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A Additional Experiments

In this section, we further investigate the effectiveness of the proposed DRFA algorithm. To do so,
we use the Adult and Shakespeare datasets.

Experiments on Adult dataset. The Adult dataset contains census data, with the target of predicting
whether the income is greater or less than $50K. The data has 14 features from age, race, gender,
among others. It has 32561 samples for training distributed across different groups of sensitive
features. One of these sensitive features is gender, which has two groups of “male” and “female”.
The other sensitive feature we will use is the race, where it has 5 groups of “black”, “white”, “Asian-
Pac-Islander”, “Amer-Indian-Eskimo”, and “other”. We can distribute data among nodes based on
the value of these features, hence make it heterogeneously distributed.

For the first experiment, we distribute the training data across 10 nodes, 5 of which contain only
data from the female group and the other 5 have the male group’s data. Since the size of different
groups’ data is not equal, the data distribution is unbalanced among nodes. Figure 4 compares DRFA
with AFL [35], q-FedAvg [25], and FedAvg [34] on the Adult dataset, where the data is distributed
among the nodes based on the gender feature. We use logistic regression as the loss function, the
learning rate is set to 0.1 and batch size is 50 for all algorithms, γ is set to 0.2 for both DRFA and
AFL, and q = 0.5 is tuned for the best results for q-FedAvg. The worst distribution or node accuracy
during the communication rounds shows that DRFA can achieve the same level of worst accuracy
with a far fewer number of communication rounds, and hence, less overall wall-clock time. However,
AFL computational cost is less than that of DRFA. Between each communication rounds DRFA,
q-FedAvg and FedAvg have 10 update steps. FedAvg after the same number of communications as
AFL still cannot reach the same level of worst accuracy. Figure 4(c) shows the standard deviation of
accuracy among different nodes as a measure for the fairness of algorithms. It can be inferred that
DRFA efficiently decreases the variance with a much fewer number of communication rounds with
respect to other algorithms.
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Figure 4: Comparing the worst distribution accuracy on DRFA, AFL, q-FedAvg, and FedAVG on the
Adult dataset. We have 10 nodes, and data is distributed among them based on the gender feature.
The loss function is logistic regression. DRFA needs a fewer number of communications to reach the
same worst distribution accuracy than the AFL and q-FedAvg algorithms. Also, DRFA efficiently
decreases the variance of the performance of different clients.

Next, we distribute the Adult data among clients based on the “race” feature, which has 5 different
groups. Again the size of data among these groups is not equal and makes the distribution unbalanced.
We distribute the data among 10 nodes, where every node has only data from one group of the race
feature. For this experiment, we use a nonconvex loss function, where the model is a multilayer
perceptron (MLP) with 2 hidden layers, each with 50 neurons. The first layer has 14 and the last layer
has 2 neurons. The learning rate is set to 0.1 and batch size is 50 for all algorithms, the γ is set to 0.2
for DRFA and AFL, and the q parameter in q-FedAvg is tuned for 0.5. Figure 5 shows the results of
this experiment, where again, DRFA can achieve the same worst-case accuracy with a much fewer
number of communications than AFL and q-FedAvg. In this experiment, with the same number of
local iterations, AFL still cannot reach to the DRFA performance. In addition, the variance on the
performance of different clients in Figure 5(c) suggests that DRFA is more successful than q-FedAvg
to balance the performance of clients.

Experiments on Shakespeare dataset. Now, we run the same experiments on the Shakespeare
dataset. This dataset contains the scripts from different Shakespeare’s plays divided based on the
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Figure 5: Comparing the worst distribution accuracy on DRFA, AFL, q-FedAvg, and FedAvg with
the Adult dataset. We have 10 nodes, and data is distributed among them based on the race feature.
The model is an MLP with 2 hidden layers, each with 50 neurons and a cross-entropy loss function.
DRFA needs a fewer number of communications to reach the same worst distribution accuracy than
the AFL and q-FedAvg algorithms. Moreover, DRFA is more efficient in reducing the performance
variance among different clients than q-FedAvg.
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Figure 6: Comparing different algorithms on training an RNN on Shakespeare dataset using 100
clients. DRFA and FedAvg outperform the other two algorithms in terms of communication efficiency,
however, AFL can achieve the same level with lower computation cost. In the average performance,
AFL requires much more communication to reach to the same level as FedAvg and DRFA.

character in each play. The task is to predict the next character in the text, providing the preceding
characters. For this experiment, we use 100 clients’ data to train our RNN model. The RNN model
comprises an embedding layer from 86 characters to 50, followed by a layer of GRU [5] with 50 units.
The output is going through a fully connected layer with an output size of 86 and a cross-entropy
loss function. We use the batch size of 2 with 50 characters in each batch. The learning rate is
optimized to 0.8 for the FedAvg and used for all algorithms. The γ is tuned to the 0.01 for AFL and
DRFA, and q = 0.1 is the best for the q-FedAvg. Figure 6 shows the results of this experiment on the
Shakespeare dataset. It can be seen that DRFA and FedAvg can reach to the same worst distribution
accuracy compared to AFL and q-FedAvg. The reason that FedAvg is working very well in this
particular dataset is that the distribution of data based on the characters in the plays does not make it
heterogeneous. In settings close to homogeneous distribution, FedAvg can achieve the best results,
with DRFA having a slight advantage over that.

B Formal Convergence Theory for Alternative Algorithm in Regularized
Case

Here, we will present the formal convergence theory of the algorithm we described in Section 5.2,
where we use full batch gradient ascent to update λ(s). To do so, the server sends the current global
model w̄(s) to all clients and each client evaluates the global model on its local data shards and send
fi(w̄

(s)) back to the server. Then the server can compute the full gradient over dual parameter λ and
take a gradient ascent (GA) step to update it. The algorithm is named DRFA-GA and described in
Algorithm 3. We note that DRFA-GA can be considered as communication-efficient variant of AFL,
but without sampling clients to evaluate the gradient at dual parameter. We conduct the convergence
analysis on the setting where the regularized term is strongly-concave in λ, and loss function is
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Algorithm 3: Distributionally Robust Federated Averaging: Gradient Ascent (DRFA-GA)
Input: N clients , synchronization gap τ , total number of iterations T , S = T/τ , learning rates η, γ,

sampling size m, initial model w̄(0) and initial λ(0).
Output: Final solutions ŵ = 2

mT

∑T
t=T/2

∑
i∈D(b t

τ
c) w

(t)
i , λ̂ = 1

S

∑S−1
s=0 λ

(s), or (2) wT , λS .
1: for s = 0 to S − 1 do
2: Server samples D(s) ⊂ [N ] according to λ(s) with size of m
3: Server broadcasts w̄(s) to all clients i ∈ D(s)

4: for clients i ∈ D(s) parallel do
5: Client sets w(sτ)

i = w̄(s)

6: for t = sτ, . . . , (s+ 1)τ − 1 do
7: w

(t+1)
i =

∏
W

(
w

(t)
i − η∇fi(w

(t)
i ; ξ

(t)
i )
)

8: end for
9: end for

10: Client i ∈ D(s) sends w((s+1)τ)
i back to the server

11: Server sends w̄(s) to all clients // Update λ
12: Each client i ∈ [N ] evaluates w̄(s) on its local data and sends fi(w̄(s)) back to server
13: Server updates λ(s+1) =

∏
Λ

(
λ(s) + γ∇λF

(
w̄(s),λ(s)

))
14: Server computes w̄(s+1) = 1

m

∑
i∈D(s) w

((s+1)τ)
i

15: end for

strongly-convex and nonconvex but satisfying Polyak-Łojasiewicz (PL) condition in w. So, our
theory includes strongly-convex-strongly-concave and nonconvex (PL condition)-strongly-concave
cases.

Strongly-Convex-Strongly-Concave case. We start by stating the convergence rate when the
individual local objectives are strongly convex and the regularizer g(λ) is strongly concave in λ,
making the global objective F (w,λ) :=

∑N
i=1 λifi(w) + g(λ) also strongly concave in λ.

Theorem 5. Let each local function fi be µ-strongly convex, and global function F is µ-strongly
concave in λ. Under Assumptions 1, 2,3,4, if we optimize (5) using the DRFA-GA (Algorithm 3) with
synchronization gap τ , choosing learning rates as η = 4 log T

µT and γ = 1
L and T ≥ 16α log T

µ , where

α = κL+ L, using the averaging scheme ŵ = 2
mT

∑T
t=T/2

∑
i∈D(b tτ c) w

(t)
i we have:

E[Φ(ŵ)− Φ(w∗)] = Õ

(
µD2
W
T

+
κ2LτD2

Λ

T
+
σ2
w +G2

w

µmT
+
κ2τ2(σ2

w + Γ)

µT 2
+
κ6τ2G2

w

µT 2

)
,

where κ = L/µ, and w∗ is the minimizer of Φ.

Proof. The proof is given in Section F.

Corollary 1. Continuing with Theorem 5, if we choose τ =
√
T/m, we recover the rate:

E[Φ(ŵ)− Φ(w∗)] = Õ

(
κ2LD2

Λ√
mT

+
µD2
W
T

+
κ2(σ2

w + Γ) + κ6G2
w

µmT

)
.

Here we obtain Õ
(
τ
T

)
rate in Theorem 5. If we choose τ = 1, which is fully synchronized SGD,

then we recover the same rate Õ
(

1
T

)
as in vanilla agnostic federated learning [35]. If we choose

τ to be O(
√
T/m), we recover the rate Õ

(
1√
mT

+ 1
mT

)
, which can achieve linear speedup with

respect to number of sampled workers. The dependency on gradient dissimilarity Γ shows that the
data heterogeneity will slow down the rate, but will not impact the dominating term.

Nonconvex (PL condition)-Strongly-Concave Setting. We provide the convergence analysis under
the condition where F is nonconvex but satisfies PL condition in w, and strongly concave in λ.
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In the constraint problem, to prove the convergence, we have to consider a generalization of PL
condition [17] as formally stated below.

Definition 4 ((µ,η)-generalized Polyak-Łojasiewicz (PL)). The global objective function F (·,λ) is
differentiable and satisfies the (µ,η)-generalized Polyak-Łojasiewicz condition with constant µ if the
following holds:

1

2η2

∥∥∥∥∥w −∏
W

(w − η∇wF (w,λ))

∥∥∥∥∥
2

2

≥ µ(F (w,λ)− min
w′∈W

F (w′,λ)),∀λ ∈ Λ

.

Remark 1. When the constraint is absent, it reduces to vanilla PL condition [17]. The similar
generalization of PL condition is also mentioned in [17], where they introduce a variant of PL
condition to prove the convergence of proximal gradient method. Also we will show that, if F satisfies
µ-PL condition in w, Φ(w) also satisfies µ-PL condition.

We now proceed to provide the global convergence of Φ in this setting.

Theorem 6. Let global function F satisfy (µ,η)-generalized PL condition in w and µ-strongly-
concave in λ. Under Assumptions 1,2,3,4, if we optimize (5) using the DRFA-GA (Algorithm 3)
with synchronization gap τ , choosing learning rates η = 4 log T

µT , γ = 1
L and m ≥ T , with the total

iterations satisfying T ≥ 8α log T
µ where α = L+ κL, κ = L

µ , we have:

E
[
Φ(w(T ))− Φ(w∗)

]
≤ O

(
Φ(w(0))− Φ(w∗)

T

)
+ Õ

(
σ2
w +G2

w

µT

)
+ Õ

(
κ2LτD2

Λ

T

)
+ Õ

(
κ6τ2G2

w

µT 2

)
+ Õ

(
κ2τ2(σ2

w + Γ)

µT 2

)
.

where w∗ ∈ arg minw∈W Φ(w).

Proof. The proof is given in Section G.

Corollary 2. Continuing with Theorem 6, if we choose τ =
√
T/m, we recover the rate:

E[Φ(ŵ)− Φ(w∗)] = Õ

(
κ2LD2

Λ√
T

+
Φ(w(0))− Φ(w∗)

T
+
κ2(σ2

w + Γ) + κ6G2
w

µT

)
.

