˝

nkh
ÿ

i“1

Ps,a,hV
ref,li
h`1

˛

‚

2

´

nkh
ÿ

i“1

´

Ps,a,hV
ref,li
h`1

¯2

. (70)

By Azuma’s inequality, with probability p1´ 2pq it holds that

|χ6| ď H2
b

2nkhι,

|χ7| ď 2H|

nkh
ÿ

i“1

V ref,li
h`1 ps

li
h`1q ´

nkh
ÿ

i“1

Pskh,akh,hV
ref,li | ď 2H2

b

2nkhι.
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It left us to handle ´χ8. By Azuma’s inequality and the fact that V ref,k ě V REF for any k, with
probability p1´ pq it holds that

´χ8 “

nkh
ÿ

i“1

´

Pskh,akh,hV
ref,li
h`1

¯2

´
1

nkh

¨

˝

nkh
ÿ

i“1

Pskh,akh,hV
ref,li
h`1

˛

‚

2

ď

nkh
ÿ

i“1

´

Pskh,akh,hV
ref,li
h`1

¯2

´
1

nkh

¨

˝

nkh
ÿ

i“1

Pskh,akh,hV
REF
h`1

˛

‚

2

“

nkh
ÿ

i“1

ˆ

´

Pskh,akh,hV
ref,li
h`1

¯2

´ pPskh,akh,hV
REF
h`1 q

2

˙

ď 2H2

nkh
ÿ

i“1

Pskh,akh,hλ
li
h`1

“ 2H2

¨

˝

nkh
ÿ

i“1

λlih`1ps
li
h`1q `

nkh
ÿ

i“1

pPskh,akh,h ´ 1
s
li
h`1

qλlih`1

˛

‚

ď 2H2SN0 ` 3H2
b

nkhι. (71)

Then we obtain that

νref,k
h ´

1

nkh

nkh
ÿ

i“1

VpPskh,akh,h, V
ref,li
h`1 q ď 8H2

c

ι

nkh
`

2H2SN0

nkh
. (72)

When (72) holds, we have that with probability p1´ pq,

νref,k
h ´ VpPskh,akh,h, V

˚
h`1q

“
1

nkh

nkh
ÿ

i“1

`

VpPskh,akh,h, V
ref,li
h`1 q ´ VpPskh,akh,h, V

˚
h`1q

˘

`
`

νref,k
h ´

1

nkh

nkh
ÿ

i“1

VpPskh,akh,h, V
ref,li
h`1 q

˘

ď
1

nkh

nkh
ÿ

i“1

`

VpPskh,akh,h, V
ref,li
h`1 q ´ VpPskh,akh,h, V

˚
h`1q

˘

` 8H2

c

ι

nkh
`

2H2SN0

nkh

ď
4H

nkh

nkh
ÿ

i“1

Pskh,akh,hpV
ref,li
h`1 ´ V ˚h`1q ` 8H2

c

ι

nkh
`

2H2SN0

nkh

ď
4H

nkh

nkh
ÿ

i“1

pV ref,li
h`1 ps

li
h`1q ´ V

˚
h`1ps

li
h`1qq `

4H

nkh

nkh
ÿ

i“1

pPskh,akh,h ´ 1
s
li
h`1

qpV ref,li
h`1 ´ V ˚h`1q

` 8H2

c

ι

nkh
`

2H2SN0

nkh

ď
4H

nkh

nkh
ÿ

i“1

pV ref,li
h`1 ps

li
h`1q ´ V

˚
h`1ps

li
h`1qq ` 14H2

c

ι

nkh
`

2H2SN0

nkh
(73)

ď
4H

nkh

nkh
ÿ

i“1

pHλlih`1ps
li
h`1q ` βq ` 14H2

c

ι

nkh
`

2H2SN0

nkh
(74)

ď 4Hβ `
6H2SN0

nkh
` 14H2

c

ι

nkh
,

where Inequality (73) holds with probability p1 ´ pq by Azuma’s inequality and (74) holds by
Corollary 6 (and note that the whole proof is conditioned on the successful events of Proposition 4
and Lemma 5).
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We will also prove the following bound of the total variance.