We obtain Õ
(
τ
T

)
convergence rate here, slightly worse than that of strongly-convex-strongly-concave

case. We also get linear speedup in the number of sampled workers if properly choose τ . The best
known result of non-distributionally robust version of FedAvg on PL condition is O( 1

T ) [12], with
O(T 1/3) communication rounds. It turns out that we trade some convergence rate to guarantee a
worst case performance. We would like to mention that, here we require m, the number of sampled
clients to be a large number, which is the imperfection of our analysis. However, we would note
that, this is similar to the analysis in [10] for projected SGD on constrained nonconvex minimization
problems, where it is required to employ growing mini-batch sizes with iterations to guarantee
convergence to a first-order stationary point (i.e., imposing a constraint on minibatch size based on
target accuracy ε which plays a similar rule to m in our case).

C Proof of Convergence of DRFA for Convex Losses (Theorem 1)

In this section we will present the proof of Theorem 1, which states the convergence of DRFA in
convex-linear setting.

C.1 Preliminary

Before delving into the proof, let us introduce some useful variables and lemmas for ease of analysis.
We define a virtual sequence {w(t)}Tt=1 that will be used in our proof, and we also define some
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intermediate variables:

w(t) =
1

m

∑
i∈D(b t

τ
c)

w
(t)
i , (average model of selected devices)

ū(t) =
1

m

∑
i∈D(b t

τ
c)

∇fi(w(t)
i ), (average full gradient of selected devices)

u(t) =
1

m

∑
i∈D(b t

τ
c)

∇fi(w(t)
i ; ξ

(t)
i ) (average stochastic gradient of selected devices)

v̄(t) = ∇λF (w(t),λ) =
[
f1(w(t)), . . . , fN (w(t))

]
(full gradient w.r.t. dual)

∆̄s =

(s+1)τ∑
t=sτ+1

γv̄(t),

∆s = τγv, (see below)

δ(t) =
1

m

∑
i∈D(b t

τ
c)

∥∥∥w(t)
i −w

(t)
∥∥∥2

,

where v ∈ RN is the stochastic gradient for dual variable generated by Algorithm 1 for updating λ,
such that vi = fi(w

(t′); ξi) for i ∈ U ⊂ [N ] where ξi is stochastic minibatch sampled from ith local
data shard, and t′ is the snapshot index sampled from sτ + 1 to (s+ 1)τ .

C.2 Overview of the Proof

The proof techniques consist of analyzing the one-step progress for the virtual iterates w(t+1) and
λ(s+1), however periodic decoupled updating along with sampling makes the analysis more involved
compared to fully synchronous primal-dual schemes for minimax optimization. Let us start from
analyzing one iteration on w. From the updating rule we can show that

E‖w(t+1) −w‖2 ≤ E‖w(t) −w‖2 − 2ηE
[
F (w(t),λ(b tτ c))− F (w,λ(b tτ c))

]
+ LηE

[
δ(t)
]

+ η2E‖ū(t) − u(t)‖2 + η2G2
w.

Note that, similar to analysis of local SGD, e.g., [44], the key question is how to bound the deviation
δ(t) between local and (virtual) averaged model. By the definition of gradient dissimilarity, we
establish that:

1

T

T∑
t=0

E
[
δ(t)
]

= 10η2τ2

(
σ2
w +

σ2
w

m
+ Γ

)
.

It turns out the deviation can be upper bounded by variance of stochastic graident, and the gradient
dissimilarity. The latter term controls how heterogenous the local component functions are, and it
becomes zero when all local functions are identical, which means we are doing minibatch SGD on
the same objective function in parallel.

Now we switch to the one iteration analysis on λ:

E‖λ(s+1) − λ‖2 ≤ E‖λ(s) − λ‖2

−
(s+1)τ∑
t=sτ+1

E[2γ(F (w(t),λ(s))− F (w(t),λ))] + E‖∆̄s‖2 + E‖∆s − ∆̄s‖2.

It suffices to bound the variance of ∆s. Using the identity of independent variables we can prove:

E[‖∆s − ∆̄s‖2] ≤ γ2τ2σ
2
λ

m
.
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It shows that the variance depends quadratically on τ 2, and can achieve linear speed up with respect
to the number of sampled workers. Putting all pieces together, and doing the telescoping sum will
yield the result in Theorem 1.

C.3 Proof of Technical Lemmas

In this section we are going to present some technical lemmas that will be used in the proof of
Theorem 1.

Lemma 1. The stochastic gradient u(t) is unbiased, and its variance is bounded, which implies:

E
ξ
(t)
i ,D(b t

τ
c)

[
u(t)

]
= E

D(b t
τ
c)

[
ū(t)

]
= E

[
N∑
i=1

λ
(b tτ c)
i ∇fi(w(t)

i )

]
,

E
[
‖u(t) − ū(t)‖2

]
=
σ2
w

m
.

Proof. The unbiasedness is due to the fact that we sample the clients according to λ(b tτ c). The
variance term is due to the identity Var(

∑m
i=1Xi) =

∑m
i=1 Var(Xi).

Lemma 2. The stochastic gradient at λ generated by Algorithm 1 is unbiased, and its variance is
bounded, which implies:

E[∆s] = ∆̄s, E[‖∆s − ∆̄s‖2] ≤ γ2τ2σ
2
λ

m
. (6)

Proof. The unbiasedness is due to we sample the workers uniformly. The variance term is due to the
identity Var(

∑m
i=1Xi) =

∑m
i=1 Var(Xi).

Lemma 3 (One Iteration Primal Analysis). For DRFA, under the same conditions as in Theorem 1,
for all w ∈ W , the following holds:

E‖w(t+1) −w‖2 ≤ E‖w(t) −w‖2 − 2ηE
[
F (w(t),λ(b tτ c))− F (w,λ(b tτ c))

]
+ LηE

[
δ(t)
]

+ η2E‖ū(t) − u(t)‖2 + η2G2
w.

Proof. From the updating rule we have:

E‖w(t+1) −w‖2 = E

∥∥∥∥∥∏
W

(w(t) − ηu(t))−w

∥∥∥∥∥
2

≤ E‖w(t) − ηū(t) −w‖2 + η2E‖ū(t) − u(t)‖2

≤ E‖w(t) −w∗‖2 + E[−2η〈ū(t),w(t) −w∗〉]︸ ︷︷ ︸
T1

+ η2E‖ū(t)‖2︸ ︷︷ ︸
T2

+E‖ū(t) − u(t)‖2

(7)

2This dependency is very heavy, and one open question is to see if we employ a variance reduction scheme
to loosen this dependency.
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We are going to bound T1 first:

T1 = E
D(b t

τ
c)

 1

m

∑
i∈D(b t

τ
c)

[
−2η

〈
∇fi(w(t)

i ),w(t) −w(t)
i

〉
− 2η

〈
∇fi(w(t)

i ),w
(t)
i −w

∗
〉]

(8)

≤ E
D(b t

τ
c)

2η
1

m

∑
i∈D(b t

τ
c)

[
fi(w

(t)
i )− fi(w(t)) +

L

2
‖w(t) −w(t)

i ‖
2 + fi(w)− fi(w(t)

i )

]
(9)

= −2ηE

[
N∑
i=1

λ
(b tτ c)
i fi(w

(t))− λ(b tτ c)
i fi(w)

]
+ LηE

[
δ(t)
]

= −2ηE
[
F (w(t),λ(b tτ c))− F (w,λ(b tτ c))

]
+ LηE

[
δ(t)
]
,

where from (8) to (9) we use the smoothness and convexity properties.

We then turn to bounding T2 as follows:

T2 = η2E

∥∥∥∥∥∥ 1

m

∑
i∈D(b t

τ
c)

∇fi(w(t)
i )

∥∥∥∥∥∥
2

≤ η2 1

m

∑
i∈D(b t

τ
c)

E
∥∥∥∇fi(w(t)

i )
∥∥∥2

≤ η2G2
w.

Plugging T1 and T2 back to (7) gives:

E‖w(t+1) −w‖2 ≤ E‖w(t) −w‖2 − 2ηE
[
F (w(t),λ(b tτ c))− F (w,λ(b tτ c))

]
+ LηE

[
δ(t)
]

+ η2E‖ū(t) − u(t)‖2 + η2G2
w,

thus concluding the proof.

The following lemma bounds the deviation between local models and (virtual) global average model
over sampled devices over T iterations. We note that the following result is general and will be used
in all variants.

Lemma 4 (Bounded Squared Deviation). For DRFA, DRFA-Prox and DRFA-GA algorithms, the
expected average squared norm distance of local models w(t)

i , i ∈ D(b tτ c) and w(t) is bounded as
follows:

1

T

T∑
t=0

E
[
δ(t)
]
≤ 10η2τ2

(
σ2
w +

σ2
w

m
+ Γ

)
.

where expectation is taken over sampling of devices at each iteration.
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Proof. Consider sτ ≤ t ≤ (s+1)τ . Recall that, we only perform the averaging based on a uniformly
sampled subset of workers D(b tτ c) of [N ]. Following the updating rule we have:

E[δ(t)] = E

 1

m

∑
i∈D(b t

τ
c)

‖w(t)
i −w

(t)‖2


≤ E

 1

m

∑
i∈D(b t

τ
c)

E

∥∥∥∥∥w(sτ) −
t−1∑
r=sτ

η∇fi(w(r)
i ; ξ

(r)
i )−

(
w(sτ) − 1

m

∑
i′∈D

t−1∑
r=sτ

η∇fi′(w(r)
i′ ; ξ

(r)
i′ )

)∥∥∥∥∥
2


= E

 1

m

∑
i∈D(b t

τ
c)

∥∥∥∥∥∥
t−1∑
r=sτ

η∇fi(w(r)
i ; ξ

(r)
i )− 1

m

∑
i′∈D(b t

τ
c)

t−1∑
r=sτ

η∇fi′(w(r)
i′ ; ξ

(r)
i′ )

∥∥∥∥∥∥
2


≤ E

 1

m

∑
i∈D(b t

τ
c)

η2τ

(s+1)τ∑
r=sτ

∥∥∥∥∥∥∇fi(w(r)
i ; ξ

(r)
i )− 1

m

∑
i′∈D(b t

τ
c)

∇fi′(w(r)
i′ ; ξ

(r)
i′ )

∥∥∥∥∥∥
2


= η2τE

 1

m

∑
i∈D(b t

τ
c)

(s+1)τ∑
r=sτ

∥∥∥∥∥∥∇fi(w(r)
i ; ξ

(r)
i )−∇fi(w(r)

i ) +∇fi(w(r)
i )−∇fi(w(r))

+∇fi(w(r))− 1

m

∑
i′∈D(b t

τ
c)

∇fi′(w(r)) +
1

m

∑
i′∈D(b t

τ
c)

∇fi′(w(r))

− 1

m

∑
i′∈D(b t

τ
c)

∇fi′(w(r)
i′ ) +

1

m

∑
i′∈D(b t

τ
c)

∇fi′(w(r)
i′ )− 1

m

∑
i′∈D(b t

τ
c)

∇fi′(w(r)
i′ ; ξ

(r)
i′ )

∥∥∥∥∥∥
2


(10)

Applying Jensen’s inequality to split the norm yields:

E[δ(t)] ≤ 5η2τ

(s+1)τ∑
r=sτ

σ2
w + L2E

 1

m

∑
i∈D(b t

τ
c)

∥∥∥w(r)
i −w

(r)
∥∥∥2

+ L2E

 1

m

∑
i′∈D(b t

τ
c)

∥∥∥w(r)
i′ −w

(r)
∥∥∥2


+E

 1

m

∑
i′∈D(b t

τ
c)

∥∥∥∇fi(w(r))−∇fi′(w(r))
∥∥∥2

+
σ2
w

m

 (11)

≤ 5η2τ

(s+1)τ∑
r=sτ

(
σ2
w + 2L2E[δ(r)] + Γ +

σ2
w

m

)
, (12)

where from (10) to (11) we use the Jensen’s inequality.

Now we sum (12) over t = sτ to (s+ 1)τ to get:

(s+1)τ∑
t=sτ

E[δ(t)] ≤ 5η2τ

(s+1)τ∑
t=sτ

(s+1)τ∑
r=sτ

(
σ2
w + 2L2E[δ(r)] + Γ +

σ2
w

m

)

= 5η2τ2

(s+1)τ∑
r=sτ

(
σ2
w + 2E[δ(r)] + Γ +

σ2
w

m

)
.

Re-arranging the terms and using the fact 1− 10η2τ2L2 ≥ 1
2 yields:

(s+1)τ∑
t=sτ

E[δ(t)] ≤ 10η2τ2

(s+1)τ∑
r=sτ

(
σ2
w + Γ +

σ2
w

m

)
.
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Summing over communication steps s = 0 to S − 1, and dividing both sides by T = Sτ yields:

1

T

T∑
t=0

E[δ(t)] ≤ 10η2τ2

(
σ2
w +

σ2
w

m
+ Γ

)
,

as desired.

Lemma 5 (Bounded Norm Deviation). For DRFA, DRFA-Prox and DRFA-GA, ∀i ∈ D(b tτ c), the
norm distance between w(t) and w(t)

i is bounded as follows:

1

T

T∑
t=0

E

 1

m

∑
i∈D(b t

τ
c)

∥∥∥w(t)
i −w

(t)
∥∥∥
 ≤ 2ητ

(
σw +

σw
m

+
√

Γ
)
.

Proof. Similar to what we did in Lemma 4, we assume sτ ≤ t ≤ (s+ 1)τ . Again, we only apply the
averaging based on a uniformly sampled subset of workers D(b tτ c) of [N ]. From the updating rule
we have:

E

 1

m

∑
i∈D(b t

τ
c)

‖w(t)
i −w

(t)‖


= E

 1

m

∑
i∈D(b t

τ
c)

∥∥∥∥∥w(sτ) −
t−1∑
r=sτ

η∇fi(w(r)
i ; ξ

(r)
i )−

(
w(sτ) − 1

m

∑
i′∈D

t−1∑
r=sτ

η∇fi′(w(r)
i′ ; ξ

(r)
i′ )

)∥∥∥∥∥


= E

 1

m

∑
i∈D(b t

τ
c)

E

∥∥∥∥∥∥
t−1∑
r=sτ

η∇fi(w(r)
i ; ξ

(r)
i )− 1

m

∑
i′∈D(b t

τ
c)

t−1∑
r=sτ

η∇fi′(w(r)
i′ ; ξ

(r)
i′ )

∥∥∥∥∥∥


≤ E

 1

m

∑
i∈D(b t

τ
c)

η

(s+1)τ∑
r=sτ

E

∥∥∥∥∥∥∇fi(w(r)
i ; ξ

(r)
i )− 1

m

∑
i′∈D(b t

τ
c)

∇fi′(w(r)
i′ ; ξ

(r)
i′ )

∥∥∥∥∥∥


= ηE

 1

m

∑
i∈D(b t

τ
c)

(s+1)τ∑
r=sτ

∥∥∥∥∥∥∇fi(w(r)
i ; ξ

(r)
i )−∇fi(w(r)

i ) +∇fi(w(r)
i )−∇fi(w(r)) +∇fi(w(r))

− 1

m

∑
i′∈D(b t

τ
c)

∇fi′(w(r)) +
1

m

∑
i′∈D(b t

τ
c)

∇fi′(w(r))− 1

m

∑
i′∈D(b t

τ
c)

∇fi′(w(r)
i′ )

+
1

m

∑
i′∈D(b t

τ
c)

∇fi′(w(r)
i′ )− 1

m

∑
i′∈D(b t

τ
c)

∇fi′(w(r)
i′ ; ξ

(r)
i′ )

∥∥∥∥∥∥


Applying the triangular inequality to split the norm yields:

E

 1

m

∑
i∈D(b t

τ
c)

‖w(t)
i −w

(t)‖


≤ ηE

 1

m

∑
i∈D(b t

τ
c)

(s+1)τ∑
r=sτ

(
σw + L

∥∥∥w(r)
i −w

(r)
∥∥∥

+
1

m

∑
i′∈D(b t

τ
c)

L
∥∥∥w(r)

i′ −w
(r)
∥∥∥+

1

m

∑
i′∈D(b t

τ
c)

∥∥∥∇fi(w(r))−∇fi′(w(r))
∥∥∥+

σw
m


= η

(s+1)τ∑
r=sτ

σw + 2LE

 1

m

∑
i′∈D(r)

E‖w(r)
i′ −w

(r)‖

+
√

Γ +
σw
m

 . (13)
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Now summing (13) over t = sτ to (s+ 1)τ gives:

(s+1)τ∑
t=sτ

E
[

1

m

∑
i∈D(b t

τ
c)

‖w(t)
i −w

(t)‖


≤ η

(s+1)τ∑
t=sτ

(s+1)τ∑
r=sτ

σw + 2LE

 1

m

∑
i′∈D(r)

‖w(r)
i′ −w

(r)‖

+
√

Γ +
σw
m


= ητ

(s+1)τ∑
r=sτ

σw + 2LE

 1

m

∑
i′∈D(r)

‖w(r)
i′ −w

(r)‖

+
√

Γ +
σw
m

 .

Re-arranging the terms and using the fact 1− 2ητL ≥ 1
2 yields:

(s+1)τ∑
t=sτ

E

 1

m

∑
i∈D(b t

τ
c)

‖w(t)
i −w

(t)‖

 ≤ 2ητ

(s+1)τ∑
r=sτ

(
σw +

√
Γ +

σw
m

)
.

Summing over s = 0 to S − 1, and dividing both sides by T = Sτ yields:

1

T

T∑
t=0

E

 1

m

∑
i∈D(b t

τ
c)

‖w(t)
i −w

(t)‖

 ≤ 2ητ
(
σw +

σw
m

+
√

Γ
)
,

which concludes the proof.

Lemma 6 (One Iteration Dual Analysis). For DRFA, under the assumption of Theorem 1, the
following holds true for any λ ∈ Λ:

E‖λ(s+1) − λ‖2 ≤ E‖λ(s) − λ‖2

−
(s+1)τ∑
t=sτ+1

E[2γ(F (w(t),λ(b tτ c))− F (w(t),λ))] + E‖∆̄t‖2 + E‖∆t − ∆̄t‖2.

Proof. According to the updating rule for λ and the fact F is linear in λ we have:

E
∥∥∥λ(s+1) − λ

∥∥∥2

= E

∥∥∥∥∥∏
Λ

(λ(s) + ∆s)− λ

∥∥∥∥∥
2

≤ E
∥∥∥λ(s) − λ+ ∆s

∥∥∥2

= E
∥∥∥λ(s) − λ+ ∆̄s

∥∥∥2

+ E
∥∥∆s − ∆̄s

∥∥2

= E‖λ(s) − λ‖2 + E
[
2
〈

∆̄s,λ
(s) − λ

〉]
+ E‖∆̄s‖2 + E‖∆s − ∆̄s‖2

= E‖λ(s) − λ‖2

+ 2γ

(s+1)τ∑
t=sτ+1

E
[〈
∇λF (w(t),λ(s)),λ(s) − λ

〉]
+ E‖∆̄s‖2 + E‖∆s − ∆̄s‖2

= ‖λ(s) − λ‖2

− 2γ

(s+1)τ∑
t=sτ+1

E
[
F (w(t),λ)− F (w(t),λ(s)))

]
+ E‖∆̄s‖2 + E‖∆s − ∆̄s‖2,

as desired.
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C.4 Proof for Theorem 1

Proof. Equipped with above results, we are now turn to proving the Theorem 1. We start by noting
that ∀w ∈ W , ∀λ ∈ Λ, according the convexity of global objective w.r.t. w and its linearity in terms
of λ we have:

E[F (ŵ,λ)− E[F (w, λ̂)]

≤ 1

T

T∑
t=1

{
E
[
F (w(t),λ)

]
− E

[
F (w,λ(b tτ c))

]}
≤ 1

T

T∑
t=1

{
E
[
F (w(t),λ)

]
− E

[
F (w(t),λ(b tτ c))

]
+ E

[
F (w(t),λ(b tτ c))

]
− E

[
F (w,λ(b tτ c))

]}

≤ 1

T

S−1∑
s=0

(s+1)τ∑
t=sτ+1

E{F (w(t),λ)− F (w(t),λ(s))} (14)

+
1

T

T∑
t=1

E{F (w(t),λ(b tτ c))− F (w,λ(b tτ c))}, (15)

To bound the term in (14), pluggin Lemma 2 into Lemma 6, we have:

1

T

S−1∑
s=0

(s+1)τ∑
t=sτ+1

E(F (w(t),λ)− F (w(t),λ(b tτ c))) ≤ 1

2γT
‖λ(0) − λ‖2 +

γτ

2
G2
λ +

γτσ2
λ

2m

≤ D2
Λ

2γT
+
γτG2

λ

2
+
γτσ2

λ

2m
.

To bound the term in (15), we plug Lemma 1 into Lemma 3 and apply the telescoping sum from
t = 1 to T to get:

1

T

T∑
t=1

E(F (w(t),λ(b tτ c))− F (w,λ(b tτ c)))

≤ 1

2Tη
E‖ w(0) −w‖2 + 5Lη2τ2

(
σ2
w +

σ2
w

m
+ Γ

)
+
ηG2

w

2
+
ησ2

w

2m

≤ D2
W

2Tη
+ 5Lη2τ2

(
σ2
w +

σ2
w

m
+ Γ

)
+
ηG2

w

2
+
ησ2

w

2m
.

Putting pieces together, and taking max over dual λ, min over primal w yields:

min
w∈W

max
λ∈Λ

E[F (ŵ,λ)− E[F (w, λ̂)]

≤ D2
W

2Tη
+ 5Lη2τ2

(
σ2
w +

σ2
w

m
+ Γ

)
+
ηG2

w

2
+
ησ2

w

2m
+

D2
Λ

2γT
+
γτG2

λ

2
+
γτσ2

λ

2m
.

Plugging in τ = T 1/4
√
m

, η = 1
4L
√
T

, and γ = 1
T 5/8 , we conclude the proof by getting:

max
λ∈Λ

E[F (ŵ,λ)]− min
w∈W

E[F (w, λ̂)] ≤ O
(D2
W +G2

w√
T

+
D2

Λ

T 3/8
.

+
G2
λ

m1/2T 3/8
+

σ2
λ

m3/2T 3/8
+
σ2
w + Γ

m
√
T

)
,

as desired.

D Proof of Convergence of DRFA for Nonconvex Losses (Theorem 2)

This section is devoted to the proof of Theorem 2).
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D.1 Overview of Proofs

Inspired by the techniques in [29] for analyzing the behavior of stochastic gradient descent ascent
(SGDA) algorithm on nonconvex-concave objectives, we consider the Moreau Envelope of Φ:

Φp(x) := min
w∈W

{
Φ(w) +

1

2p
‖w − x‖

}
.

We first examine the one iteration dynamic of DRFA:

E[Φ1/2L(w(t))] ≤ E[Φ1/2L(w(t−1))] + 2ηDWL
2E

 1

m

∑
i∈D(b t−1

τ
c)

∥∥∥w(t−1)
i −w(t−1)

∥∥∥


2ηL
(
E[Φ(w(t−1))]− E[F (w(t−1),λb

t−1
τ c)]

)
− η

4
E
[∥∥∥∇Φ1/2L(w(t−1))

∥∥∥2
]
.

We already know how to bound E
[

1
m

∑
i∈D(b t−1

τ
c)

∥∥∥w(t−1)
i −w(t−1)

∥∥∥] in Lemma 5. Then the

key is to bound E[Φ(w(t−1))] − E[F (w(t−1),λ(b t−1
τ c))]. Indeed this term characterizes how far

the current dual variable drifts from the optimal dual variable λ∗(w(t−1)). Then by examining the
dynamic of dual variable we have ∀λ ∈ Λ:

sτ∑
t=(s−1)τ+1

(
E
[
Φ(w(t))

]
− E

[
F (w(t),λ(s−1))

])

≤
sτ∑

t=(s−1)τ+1

(
E
[
F (w(t),λ∗(wt))

]
− E

[
F (w(t),λ)

])
+ γτ2σ

2
λ

m
+ γτ2G2

λ +
1

2γ

(
E
[∥∥∥λ− λ(s−1)

∥∥∥2
]
− E

[∥∥∥λ− λ(s)
∥∥∥2
])

.

The above inequality makes it possible to replace λ with λ∗, and doing the telescoping sum so that
the last term cancels up. However, in the minimax problem, the optimal dual variable changes every
time when we update primal variable. Thus, we divide S global stages into

√
S groups, and applying

the telescoping sum within one group, by setting λ = λ∗(wc
√
Sτ ) at cth stage.