Lemma 19. With probability p1´ 2pq, it holds that
ÿ

s,a,h

NK`1
h ps, aqVpPs,a,h, V ˚h`1q ď 2TH ` 3

?
2H4Tι. (75)

Proof. By direct calculation, with probability p1´ 2pq, it holds that
ÿ

s,a,h

NK`1
h ps, aqVpPs,a,h, V ˚h`1q

“

K
ÿ

k“1

H
ÿ

h“1

VpPskh,akh,h, V
˚
h`1q

“

K
ÿ

k“1

K
ÿ

h“1

`

Pskh,akh,hpV
˚
h`1q

2 ´ pPskh,akh,hV
˚
h`1q

2
˘

ď

K
ÿ

k“1

H
ÿ

h“1

`

Pskh,akh,hpV
˚
h`1q

2 ´ pV ˚h ps
k
hqq

2
˘

` 2H
K
ÿ

k“1

H
ÿ

h“1

|V ˚h ps
k
hq ´ Pskh,akh,hV

˚
h`1|

ď
?

2TH4ι` 2H
K
ÿ

k“1

H
ÿ

h“1

|V ˚h ps
k
hq ´ Pskh,akh,hV

˚
h`1| (76)

“
?

2TH4ι` 2H
K
ÿ

k“1

˜

V ˚1 ps
k
1q `

H
ÿ

h“1

pV ˚h ps
k
h`1q ´ Pskh,akh,hV

˚
h`1qq

¸

(77)

ď
?

2TH4ι` 2TH ` 2H2
?

2Tι (78)

ď 2TH ` 3H2
?

2Tι,

where Inequality (76) holds with probability p1 ´ pq by Azuma’s inequality, Equation (77) holds
with the fact that V ˚h psq ´ Ps,a,hV

˚
h`1 ě V ˚h psq ´Q

˚
hps, aq ě 0 for any s, a, h and Inequality (78)

holds with probability p1´ pq by Azuma’s inequality.

Combining Lemma 11, Lemma 18, and Lemma 19, we have that with probability p1´ 7pq,

H
ÿ

h“1

K
ÿ

k“1

d

νref,k
h

nkh
ι ď

H
ÿ

h“1

K
ÿ

k“1

d

VpPskh,akh,h, V
˚
h`1q

nkh
ι`

H
ÿ

h“1

K
ÿ

k“1

d

´4Hβ

nkh
`

6H2SN0

pnkhq
2
` 14H2

?
ι

pnkhq
3
2

¯

ι

ď O
´

ÿ

s,a,h

b

NK`1
h ps, aqVpPs,a,h, V ˚h`1qι

`
ÿ

s,a,h

b

NK`1
h ps, aqHβι` SAH2

a

SN0ι logpT q ` pSAιq
3
4H

7
4T

1
4

¯

ď O
´?

SAH2Tι`
a

SAH2βTι` SAH2
a

SN0ι logpT q ` pSAιq
3
4H

7
4T

1
4

¯

. (79)

We now bound ν̌kh . By Corollary 6 (and that the whole proof is conditioned on the successful events
of Proposition 4 and Lemma 5), we have that

ν̌kh ď
1

ňkh

ňkh
ÿ

i“1

`

V ref,ľi
h`1 ps

ľi
h`1q ´ V

˚
h`1ps

ľi
h`1q

˘2

ď
1

ňkh

ňkh
ÿ

i“1

pH2λľih`1ps
ľi
h`1q ` β

2q

ď
1

ňkh
H2SN0 ` β

2. (80)
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By Lemma 11, we obtain that

H
ÿ

h“1

K
ÿ

k“1

d

ν̌kh
ňkh
ι ď

H
ÿ

h“1

K
ÿ

k“1

´

d

β2

ňkh
ι`

?
H2SN0ι

ňkh

¯

ď O
´

a

SAH3β2Tι` SAH3
a

SN0ι logpT q
¯

.

(81)
The proof is completed by combining (67), (79), and (81).

B.3.5 Putting Everything Together

Recall that β “ 1?
H

, and N0 “
c4SAH

5ι
β2 “ OpSAH6ιq. Combining (56), Lemma 14, Lemma 15,

Lemma 16 and Lemma 17, we conclude that with probability at least p1´OpH2T 4pqq,
K
ÿ

k“1

K
ÿ

h“1

Λkh`1

ď OplogpT qq ¨ pH2SN0 `H
?
Tιq `OpH2

?
SATιq `Op

?
H2Tιq

`O
´?