D.2 Proof of Useful Lemmas

Before presenting the proof of Theorem 2, let us introduce the following useful lemmas.

Lemma 7 (One iteration analysis). For DRFA, under the assumptions of Theorem 2, the following
statement holds:

E[Φ1/2L(w(t))] ≤ E[Φ1/2L(w(t−1))] + 2ηDWL
2E

 1

m

∑
i∈D(b t−1

τ
c)

∥∥∥w(t−1)
i −w(t−1)

∥∥∥


+ 2ηL
(
E[Φ(w(t−1))]− E[F (w(t−1),λ(b t−1

τ )c)]
)
− η

4
E
[∥∥∥∇Φ1/2L(w(t−1))

∥∥∥2
]
.

Proof. Define w̃(t) = minw∈W Φ(w) + L‖w −w(t)‖2, the by the definition of Φ1/2L we have:

Φ1/2L(w(t)) ≤ Φ(w̃(t−1)) + L‖w̃(t−1) −w(t)‖2. (16)
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Meanwhile according to updating rule we have:

E
[∥∥∥w̃(t−1) −w(t)

∥∥∥2
]

= E


∥∥∥∥∥∥∥w̃(t−1) −

∏
W

w(t−1) − 1

m

∑
i∈D(b t−1

τ
c)

∇xfi(w(t−1)
i ; ξ

(t−1)
i )


∥∥∥∥∥∥∥

2

≤ E
[∥∥∥w̃(t−1) −w(t−1)

∥∥∥2
]

+ E


∥∥∥∥∥∥∥

1

m

∑
i∈D(b t−1

τ
c)

∇xfi(w(t−1)
i ; ξ

(t−1)
i )

∥∥∥∥∥∥∥
2

+ 2ηE

〈w̃(t−1) −w(t−1),
1

m

∑
i∈D(b t−1

τ
c)

∇xfi(w(t−1)
i )

〉 .

Applying Cauchy inequality to the last inner product term yields:

E
[∥∥∥w̃(t−1) −w(t)

∥∥∥2
]

≤ E
[∥∥∥w̃(t−1) −w(t−1)

∥∥∥2
]

+ η2(G2
w + σ2

w) + 2η

〈
w̃(t−1) −w(t−1),

1

m

∑
i∈D(b t−1

τ
c)

∇xfi(w(t−1))

〉

+ ηE
[∥∥∥w̃(t−1) −w(t−1)

∥∥∥]E
 1

m

∑
i∈D(b t−1

τ
c)

∥∥∥∇xfi(w(t−1)
i )−∇xfi(w(t−1))

∥∥∥


≤ E
[∥∥∥w̃(t−1) −w(t−1)

∥∥∥2
]

+ η2(G2
w + σ2

w) + ηDWLE

 1

m

∑
i∈D(b t−1

τ
c)

∥∥∥w(t−1)
i −w(t−1)

∥∥∥


+ 2ηE
[〈
w̃(t−1) −w(t−1),∇xF (w(t−1),λb

t−1
τ c)

〉]
. (17)

According to smoothness of F we obtain:

E
[〈
w̃(t−1) −w(t−1),∇xF (w(t−1),λb

t−1
τ c)

〉]
≤ E

[
F (w̃(t−1),λb

t−1
τ c)

]
− E

[
F (w(t−1),λb

t−1
τ c)

]
+
L

2
E
[∥∥∥w̃(t−1) −w(t−1)

∥∥∥2
]

≤ E
[
Φ(w̃(t−1))

]
− E

[
F (w(t−1),λb

t−1
τ c)

]
+
L

2
E
[∥∥∥w̃(t−1) −w(t−1)

∥∥∥2
]

≤ E
[
Φ(w̃(t−1))

]
+ LE

[∥∥∥w̃(t−1) −w(t−1)
∥∥∥2
]

︸ ︷︷ ︸
≤E[Φ(w(t−1))]+LE

[
‖w(t−1)−w(t−1)‖2

]
−E

[
F (w(t−1),λb

t−1
τ c)

]
− L

2
E
[∥∥∥w̃(t−1) −w(t−1)

∥∥∥2
]

≤ E
[
Φ(w(t−1))

]
− E

[
F (w(t−1),λb

t−1
τ c)

]
− L

2
E
[∥∥∥w̃(t−1) −w(t−1)

∥∥∥2
]
. (18)
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Plugging (17) and (18) into (16) yields:

Φ1/2L(w(t)) ≤ Φ(w̃(t−1)) + LE
[∥∥∥w̃(t−1) −w(t−1)

∥∥∥2
]

+ Lη2(G2
w + σ2

w) + ηDWL
2E

 1

m

∑
i∈D(b t−1

τ
c)

∥∥∥w(t−1)
i −w(t−1)

∥∥∥


+ 2Lη

(
E
[
Φ(w(t−1))

]
− E

[
F (w(t−1),λb

t−1
τ c)

]
− L

2
E
[∥∥∥w̃(t−1) −w(t−1)

∥∥∥2
])

≤ Φ1/2L(w(t−1)) + LE
[∥∥∥w̃(t−1) −w(t−1)

∥∥∥2
]

+ Lη2(G2
w + σ2

w) + ηDWL
2E

 1

m

∑
i∈D(b t−1

τ
c)

∥∥∥w(t−1)
i −w(t−1)

∥∥∥


+ 2Lη
(
E
[
Φ(w(t−1))

]
− E

[
F (w(t−1),λb

t−1
τ c)

])
− η

4
E
[∥∥∥∇Φ1/2L(w(t−1))

∥∥∥2
]
,

where we use the result from Lemma 2.2 in [7], i.e,∇Φ1/2L(w) = 2L(w − w̃).

Lemma 8. For DRFA, ∀λ ∈ Λ, under the same conditions as in Theorem 2, the following statement
holds true:

sτ∑
t=(s−1)τ+1

(
E
[
Φ(w(t))

]
−E

[
F (w(t),λ(s−1))

])

≤
sτ∑

t=(s−1)τ+1

(
E
[
F (w(t),λ∗(wt))

]
− E

[
F (w(t),λ)

])
+ γτ2σ

2
λ

m
+ γτ2G2

λ +
1

2γ

(
E
[∥∥∥λ− λ(s−1)

∥∥∥2
]
− E

[∥∥∥λ− λ(s)
∥∥∥2
])

.

Proof. ∀λ ∈ Λ, according to updating rule for λ(s−1), we have:〈
λ− λ(s),λ(s) − λ(s−1) −∆s−1

〉
≥ 0.

Taking expectation on both sides, and doing some algebraic manipulation yields:

E
[∥∥∥ λ− λ(s)

∥∥∥2
]

≤ 2E
[〈
λ(s−1) − λ,∆s−1

〉]
+ 2E

[〈
λ(s) − λ(s−1),∆s−1

〉]
+ E

[∥∥∥λ− λ(s−1)
∥∥∥2
]
− E

[∥∥∥λ(s) − λ(s−1)
∥∥∥2
]

≤ 2E
[〈
λ(s−1) − λ, ∆̄s−1

〉]
+ 2E

[〈
λ(s) − λ(s−1), ∆̄s−1

〉]
+ 2E

[〈
λ(s) − λ(s−1),∆s−1 − ∆̄s−1

〉]
+ E

[∥∥∥λ− λ(s−1)
∥∥∥2
]
− E

[∥∥∥λ(s) − λ(s−1)
∥∥∥2
]
.
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Applying the Cauchy-Schwartz and aritmetic mean-geometric mean inequality: 2〈p, q〉 ≤
2‖p‖‖q‖ ≤ 1

2‖p‖
2 + 2‖q‖2, we have:

E
[∥∥∥ λ− λ(s)

∥∥∥2
]

≤ 2γE

 sτ∑
t=(s−1)τ+1

F (w(t),λ(s−1))− F (w(t),λ)

+ E
[∥∥∥λ− λ(s−1)

∥∥∥2
]

+ E
[

1

2

∥∥∥λ(s) − λ(s−1)
∥∥∥2

+ 2
∥∥∆s−1 − ∆̄s−1

∥∥2
]

+ E
[

1

2

∥∥∥λ(s) − λ(s−1)
∥∥∥2

+ 2
∥∥∆̄s−1

∥∥2
]

− E
[∥∥∥λ(s) − λ(s−1)

∥∥∥2
]

≤ 2γE

 sτ∑
t=(s−1)τ+1

F (w(t),λ(s−1))− F (w(t),λ)

+ γ2τ2σ
2
λ

m
+ γ2τ2G2

λ + E
[∥∥∥λ− λ(s−1)

∥∥∥2
]
.

By adding
∑sτ
t=(s−1)τ+1 F (w(t),λ∗(w(t))) on both sides and re-arranging the terms we have:

sτ∑
t=(s−1)τ+1

(
E
[
Φ(w(t))

]
− E

[
F (w(t),λ(s−1))

])

≤
sτ∑

t=(s−1)τ+1

(
E
[
F (w(t),λ∗(wt))

]
− E

[
F (w(t),λ)

])
+ γτ2σ

2
λ

m
+ γτ2G2

λ

+
1

2γ

(
E
[∥∥∥λ− λ(s−1)

∥∥∥2
]
− E

[∥∥∥λ− λ(s)
∥∥∥2
])

.

Lemma 9. For DRFA, under the assumptions in Theorem 2, the following statement holds true:

1

T

T∑
t=1

(
E
[
Φ(w(t))

]
− E

[
F (w(t),λ(b tτ c))

])
≤ 2
√
SτηGw

√
G2
w + σ2

w + γτ
σ2
λ

m
+ γτG2

λ +
D2

Λ

2
√
Sτγ

Proof. Without loss of generality we assume
√
S is an integer, so we can equally divide index 0 to

S − 1 into
√
S groups. Then we have:

1

T

T∑
t=1

(
E
[
Φ(w(t))

]
− E

[
F (w(t),λ(b tτ c))

])

=
1

T

√
S−1∑
c=0

 (c+1)
√
S∑

s=c
√
S+1

sτ∑
t=(s−1)τ+1

(
E
[
Φ(w(t))

]
− E

[
F (w(t),λ(s−1))

]) . (19)
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Now we and examine one group. Plugging in Lemma 8 and letting λ = λ∗(w(c+1)
√
Sτ ) yields:

(c+1)
√
S∑

s=c
√
S+1

sτ∑
t=(s−1)τ+1

(
E
[
Φ(w(t))

]
− E

[
F (w(t),λ(s−1))

])

≤
(c+1)

√
S∑

s=c
√
S+1

sτ∑
t=(s−1)τ+1

(
E
[
F (w(t),λ∗(wt))

]
− E

[
F (w(t),λ∗(w(c+1)

√
Sτ ))

])

+ γτ2

√
Sσ2

λ

m
+ γτ2

√
SG2

λ +
1

2γ

(c+1)
√
S∑

s=c
√
S+1

(
E
[∥∥∥λ∗(w(c+1)

√
Sτ )− λ(s−1)

∥∥∥2
]
− E

[∥∥∥λ∗(w(c+1)
√
Sτ )− λ(s)

∥∥∥2
])

≤
(c+1)

√
S∑

s=c
√
S+1

sτ∑
t=(s−1)τ+1

(
E
[
F (w(t),λ∗(wt))

]
− E

[
F (w((c+1)

√
Sτ),λ∗(wt))

]
+E

[
F (w((c+1)

√
Sτ),λ∗(w(c+1)

√
Sτ ))

]
− E

[
F (w(t),λ∗(w(c+1)

√
Sτ ))

])
+ γτ2

√
Sσ2

λ

m
+ γτ2

√
SG2

λ +
1

2γ

(c+1)
√
S∑

s=c
√
S+1

(
E
[∥∥∥λ∗(w(c+1)

√
Sτ )− λ(s−1)

∥∥∥2
]
− E

[∥∥∥λ∗(w(c+1)
√
Sτ )− λ(s)

∥∥∥2
])

(20)

≤
(c+1)

√
S∑

s=c
√
S+1

sτ∑
t=(s−1)τ+1

(2
√
SτηGw

√
G2
w + σ2

w) + γτ

√
Sσ2

λ

m
+ γτ

√
SG2

λ +
D2

Λ

2γ
(21)

≤ 2Sτ2ηGw
√
G2
w + σ2

w + γτ2

√
Sσ2

λ

m
+ γτ2

√
SG2

λ +
D2

Λ

2γ
, (22)

where from (20) to (21) we use the Gw-Lipschitz property of F (·,λ) so that F (wt1 ,λ) −
F (wt2 ,λ) ≤ Gw‖wt1 −wt2‖.
Now plugging (22) back to (19) yields:

1

T

T∑
t=1

(
E
[
Φ(w(t))

]
− E

[
F (w(t),λ(s))

])
≤ 1

T
2
√
SSτ2ηGw

√
G2
w + σ2

w + γτ
σ2
λ

m
+ γτG2

λ +

√
SD2

Λ

2Tγ

≤ 2
√
SτηGw

√
G2
w + σ2

w + γτ
σ2
λ

m
+ γτG2

λ +
D2

Λ

2
√
Sτγ

.

D.3 Proof of Theorem 2

Now we proceed to the formal proof of Theorem 2. Re-arranging terms in Lemma 7, summing over
t = 1 to T , and dividing by T yields:

1

T

T∑
t=1

E
[∥∥∇Φ1/2L (w(t))

∥∥∥2
]

≤ 4

ηT
E[Φ1/2L(w(0))] +

1

2T

T∑
t=1

DWL
2E

 1

m

∑
i∈D(b t

τ
c)

∥∥∥w(t)
i −w

(t)
∥∥∥


+ L
1

2T

T∑
t=1

(
E[Φ(w(t))]− E[F (w(t),λb

t
τ c)]

)
.
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Plugging in Lemma 5 and 9 yields:

1

T

T∑
t=1

E
[∥∥∥∇Φ1/2L(w(t))

∥∥∥2
]
≤ 4

ηT
E[Φ1/2L(w(0))] + ητDWL

2
(
σw +

σw
m

+
√

Γ
)
.

+
L

2

(
2
√
SτηGw

√
G2
w + σ2

w + γτ
σ2
λ

m
+ γτG2

λ +
D2

Λ

2
√
Sτγ

)
≤ 4

ηT
E[Φ1/2L(w(0))] + ητDWL

2
(
σw +

σw
m

+
√

Γ
)

+
√
SτηGwL

√
G2
w + σ2

w + γτ
σ2
λL

2m
+ γτ

G2
λL

2
+

D2
ΛL

4
√
Sτγ

.

Plugging in η = 1
4LT 3/4 , γ = 1

T 1/2 and τ = T 1/4 we recover the convergence rate as cliamed:

1

T

T∑
t=1

E
[∥∥∥∇Φ1/2L(w(t))

∥∥∥2
]
≤ 4

T 1/4
E[Φ1/2L(w(0))] +

L2

T 1/2

(
σw +

σw
m

+
√

Γ
)

+
1

T 1/8
GwL

√
G2
w + σ2

w +
σ2
λL

2mT 1/4
+

G2
λL

2T 1/4
+

D2
ΛL

4T 1/8
,

which concludes the proof.

E Proof of Convergence of DRFA-Prox

This section is devoted to the proof of convergence of DRFA-Prox algorithm in both convex and
nonconvex settings.

E.1 Convex Setting

In this section we are going to provide the proof of Theorem 3, the convergence of DRFA-Prox on
convex losses, i.e., global objective F is convex in w. Let us first introduce a key lemma:
Lemma 10. For DRFA-Prox, ∀λ ∈ Λ, and for any s such that 0 ≤ s ≤ T

τ − 1 we have:
(s+1)τ∑
t=sτ+1

(
E
[
F (w(t),λ)

]
− E

[
F (w(t),λ(s))

])
≤ − 1

2γ
E‖λ(s+1) − λ‖2 +

1

2γ
E[‖λ(s) − λ‖2] +

1

2γ
E[‖∆̄s −∆s‖2]

+ τ2γGw(Gw +
√
G2
w +G2

λ + σ2
λ) + τ2γG2

λ

Proof. Recall that to update λ(s), we sampled a index t′ from sτ + 1 to (s + 1)τ , and obtain the
averaged model w(t′). Now, consider iterations from sτ + 1 to (s+ 1)τ . Define following function:

Ψ(u) = τf(w(t′),y) + τg(u)− 1

2γ
‖y + ∆s − u‖2

= τf(w(t′),y) + τg(u)− 1

2γ
‖y + ∆̄s − u‖2 −

1

2γ
‖∆̄s −∆s‖2 (23)

+
1

γ
〈∆̄s −∆s,y + ∆̄s − u〉.

By taking the expectation on both side, we get:
E[Ψ(u)]

= E[τf(w(t′),y)] +
1

γ
E[
〈
∆̄s,u− y

〉
] + E[τg(u)]− 1

2γ
E‖u− y‖2 − 1

2γ
E‖∆̄s −∆s‖2 −

1

2γ
E‖∆̄s‖2

= E

 (s+1)τ∑
t=sτ+1

F (w(t),u)

− 1

2γ
E‖u− y‖2 − 1

2γ
E‖∆̄s −∆s‖2 −

1

2γ
E‖∆̄s‖2
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where we used the fact that E[τf(w(t′),y)] = E
[∑(s+1)τ

t=sτ+1 f(w(t),y)
]

and 1
γE[〈∆s,u− y〉] =∑(s+1)τ

t=sτ+1 E
[
f(w(t),u)− f(w(t),y)

]
.

Define the operator:

Tg(y) := arg max
u∈Λ

{
τg(u)− 1

2γ
‖y + ∆s − u‖2

}
(24)

Since Ψ(u) is 1
2γ -strongly concave, and Tg(y) is the maximizer of Ψ(u), we have:

E[Ψ(Tg(y))]− E[Ψ(u)] ≥ 1

2γ
E‖Tg(y)− u‖2

Notice that:

E[Ψ(Tg(y))] = E

 (s+1)τ∑
t=sτ+1

F (w(t), Tg(y))

− 1

2γ
E[‖Tg(y)− y‖2]− 1

2γ
E[‖∆̄s −∆s‖2]− 1

2γ
E‖∆̄s‖2

So we know that E
[∑(s+1)τ

t=sτ+1 F (w(t), Tg(y))
]
≥ E[Ψ(Tg(y))], and hence:

E

 (s+1)τ∑
t=sτ+1

F (w(t), Tg(y))

− E[Ψ(u)] ≥ E[Ψ(Tg(y))]− E[Ψ(u)] ≥ 1

2γ
E‖Tg(y)− u‖2

Plugging in E[Ψ(u)] results in:

E

 (s+1)τ∑
t=sτ+1

F (w(t), Tg(y))

− E[Ψ(u)]

= E

 (s+1)τ∑
t=sτ+1

F (w(t), Tg(y))

−
E

 (s+1)τ∑
t=sτ+1

F (w(t),u)

− 1

2γ
E[‖u− y‖2]− 1

2γ
E[‖∆̄s −∆s‖2]− 1

2γ
E‖∆̄s‖2


≥ 1

2γ
E‖Tg(y)− u‖2.

Re-arranging the terms yields:

E

 (s+1)τ∑
t=sτ+1

F (w(t),u)

− E

 (s+1)τ∑
t=sτ+1

F (w(t), Tg(y))


≤ − 1

2γ
E‖Tg(y)− u‖2 +

1

2γ
E[‖y − u‖2] +

1

2γ
E[‖∆̄s −∆s‖2] +

1

2γ
E‖∆̄s‖2.

(25)

Let u = λ, y = λ(s), then we have:
(s+1)τ∑
t=sτ+1

(
E
[
F (w(t),λ)

]
− E

[
F (w(t), Tg(λ

(s)))
])

≤ − 1

2γ
E‖Tg(λ(s))− λ‖2 +

1

2γ
E[‖λ(s) − λ‖2] +

1

2γ
E[‖∆̄s −∆s‖2] +

1

2γ
E‖∆̄s‖2.

Since Tg(λ(s)) = λ(s+1), we have:

(s+1)τ∑
t=sτ+1

(
E
[
F (w(t),λ)

]
− E

[
F (w(t),λ(s))

])
≤ − 1

2γ
E‖Tg(λ(s))− λ‖2 +

1

2γ
E[‖λ(s) − λ‖2] +

1

2γ
E[‖∆̄s −∆s‖2] +

1

2γ
E‖∆̄s‖2

+

(s+1)τ∑
t=sτ+1

(
E
[
F (w(t),λ(s+1))

]
− E

[
F (w(t),λ(s))

])
︸ ︷︷ ︸

T1

.
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Now our remaining task is to bound T1. By the Lipschitz property of F , we have the following upper
bound for T1:

T1 ≤ τGwE‖λ(s+1) − λ(s)‖. (26)

Then, by plugging u = λ(s), y = λ(s) into (25), we have the following lower bound:
1

2γ
E‖λ(s+1) − λ(s)‖2 − 1

2γ
E[‖∆̄s −∆s‖2]− 1

2γ
E‖∆̄s‖2 ≤ T1. (27)

Combining (26) and (27) we have:
1

2γ
E‖λ(s+1) − λ(s)‖2 − 1

2γ
E[‖∆̄s −∆s‖2]− 1

2γ
E‖∆̄s‖2

≤ τGwE‖λ(s+1) − λ(s)‖ ≤ τGw
√
E‖λ(s+1) − λ(s)‖2. (28)

Let X =

√
E‖λ(s+1) − λ(s)‖2, A = 1

2γ , B = −τGw and C = − 1
2γE[‖∆̄s −∆s‖2]− 1

2γE‖∆̄s‖2,
then we can re-formulate (28) as:

AX2 +BX + C ≤ 0. (29)
Obviously A ≥ 0. According to the root of quadratic equation, we know that:

X ≤ −B +
√
B2 − 4AC

2A
=
τGw +

√
G2
wτ

2 + 1
γ2 (E[‖∆̄s −∆s‖2] + E‖∆̄s‖2)

1/γ

≤ τγ
(
Gw +

√
G2
w +G2

λ + σ2
λ

)
.

Hence, we have

T1 ≤ τGwE‖λ(s+1) − λ(s)‖ ≤ τ2γGw

(
Gw +

√
G2
w +G2

λ + σ2
λ

)
,

which concludes the proof.

Proof of Theorem 3. We start the proof by noting that ∀w ∈ W , ∀λ ∈ Λ, according the convexity
in w and concavity in λ, we have:

E[F (ŵ,λ)− E[F (w, λ̂)]

≤ 1

T

T∑
t=1

{
E
[
F (w(t),λ)

]
− E

[
F (w,λ(b tτ c))

]}
≤ 1

T

T∑
t=1

{
E
[
F (w(t),λ)

]
− E

[
F (w(t),λ(b tτ c))

]
+ E

[
F (w(t),λ(b tτ c))

]
− E

[
F (w,λ(b tτ c))

]}

≤ 1

T

S−1∑
s=0

(s+1)τ∑
t=sτ+1

E[F (w(t),λ)− F (w(t),λ(s))] +
1

T

T∑
t=1

E[F (w(t),λ(b tτ c))− F (w,λ(b tτ c))].

(30)
To bound the first term in (30), plugging Lemma 2 into Lemma 10, and summing over s = 0 to S − 1
where S = T/τ , and dividing both sides with T yields:

1

T

S−1∑
s=0

(s+1)τ∑
t=sτ+1

{ E
[
F (w(t),λ)

]
− E

[
F (w(t),λ(s))

]}
≤ 1

2γT
D2

Λ +
1

2γτ
E[‖∆̄s −∆s‖2] + τγGw(Gw +

√
G2
w +G2

λ + σ2
λ) + γτG2

λ

≤ 1

2γT
D2

Λ +
1

2γ
E[‖∆̄s −∆s‖2] + τγ(Gw +

√
G2
w +G2

λ + σ2
λ) + γτG2

λ

≤ D2
Λ

2γT
+
γτσ2

λ

2m
+ τγGw(Gw +

√
G2
w +G2

λ + σ2
λ) + γτG2

λ.
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To bound the second term in (30), we plug Lemma 1 and Lemma 4 into Lemma 3 and apply the
telescoping sum from t = 1 to T to get:

1

T

T∑
t=1

E[F (w(t),λ(b tτ c))− F (w,λ(b tτ c))]

≤ 1

2Tη
E‖ w(0) −w‖2 + 5Lη2τ2

(
σ2
w +

σ2
w

m
+ Γ

)
+
ηG2

w

2
+
ησ2

w

2m

≤ D2
W

2Tη
+ 5Lη2τ2

(
σ2
w +

σ2
w

m
+ Γ

)
+
ηG2

w

2
+
ησ2

w

2m
,

So that we can conclude:

E[F (ŵ,λ)− E[F (w, λ̂)] ≤ D2
W

2Tη
+ 5Lη2τ2

(
σ2
w +

σ2
w

m
+ Γ

)
+
ηG2

w

2
+
ησ2

w

2m
+

D2
Λ

2γT

+ γτG2
λ +

γτσ2
λ

2m
+ τγGw(Gw +

√
G2
w +G2

λ + σ2
λ).