SAH2Tι`
a

SAH2βTι` SAH3
a

SN0ι logpT q

`
a

SAH3β2Tι` pSAιq
3
4H

5
2T

1
4

¯

.

“ O
´?

SAH2Tι`H
?
Tι logpT q `

a

SAH2βTι` SAH3
a

SN0ι logpT q

`
a

SAH3β2Tι` pSAιq
3
4H

5
2T

1
4 `H2SN0 logpT q

¯

“ O
´?

SAH2Tι`H
?
Tι logpT q ` SAH3

a

SN0ι logpT q ` pSAιq
3
4H

5
2T

1
4 `H2SN0 logpT q

¯

“ O
´?

SAH2Tι`H
?
Tι logpT q ` S2A

3
2H6ι logpT q ` pSAιq

3
4H

5
2T

1
4 ` S2AH8ι logpT q

¯

“ O
´?

SAH2Tι`H
?
Tι logpT q ` S2A

3
2H8ιT

1
4

¯

. (82)

C Other Results

C.1 Local Switching Cost Analysis

The notion of local switching cost for RL is introduced in [Bai et al., 2019] to quantify the adaptivity
of the learning algorithms. With a slight abuse of notations, we use πk,h to denote the policy at the
h-th step of the k-th episode. We first recall formal definition of the local switching cost.
Definition 1. The local switching cost at ps, hq is defined as

nswitchps, hq :“
K´1
ÿ

k“1

I rπk,hpsq ‰ πk`1,hpsqs .

The total local switching cost is then defined as

Nswitch :“
ÿ

sPS

H
ÿ

h“1

nswitchps, hq.

Now we prove Theorem 2.

Proof of Theorem 2. By the definition of ei, it is easy to verify that ei`1 ě p1`
1

2H qei for any i ě 1.
Then the number of stages of ps, a, hq is at most

logp
NK`1
h ps,aq

2H ` 1q

logp1` 1
2H q

ď 4H logp
NK`1
h ps, aq

2H
` 1q.

Because πk,hpsq “ arg maxaQ
k
hps, aq, we have that

I rπk,hpsq ‰ πk`1,hpsqs ùñ I
“

Da,Qk`1
h ps, aq ‰ Qkhps, aq

‰

.
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Now, by definition, we have that

nswitchps, hq “
K´1
ÿ

k“1

I rπk,hpsq ‰ πk`1,hpsqs

ď

K´1
ÿ

k“1

I
“

Da,Qk`1
h ps, aq ‰ Qkhps, aq

‰

ď
ÿ

a

4H logp
NK`1
h ps, aq

2H
` 1q.

Finally, by the concavity of logpxq in x, the total local switching cost of UCB-ADVANTAGE is
bounded by

Nswitch “
ÿ

sPS

H
ÿ

h“1

nswitchps, hq

ď
ÿ

s,a,h

4H logp
NK`1
h ps, aq

2H
` 1q

ď 4H2SA logp
T

2SAH2
` 1q

“ OpH2SA logp
K

SAH
qq.

C.2 Application to Concurrent RL

In concurrent RL, multiple agents act in parallel and shares the experience in a limited way to
accelerate the learning process. In this subsection, we follow the setting in [Bai et al., 2019] to
introduce the problem.
Suppose there are M parallel agents, where each agent interacts with the environments independently.
In the concurrent RL problem, each agent finishes an episode simultaneously, so that there are M
episodes done per concurrent round. The agents can only exchange experience and update their
policies at the end of each round. The goal is to find an ε-optimal policy using the minimum number
of rounds, which we also refer to as the number of concurrent episodes.
In Algorithm 2, we present the details of the concurrent UCB-ADVANTAGE algorithm. The idea
is to simulate the single-agent UCB-ADVANTAGE by treating the M episodes finished in a single
round as M consecutive episodes (without policy change) in the single-agent setting. We collect the
trajectories and feed them to the single-agent UCB-ADVANTAGE. When an update is triggered in the
single-agent UCB-ADVANTAGE during an episode, we update the Q-function (as well as the value
function) and discard the trajectories left in the round.
We now prove Corollary 3 that shows the performance of the concurrent UCB-ADVANTAGE.