Since the RHS does not depend on w and λ, we can maximize over λ and minimize over w on both
sides:

min
w∈W

max
λ∈Λ

E[F (ŵ,λ)− E[F (w, λ̂)]

≤ D2
W

2Tη
+ 5Lη2τ2

(
σ2
w +

σ2
w

m
+ Γ

)
+
ηG2

w

2
+
ησ2

w

2m
+

D2
Λ

2γT

+ γτG2
λ +

γτσ2
λ

2m
+ τγGw

(
Gw +

√
G2
w +G2

λ + σ2
λ

)
.

Plugging in τ = T 1/4
√
m

, η = 1
4L
√
T

, and γ = 1
T 5/8 , we get:

max
λ∈Λ

E[F (ŵ,λ)]− min
w∈W

E[F (w, λ̂)] ≤ O
(D2
W +G2

w√
T

+
D2

Λ +G2
w

T 3/8
+

G2
λ

m1/2T 3/8
+

σ2
λ

m3/2T 3/8
+
σ2
w + Γ

m
√
T

)
,

thus concluding the proof.

E.2 Nonconvex Setting

In this section we are going to prove Theorem 4. The whole framework is similar to the proof of Theo-
rem 3, but to bound E

[
Φ(w(t))

]
−E

[
F (w(t),λ(b tτ c))

]
term, we employ different technique for prox-

imal method. The following lemma characterize the bound of E
[
Φ(w(t))

]
− E

[
F (w(t),λ(b tτ c))

]
:

Lemma 11. For DRFA-Prox, under Theorem 4’s assumption, the following statement holds true:

1

T

T∑
t=1

E
[
Φ(w(t))− F (w(t),λ(b tτ c))

]
≤ 2
√
SτηGw

√
G2
w + σ2

w + γτ
σ2
λ

2m
+ γτ

G2
λ

2
+

D2
Λ

2
√
Sτ

+ τγGw

(
Gw +

√
G2
w +G2

λ + σ2
λ

)
.

Proof. We recall that in Lemma 10, we have:

(s+1)τ∑
t=sτ+1

(
E
[
F (w(t),λ)

]
− E

[
F (w(t),λ(s))

])
≤ − 1

2γ
E‖λ(s+1) − λ‖2 +

1

2γ
E[‖λ(s) − λ‖2] +

1

2γ
E[‖∆̄s −∆s‖2] +

1

2γ
E[‖∆̄s‖2]

+ τ2γ

(
Gw +

√
G2
w +G2

λ + σ2
λ

)
.
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Adding
∑(s+1)τ
t=sτ+1 E

[
Φ(w(t))

]
to both sides, and re-arranging the terms give:

(s+1)τ∑
t=sτ+1

(
E
[
Φ(w(t))

]
−E

[
F (w(t),λ(s))

])

≤
(s)τ∑

t=sτ+1

(
E
[
Φ(w(t))

]
− E

[
F (w(t),λ)

])
− 1

2γ
E‖λ(s+1) − λ‖2

+
1

2γ
E[‖λ(s) − λ‖2] +

1

2γ
E[‖∆̄s −∆s‖2] +

1

2γ
E[‖∆̄s‖2] + τ2γGw

(
Gw +

√
G2
w +G2

λ + σ2
λ

)
.

Then, we follow the same procedure as in Lemma 9. Without loss of generality we assume
√
S is an

integer, so we can equally divide index 0 to S − 1 into
√
S groups. Then we examine one block by

summing s from s = c
√
S to (c+ 1)

√
S − 1, and set λ = λ∗(w(c+1)

√
Sτ ):

(c+1)
√
S−1∑

s=c
√
S

(s+1)τ∑
t=sτ+1

(
E
[
Φ(w(t))

]
− E

[
F (w(t),λ(s))

])

≤
(c+1)

√
S−1∑

s=c
√
S

(s+1)τ∑
t=sτ+1

(
E
[
F (w(t),λ∗(wt))

]
− E

[
F (w(t),λ∗(w(c+1)

√
Sτ ))

])
+
√
Sτ2γGw(Gw +

√
G2
w +G2

λ + σ2
λ) + γτ2

√
Sσ2

λ

2m
+ γτ2

√
SG2

λ

2

+
1

2γ

(c+1)
√
S−1∑

s=c
√
S

(
E
[∥∥∥λ∗(w(c+1)

√
Sτ )− λ(s)

∥∥∥2
]
− E

[∥∥∥λ∗(w(c+1)
√
Sτ )− λ(s+1)

∥∥∥2
])

Adding and subtracting E
[
F (w(t),λ∗(wt))

]
− E

[
F (w(t),λ∗(w(c+1)

√
Sτ ))

]
yields:

(c+1)
√
S−1∑

s=c
√
S

(s+1)τ∑
t=sτ+1

(
E
[
Φ(w(t))

]
− E

[
F (w(t),λ(s))

])

≤
(c+1)

√
S−1∑

s=c
√
S

(s+1)τ∑
t=sτ+1

(
E
[
F (w(t),λ∗(wt))

]
− E

[
F (w((c+1)

√
Sτ),λ∗(wt))

]
+E

[
F (w((c+1)

√
Sτ),λ∗(w(c+1)

√
Sτ ))

]
− E

[
F (w(t),λ∗(w(c+1)

√
Sτ ))

])
+ γτ2

√
Sσ2

λ

2m
+ γτ2

√
SG2

λ

2
+
√
Sτ2γGw(Gw +

√
G2
w +G2

λ + σ2
λ)

+
1

2γ

(c+1)
√
S∑

s=c
√
S+1

(
E
[∥∥∥λ∗(w(c+1)

√
Sτ )− λ(s)

∥∥∥2
]
− E

[∥∥∥λ∗(w(c+1)
√
Sτ )− λ(s+1)

∥∥∥2
])

≤
(c+1)

√
S−1∑

s=c
√
S

(s+1)τ∑
t=sτ+1

(2
√
SτηGw

√
G2
w + σ2

w) + γτ2

√
Sσ2

λ

2m
+ γτ2

√
SG2

λ

2
+
D2

Λ

2γ

+
√
Sτ2γGw

(
Gw +

√
G2
w +G2

λ + σ2
λ

)
≤ 2Sτ2ηGw

√
G2
w + σ2

w + γτ2

√
Sσ2

λ

2m
+ γτ2

√
SG2

λ

2
+
D2

Λ

2γ

+
√
Sτ2γGw

(
Gw +

√
G2
w +G2

λ + σ2
λ

)
.
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So we can conclude that:

(c+1)
√
S−1∑

s=c
√
S

(s+1)τ∑
t=sτ+1

(
E
[
Φ(w(t))

]
− E

[
F (w(t),λ(s))

])
≤ 2Sτ2ηGw

√
G2
w + σ2

w + γτ2

√
Sσ2

λ

2m
+ γτ2

√
SG2

λ

2

D2
Λ

2γ
+
√
Sτ2γGw

(
Gw +

√
G2
w +G2

λ + σ2
λ

)
Summing above inequality over c from 0 to

√
S − 1, and dividing both sides by T gives

1

T

S−1∑
s=0

(s+1)τ∑
t=sτ+1

(
E
[
Φ(w(t))

]
− E

[
F (w(t),λ(s))

])
≤ 2
√
SτηGw

√
G2
w + σ2

w + γτ
σ2
λ

2m
+ γτ

G2
λ

2
+

D2
Λ

2
√
Sτγ

+ τγGw

(
Gw +

√
G2
w +G2

λ + σ2
λ

)
,

which concludes the proof.

Proof of Theorem 4. Now we proceed to the formal proof of Theorem 4. Re-arranging terms in
Lemma 7, summing over t = 1 to T , and dividing by T yields:

1

T

T∑
t=1

E
[∥∥∇Φ1/2L (w(t))

∥∥∥2
]

≤ 4

ηT
E[Φ1/2L(w(0))] +

1

2T

T∑
t=1

DWL
2E

 1

m

∑
i∈D(b t

τ
c)

∥∥∥w(t)
i −w

(t)
∥∥∥


+ L
1

2T

T∑
t=1

(
E[Φ(w(t))]− E[F (w(t),λb

t
τ c)]

)
.

Plugging in Lemmas 5 and 11 yields:

1

T

T∑
t=1

E
[∥∥∥∇Φ1/2L(w(t))

∥∥∥2
]

≤ 4

ηT
E[Φ1/2L(w(0))] + ητDWL

2
(
σw +

σw
m

+
√

Γ
)
.

+
L

2

(
2
√
SτηGw

√
G2
w + σ2

w + γτ
σ2
λ

2m
+ γτ

G2
λ

2
+

D2
Λ

2
√
Sτ

+ τγGw(Gw +
√
G2
w +G2

λ + σ2
λ)

)
≤ 4

ηT
E[Φ1/2L(w(0))] + ητDWL

2
(
σw +

σw
m

+
√

Γ
)

+
√
SτηGwL

√
G2
w + σ2

w + γτ
σ2
λL

4m
+ γτ

G2
λL

4
+

D2
ΛL

4
√
Sγτ

+
τγLGw(Gw +

√
G2
w +G2

λ + σ2
λ)

2
.

Plugging in η = 1
4LT 3/4 , γ = 1

T 1/2 and τ = T 1/4 we recover the stated convergence rate as:

1

T

T∑
t=1

E

[∥∥∥∥∇Φ1/2L(w(t))

∥∥∥∥2
]

≤ 4

T 1/4
E[Φ1/2L(w(0))] +

L2

T 1/2

(
σw +

σw
m

+
√

Γ
)

+
1

T 1/8
GwL

√
G2
w + σ2

w +
σ2
λL

4mT 1/4
+

G2
λL

4T 1/4
+

D2
ΛL

4T 1/8
+
LGw(Gw +

√
G2
w +G2

λ + σ2
λ)

2T 1/4
.
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F Proof of Convergence of DRFA-GA in Strongly-Convex-Strongly-Concave
Setting

In this section we proceed to the proof of the convergence in strongly-convex-strongly-concave
setting (Theorem 5). In this section we abuse the notation and use the following definition for ūt:

ūt =

N∑
i=1

λ
(b tτ c)
i ∇fi(w(t)

i ).

F.1 Overview of the Proof

We again start with the dynamic of one iteration:

E
∥∥∥w(t+1) −w∗

∥∥∥2

≤
(

1− µη

2

)
E
∥∥∥w(t) −w∗

∥∥∥2

− ηE
[
Φ(w(t))− Φ(w∗)

]
+ η2 2σ2

w + 4G2
w

m
4L2

(
η2 +

η

µ

)
E
[
δ(t)
]

+ 4

(
η

µ
+ η2

)
E‖∇wF (w(t),λ(b tτ c))−∇Φ(w(t))‖2.

In addition to the local-global deviation, in this case we also have a new term ‖∇wF (w(t),λ(b tτ c))−
∇Φ(w(t))‖2. Recall that ∇Φ(w(t)) is the gradient evaluated at λ∗(w(t)). A straightforward ap-
proach is to use the smoothness of Φ, to convert the difference between gradient to the difference
between λ(b tτ c) and λ∗(w(t)). By examining the dynamic of λ, we can prove that:

E
∥∥∥λ∗(w(t))− λ(b tτ c)

∥∥∥2

≤ 2

(
1− 1

2κ

)(b tτ c)

E
∥∥∥λ(0) − λ∗(w(0))

∥∥∥2

+ 2(4κ2 + 1)κ2τ2η2G2
w.

Putting these pieces together, and unrolling the recursion will conclude the proof.

F.2 Proof of Technical Lemmas

Lemma 12 ( Lin et al. [29]. Properties of Φ(·) and λ∗(·)). If F (·,λ) is L-smooth function and
F (w, ·) is µ-strongly-concave, L-smooth function, let κ = L

µ , then Φ(w) is α-smooth function where
α = L+ κL and λ∗(w) is κ-Lipschitz. Also∇Φ(w) = ∇wF (w,λ∗(w)).

Lemma 13. For DRFA-GA, under Theorem 5’s assumptions, the following holds true:

E
∥∥∥w(t+1) −w∗

∥∥∥2

≤
(

1− µη

2

)
E
∥∥∥w(t) −w∗

∥∥∥2

− ηE
[
Φ(w(t))− Φ(w∗)

]
+ η2 2σ2

w + 4G2
w

m
4L2

(
η2 +

η

µ

)
E
[
δ(t)
]

(31)

+ 4

(
η

µ
+ η2

)
E‖∇wF (w(t),λ(b tτ c))−∇Φ(w(t))‖2.

Proof. According to Lemma B2 in [30], if F (·,λ) is µ-strongly-convex, then Φ(·) is also µ-strongly-
convex. Noting this, from the strong convexity and the updating rule we have:

E‖w(t+1) −w∗‖2

= E

∥∥∥∥∥∏
W

(
w(t) − ηu(t)

)
−w∗

∥∥∥∥∥
2

≤ E‖w(t) − ηū(t) −w∗‖2 + η2E‖ū(t) − u(t)‖2

= E‖w(t) −w∗‖2 + E[−2η〈ū(t),w(t) −w∗〉]︸ ︷︷ ︸
T1

+ η2E‖ū(t)‖2︸ ︷︷ ︸
T2

+η2E‖ū(t) − u(t)‖2

(32)
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First we are to bound the variance E‖ū(t) − u(t)‖2:

E‖ū(t) − u(t)‖2 = E

∥∥∥∥∥∥ 1

m

∑
i∈D(b t

τ
c)

∇fi(w(t)
i )− ū(t)

∥∥∥∥∥∥
2

= E

∥∥∥∥∥∥ 1

m

∑
i∈D(b t

τ
c)

∇fi(w(t)
i ; ξ

(t)
i )− 1

m

∑
i∈D(b t

τ
c)

ū(t)

∥∥∥∥∥∥
2

≤ 2σ2
w + 4G2

w

m
,

where we use the fact V ar(
∑m
i=1Xi) =

∑m
i=1 V ar(Xi) for independent vari-

ables Xi, i = 1, . . . ,m, and V ar(∇fi(w(t)
i ; ξ

(t)
i )) = E

∥∥∥∇fi(w(t)
i ; ξ

(t)
i )− ū(t)

∥∥∥2

≤

2
∥∥∥∇fi(w(t)

i ; ξ
(t)
i )−∇fi(w(t)

i )
∥∥∥2

+ 2
∥∥∥∇fi(w(t)

i )− ū(t)
∥∥∥2

≤ 2σ2
w + 4G2

w.

Then we switch to bound T1:

T1 = 2ηE
[
−
〈
∇Φ(w(t)),w(t) −w∗

〉
+
〈
∇Φ(w(t))− ū(t),w(t) −w∗

〉]
≤ 2ηE

[
−(Φ(w(t))− Φ(w∗))− µ

2
‖w(t) −w∗‖2 +

1

µ
‖∇Φ(w(t))− ū(t)‖2 +

µ

4
‖w(t) −w∗‖2

]
≤ E

[
−2η(Φ(w(t))− Φ(w∗))− µη

2
‖w(t) −w∗‖2 +

2η

µ
‖∇Φ(w(t))− ū(t)‖2

]
≤ E

[
−2η(Φ(w(t))− Φ(w∗))− µη

2
‖w(t) −w∗‖2 +

4η

µ

∥∥∥∇Φ(w(t))−∇wF (w(t),λ(b tτ c))
∥∥∥2

+
4η

µ
‖∇wF (w(t),λ(b tτ c))− ū(t)‖2

]
≤ E

[
−2η(Φ(w(t))− Φ(w∗))− µη

2
‖w(t) −w∗‖2 +

4η

µ

∥∥∥∇Φ(w(t))−∇wF (w(t),λ(b tτ c))
∥∥∥2

+
4L2η

µ

K∑
k=1

λ
(b tτ c)
i ‖w(t) −w(t)

i ‖
2

]
,

where in the second step we use the arithmetic and geometric inequality and the strong convexity of
Φ(·); and at the last step we use the smoothness, the convexity of ‖ · ‖2 and Jensen’s inequality.

Then, we can bound T2 as:

T2 ≤ η2E
[
4
∥∥∥ū(t) −∇wF (w(t),λ(b tτ c))

∥∥∥2

+ 4‖∇wF (w(t),λ(b tτ c))−∇Φ(w(t))‖2

+2
∥∥∥∇Φ(w(t))

∥∥∥2
]

≤ η2E
[
4
∥∥∥ū(t) −∇wF (w(t),λ(b tτ c))

∥∥∥2

+ 4
∥∥∥∇wF (w(t),λ(b tτ c))−∇Φ(w(t))

∥∥∥2

+4α(Φ(w(t))− Φ(w∗))

]
≤ η2E

[
4L2

N∑
i=1

λ
(b tτ c)
i ‖w(t) −w(t)

i ‖
2 + 4‖∇wF (w(t),λ(b tτ c))−∇Φ(w(t))‖2

+4α(Φ(wt)− Φ(w∗))

]

≤ η2E

4L2 1

m

∑
i∈D(b t

τ
c)

‖w(t) −w(t)
i ‖

2 + 4‖∇wF (w(t),λ(b tτ c))−∇Φ(w(t))‖2

+4α(Φ(wt)− Φ(w∗))

]
.
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Plugging T1 and T2 back to (32) results in:

E
∥∥∥w(t+1) −w∗

∥∥∥2

≤
(

1− µη

2

)
E
∥∥∥w(t) −w∗

∥∥∥2

+ (4αη2 − 2η)E
[
Φ(w(t))− Φ(w∗)

]
+ η2 2σ2

w + 4G2
w

m
+ 4L2

(
η2 +

η

µ

)
E
[
δ(t)
]

+ 4

(
η

µ
+ η2

)
E‖∇wF (w(t),λ(b tτ c))−∇Φ(w(t))‖2. (33)

By choosing η < 1
4α , it holds that (4αη2 − 2η) < −η, therefore we conclude the proof.

Lemma 14 (Decreasing Optimal Gap of λ). For DRFA-GA, if F (w, ·) is µ-strongly-concave,
choosing γ = 1

L , the optimality gap of λ is decreasing by the following recursive relation:

E
∥∥∥λ∗(w(t))− λ(b tτ c)

∥∥∥2

≤ 2

(
1− 1

2κ

)b tτ c
E
∥∥∥λ(0) − λ∗(w(0))

∥∥∥2

+ 2(4κ2 + 1)κ2τ2η2G2
w.

Proof: Assume sτ + 1 ≤ t ≤ (s+ 1)τ . By the Jensen’s inequality:

E‖λ∗(w(t))− λ(b tτ c)‖2 ≤ 2E‖λ∗(w(t))− λ∗(w(sτ))‖2 + 2E‖λ∗(w(sτ))− λ(s)‖2.

Firstly we are going to bound E‖λ∗(w(t))−λ∗(w(sτ))‖2. We use the κ-Lipschitz property of λ∗(·):

E
∥∥∥λ∗(w(t))− λ∗

(
w(sτ)

)∥∥∥2

≤ κ2E‖w(t) −w(sτ)‖2 ≤ κ2τ2η2G2
w.

Then we switch to bound E‖λ(s) − λ∗(w(sτ))‖2. We apply the Jensen’s inequality first to get:

E
∥∥∥λ(s) −λ∗(w(sτ))

∥∥∥2

≤
(

1 +
1

2(κ− 1)

)
E
∥∥∥λ(s) − λ∗

(
w((s−1)τ)

)∥∥∥2

+ (1 + 2(κ− 1))E
∥∥∥λ∗ (w((s−1)τ)

)
− λ∗

(
w(sτ)

)∥∥∥2

≤
(

1 +
1

2(κ− 1)

)
E
∥∥∥λ(s) − λ∗

(
w((s−1)τ)

)∥∥∥2

+ 2κ3τ2η2G2
w, (34)

where we use the fact that λ∗(·) is κ-Lipschitz.

To bound E
∥∥∥λ(s) − λ∗

(
w((s−1)τ)

)∥∥∥2

, by the updating rule of λ and the µ-strongly-concavity of
F (w, ·) we have:

E
∥∥∥λ(s) −λ∗

(
w((s−1)τ)

)∥∥∥2

≤ E
∥∥∥λ(s−1) − λ∗

(
w((s−1)τ)

)∥∥∥2

+ γ2
∥∥∥∇λF (w((s−1)τ),λ(s−1)

)∥∥∥2

+ 2γ
〈
∇λF

(
w((s−1)τ),λ(s−1)

)
,λ(s−1) − λ∗

(
w((s−1)τ)

)〉
≤ (1− µγ)E

∥∥∥λ(s−1) − λ∗
(
w((s−1)τ)

)∥∥∥2

+ (2γ2L− 2γ)︸ ︷︷ ︸
≤0

[
F
(
w((s−1)τ),λ∗

(
w((s−1)τ)

))
− F

(
w((s−1)τ),λ(s−1)

)]

≤
(

1− 1

κ

)
E
∥∥∥λ(s−1) − λ∗

(
w((s−1)τ)

)∥∥∥2

, (35)

where we used the smoothness property of F (w, ·):∥∥∥∇λF (w((s−1)τ),λ(s−1)
)∥∥∥2

≤ 2L
(
F
(
w((s−1)τ),λ∗

(
w((s−1)τ)

))
− F

(
w((s−1)τ),λ(s−1)

))
.
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Plugging (35) into (34) yields:

E
∥∥∥λ(s) −λ∗(w(sτ))

∥∥∥2

≤
(

1 +
1

2(κ− 1)

)(
1− 1

κ

)
E
∥∥∥λ(s−1) − λ∗

(
w((s−1)τ)

)∥∥∥2

+ 2κ3τ2η2G2
w

≤
(

1− 1

2κ

)
E
∥∥∥λ(s−1) − λ∗

(
w((s−1)τ)

)∥∥∥2

+ 2κ3τ2η2G2
w.

Applying the recursion on the above relation gives:

E‖λ(s) − λ∗(w(sτ))‖2 ≤
(

1− 1

2κ

)s
E
∥∥∥λ0 − λ∗(w(0))

∥∥∥2

+ 4κ4τ2η2G2
w.

Putting these pieces together concludes the proof:

E
∥∥∥λ∗(w(t))− λ(b tτ c)

∥∥∥2

≤ 2

(
1− 1

2κ

)b tτ c
E
∥∥∥λ0 − λ∗(w(0))

∥∥∥2

+ 2(4κ2 + 1)κ2τ2η2G2
w.

Lemma 15. For ηµ ≤ 1, κ > 1,τ ≥ 1, the following inequalities holds:

T∑
t=0

(
1− 1

2
ηµ

)t(
1− 1

2κ

)b tτ c
≤ 2κτ

1− 1
2ηµ

,

T∑
t=0

(
1− 1

4
ηµ

)t(
1− 1

2κ

)b tτ c
≤ 2κτ

1− 1
4ηµ

.