Proof of Corollary 3. The proof follows the similar lines in the proof of Theorem 5 in [Bai et al.,
2019]. By Theorem 2, the switching cost is at most OpH2SA logp Kε

SAH qq, so there are at most

OpH2SA logp
Kε

SAH
q `

Kε

M
q “ ÕpH2SA`

H3SA

ε2M
q

concurrent episodes. On the other hand, the regret incurred in the episodes corresponding to Kε is at
most Õp

?
SAH3Kεq ď Kεε, so by randomly choosing an episode index k and selecting π “ πk we

achieve a policy with expected performance at most ε below the optimum.

C.3 Lower Bound of the Sample Complexity

Theorem 20. For any H , S, and A greater than a universal constant, and all ε P p0, 8
H s, for any

algorithm with input parameter ε, there exists an episodic MDP with S states, A actions, horizon H
such that, with probability at least 1{2, among the execution history of the algorithm, there are at least
ΩpSAH3{ε2q episodes in which the corresponding policy πk satisfies that V ˚1 ps

k
1q ´ V

πk
1 psk1q ą ε.
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Algorithm 2 Concurrent UCB-ADVANTAGE

Initialize: Qhps, aq Ð H´h`1, k Ð 1 ,Kε Ð
c5SAH

3 logpSAHε q

ε2M (c5 is a large enough universal
constant).
for concurrent episodes k “ 1, 2, 3, . . . do

All agents follow the same policy πk where πk,hpsq “ arg maxaQhps, aq.
for i “ 1, 2, 3, . . . ,M do

Collect the trajectory of the i-th agent and feed it to UCB-ADVANTAGE
if an update is triggered then

Update Q-value function following UCB-ADVANTAGE;
break

end if
end for
if The number of trajectories use is greater than or equal to Kε then

break
end if

end for

Proof Sketch. Instead of presenting a concrete proof of Theorem 20, we provide the high-level
intuition in the construction and analysis.
Like the regret lower bound analysis in [Jin et al., 2018], we consider the special case where
S “ A “ 2. It does not require too much difficulty to generalize to arbitrary S and A. Also, we will
use almost the same hard instance as constructed in the proof of Theorem 3 in [Jin et al., 2018].
We recall the structure of “JAO MDP” in [Jaksch et al., 2010]. There are two states in the MDP,
named s0 and s1. The rewards are defined as rps0, aq “ 0 and rps1, aq “ 1 for any a and the
transition probabilities are defined as P p¨|s1, aq “ rδ, 1´ δs

J,@a, P p¨|s0, aq “ r1´ δ, δs
J,@a ‰ a˚

and P p¨|s0, a
˚q “ r1 ´ δ ´ ε, δ ` εsJ. Clearly the optimal action for state s0 is a˚. Let δ ă 1

2 be
fixed. By the lower bound of [Jaksch et al., 2010], there exists a constant c5 ą 0, such that for any
ε P p0, δ2 q, it costs at least c5 ¨ δε2 observations to identify a˚ with non-trivial probability.
By connecting H JAO MDPs with different optimal actions layer by layer, we get an episodic MDP
with horizon H . We choose δ “ 16

H to ensure that the MDP is well-mixed for h ě H
2 . For any

ε ď 8
H “ δ

2 and h ě H
2 , the agent reaches s0 in the h-th layer with at least constant probability.

If there are at least 7H
8 layers in which the agent can not identify a˚, then the agent makes ΩpHq

mistakes in the range h P rH2 ,
3H
4 s. Because each mistake for h P rH2 ,

3H
4 s leads to ΩpεHq regret

, the expected regret incurred during one episode is ΩpεH2q. As a result, if the total number of
observations is less than c5H

8 ¨ δε2 (i.e., number of episodes less than c5
8 ¨

δ
ε2 ), the expected regret

per episode is ΩpεH2q. Replacing ε by εH2, we have that for the first ΘpδH4{ε2q “ ΘpH3{ε2q
episodes, the expected regret per episode is Ωpεq. The proof is then completed by applying Markov’s
inequality.

25