Proof.
T∑
t=0

(1− 1

2
ηµ)t(1− 1

2κ
)b

t
τ c =

S−1∑
s=0

τ∑
t=1

(1− 1

2
ηµ)sτ+t(1− 1

2κ
)s

≤
S−1∑
s=0

(1− 1

2κ
)s

τ∑
t=1

(
1− 1

2
ηµ

)sτ+t

≤ 2

S−1∑
s=0

(1− 1

2κ
)s
(
1− 1

2ηµ
)sτ

(1−
(
1− 1

2ηµ
)τ

)

ηµ

=
2(1−

(
1− 1

2ηµ
)τ

)

ηµ

S−1∑
s=0

(
1− 1

2κ

)s(
1− 1

2
ηµ

)sτ

≤
2(1−

(
1− 1

2ηµ
)τ

)

ηµ

S−1∑
s=0

(
1− 1

2κ

)s(
1− 1

2
ηµ

)s
(36)

≤
2τ ln 1

(1− 1
2ηµ)

ηµ

1

1−
(
1− 1

2κ

) (
1− 1

2ηµ
) (37)

≤
2τ ln 1

(1− 1
2ηµ)(

ηµ
2κ + ( 1

2 −
1

4κ )η2µ2
) ≤ 4κτ

ηµ

(
1

1− 1
2ηµ
− 1

)
(38)

≤ 2κτ

ηµ

(
ηµ

1− 1
2ηµ

)
=

2κτ

1− 1
2ηµ

, (39)

where from (36) to (37) we use the inequality 1 − ax ≤ x ln 1
a , and from (38) to (39) we use the

inequality lnx ≤ x− 1.
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Similarly, for the second statement:

T∑
t=0

(1− 1

4
ηµ)t(1− 1

2κ
)b

t
τ c =

S−1∑
s=0

τ∑
t=1

(
1− 1

4
ηµ

)sτ+t

(1− 1

2κ
)s

≤
S−1∑
s=0

(1− 1

2κ
)s

τ∑
t=1

(
1− 1

4
ηµ

)sτ+t

≤ 2

S−1∑
s=0

(1− 1

2κ
)s
(
1− 1

4ηµ
)sτ

(1−
(
1− 1

4ηµ
)τ

)

ηµ

=
2(1−

(
1− 1

4ηµ
)τ

)

ηµ

S−1∑
s=0

(
1− 1

2κ

)s(
1− 1

4
ηµ

)sτ

≤
2(1−

(
1− 1

4ηµ
)τ

)

ηµ

S−1∑
s=0

(
1− 1

2κ

)s(
1− 1

4
ηµ

)s

≤
2τ ln 1

(1− 1
4ηµ)

ηµ

1

1−
(
1− 1

2κ

) (
1− 1

4ηµ
)

≤
2τ ln 1

(1− 1
4ηµ)(

ηµ
2κ + ( 1

4 −
1

8κ )η2µ2
) ≤ 4κτ

ηµ

(
1

1− 1
4ηµ
− 1

)
≤ 2κτ

ηµ

(
ηµ

1− 1
4ηµ

)
=

2κτ

1− 1
4ηµ

.

F.3 Proof of Theorem 5

Now we proceed to the proof of Theorem 5. According to Lemma 13 we have:

E
∥∥∥w(t+1) −w∗

∥∥∥2

≤
(

1− µη

2

)
E
∥∥∥w(t) −w∗

∥∥∥2

− ηE
[
Φ(w(t))− Φ(w∗)

]
+ η2 2σ2

w + 4G2
w

m

+ 4L2

(
η2 +

η

µ

)
E
[
δ(t)
]

+ 4

(
η

µ
+ η2

)
E
∥∥∥∇wF (w(t),λ(b tτ c))−∇Φ(w(t))

∥∥∥2

≤
(

1− µη

2

)
E
∥∥∥w(t) −w∗

∥∥∥2

− ηE
[
Φ(w(t))− Φ(w∗)

]
+ η2 2σ2

w + 4G2
w

m

+ 4L2

(
η2 +

η

µ

)
E
[
δ(t)
]

+ 4

(
η

µ
+ η2

)
L2E

∥∥∥λ∗(w(t))− λ(b tτ c)
∥∥∥2

,

where we use the smoothness of F at the last step to substitute ‖∇wF (w(t),λ∗(w(t))) −
∇wF (w(t),λ(b tτ c))‖2:∥∥∥∇wF (w(t),λ∗(w(t)))−∇wF (w(t),λ(b tτ c))

∥∥∥2

≤ L2
∥∥∥λ∗(w(t))− λ(b tτ c)

∥∥∥2

.

Then plugging in Lemma 14 yields:

E‖w(t+1) −w∗‖2 ≤
(

1− µη

2

)
E
∥∥∥w(t) −w∗

∥∥∥2

− ηE
[
Φ(w(t))− Φ(w∗)

]
+ η2 2σ2

w + 4G2
w

m

+ 4L2

(
η2 +

η

µ

)
E
[
δ(t)
]

+ 8

(
η

µ
+ η2

)
L2

((
1− 1

2κ

)b tτ c
E‖λ(0) − λ∗(w(0))‖2 + κ2τ2η2G2

w

(
4κ2 + 1

))
.

(40)
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Unrolling the recursion yields:

E‖w(T ) −w∗‖2

≤
(

1− 1

2
µη

)T
E‖w(0) −w∗‖2 +

T∑
t=1

(
1− 1

2
µη

)t [
8L2κ2τ2η2G2

w

(
η

µ
+ η2

)(
4κ2 + 1

)]

+

T∑
t=1

(
1− 1

2
µη

)t [
η2 2σ2

w + 4G2
w

m
+ 4L2

(
η2 +

η

µ

)
E
[
δ(t)
]]

+ 8

(
η

µ
+ η2

)
L2E‖λ(0) − λ∗(w(0))‖2

T∑
t=1

(
1− 1

2
µη

)t(
1− 1

2κ

)b tτ c
(41)

≤ exp

(
−1

2
µηT

)
D2
W + η

4σ2
w + 8G2

w

µm
+ 8L2

(
η

µ
+

1

µ2

) T∑
t=0

E
[
δ(t)
]

+ 16L2κ2τ2η2G2
w

(
η

µ
+

1

µ2

)(
4κ2 + 1

)
+ 16L2

(
κτ

1− 1
2ηµ

)(
η

µ
+ η2

)
D2

Λ, (42)

where we used the result from Lemma 15 from (41) to (42). Now, we simplify (40) by applying the
telescoping sum on (40) for t = T

2 to T :

2

T

T∑
t=T/2

E
[
Φ(w(t))− Φ(w∗)

]

≤ 2

ηT
E‖w(T/2) −w∗‖2 + η

2σ2
w + 4G2

w

m
+ 4L2

(
η +

1

µ

)
2

T

T∑
t=T/2

E
[
δ(t)
]

+ 8

(
1

µ
+ η

)
L2D2

Λ

2

T

T∑
t=T/2

(
1− 1

2κ

)b tτ c
+ 8

(
1

µ
+ η

)
κ2τ2η2L2G2

w

(
4κ2 + 1

)
≤ 2

ηT
E‖w(T/2) −w∗‖2 + η

2σ2
w + 4G2

w

m
+ 80η2τ2L2

(
η +

1

µ

)(
σ2
w +

σ2
w

m
+ Γ

)
+ 16

(
1

µ
+ η

)
L2O

(
τ exp(−µηT/4τ)

T
D2

Λ

)
+ 8

(
1

µ
+ η

)
κ2τ2η2L2G2

w

(
4κ2 + 1

)
≤ 2

ηT
E‖w(T/2) −w∗‖2 + η

2σ2
w + 4G2

w

m
+ 80η2τ2L2

(
η +

1

µ

)(
σ2
w +

σ2
w

m
+ Γ

)
+ 16

(
1

µ
+ η

)
L2O

(
τ exp(−µηT/4τ)

T
D2

Λ

)
+ 8

(
1

µ
+ η

)
κ2τ2η2L2G2

w

(
4κ2 + 1

)
.

Plugging in (42) yields:

2

T

T∑
t=T/2

E
[
Φ(w(t))− Φ(w∗)

]

≤ 2

ηT

(
exp

(
−1

4
µηT

)
D2
W + η

4σ2
w + 8G2

w

µm
+ 8L2

(
η

µ
+

1

µ2

) T∑
t=0

E
[
δ(t)
])

+
2

ηT

(
16L2κ2τ2η2G2

w

(
η

µ
+

1

µ2

)(
4κ2 + 1

)
+ 16L2

(
κτ

1− 1
2ηµ

)(
η

µ
+ η2

)
D2

Λ

)
+ η

2σ2
w + 4G2

w

m
+ 80η2τ2L2

(
η +

1

µ

)(
σ2
w +

σ2
w

m
+ Γ

)
+ 16

(
1

µ
+ η

)
L2O

(
τ exp(−µηT/4τ)

T
D2

Λ

)
+ 8

(
1

µ
+ η

)
κ2τ2η2L2G2

w

(
4κ2 + 1

)
.
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Combining the terms yields:

2

T

T∑
t=T/2

E
[
Φ(w(t))− Φ(w∗)

]
≤ 2

ηT
exp

(
−1

4
µηT

)
D2
W + 16

(
1

µ
+ η

)
L2O

(
τ exp(−µηT/4τ)

T
D2

Λ

)
+

(
4

µT
+ η

)
2σ2

w + 4G2
w

m
+

(
1 +

2

µηT

)
80η2τ2L2

(
η +

1

µ

)(
σ2
w +

σ2
w

m
+ Γ

)
+

(
4

µηT
+ 1

)
8L2κ2τ2η2G2

w

(
4κ2 + 1

)(
η +

1

µ

)
+

32L2

T

(
κτ

1− 1
2ηµ

)(
1

µ
+ η

)
D2

Λ.

And finally, plugging in η = 4 log T
µT and using the fact that Φ( 2

T

∑T
t=T/2w

(t)) ≤ 2
T

∑T
t=T/2 Φ(w(t))

yields:
E[Φ(ŵ)− Φ(w∗)]

≤ µD2
W

2T log T
+ 16

(
1

µ
+

4 log T

µT

)
L2O

( τ

T (1+1/τ)
D2

Λ

)
+

(
4

µT
+

4 log T

µT

)
2σ2

w + 4G2
w

m
+

(
1 +

2

µηT

)
1280κ2τ2 log2 T

T 2

(
η +

1

µ

)(
σ2
w +

σ2
w

m
+ Γ

)
+

(
1

log T
+ 1

)
8κ4τ2 log2 T

T 2
G2
w

(
4κ2 + 1

)(4 log T

µT
+

1

µ

)
+

32L2

T

(
κτ

1− 2 log T
T

)(
1

µ
+

4 log T

µT

)
D2

Λ

≤ Õ
(
µD2
W
T

)
+O

(
κLτD2

Λ

T (1+1/τ)

)
+ Õ

(
σ2
w +G2

w

µmT

)
+O

(
κ2τ2(σ2

w + Γ)

µT 2

)
+ Õ

(
κ2LτD2

Λ

T

)
+ Õ

(
κ6τ2G2

w

µT 2

)
.

G Proof of Convergence of DRFA-GA in Nonconvex (PL
Condition)-Strongly-Concave Setting

G.1 Overview of Proofs

In this section we will present formal proofs in nonconvex (PL condition)-strongly-concave setting
(Theorem 6). The main idea is similar to strongly-convex-strongly-concave case: we start from one
iteration analysis, and plug in the upper bound of δ(t) and ‖∇wF (w(t),λ(b tτ c))−∇Φ(w(t))‖2.

However, a careful analysis need to be employed in order to deal with projected SGD in constrained
nonconvex optimization problem. We employ the technique used in [10], where they advocate to
study the following quantity:

PW(w, g, η) =
1

η

[
w −

∏
W

(w − ηg)

]
.

If we plug in w = w(t), g = u(t) = 1
m

∑
i∈D(b t

τ
c) ∇fi(w(t)

i ; ξti), then

PW(w(t),u(t), η) =
1

η

[
w(t) −

∏
W

(
w(t) − ηu(t)

)]
.
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characterize the difference between iterates w(t+1) and w(t). A trivial property of operator PW is
contraction mapping, which follows the property of projection:

‖PW(w, g1, η)− PW(w, g2, η)‖2 ≤ ‖g1 − g2‖
2
.

The significant property of operator PW is given by the following lemma:

Lemma 16 (Property of Projection, [10] Lemma 1). For all w ∈ W ⊂ Rd, g ∈ Rd and η > 0, we
have:

〈g, PW(w, g, η)〉 ≥ ‖PW(w, g, η)‖2 .

The above lemma establishes a lower bound for the inner product 〈g, PW(y, g, η)〉, and will play a
significant role in our analysis.

G.2 Proof of Technical Lemmas

Lemma 17. If F (·,λ) satisfies µ-generalized PL condition, then Φ(·) also satisfies µ-generalized
PL condition.

Proof. Let w∗ ∈ arg minw∈W Φ(w). Since F (·,λ) satisfies µ-generalized PL condition, we have
for any w ∈ W:

1

2η2

∥∥∥∥∥w −∏
W

(w − η∇wF (w,λ∗(w)))

∥∥∥∥∥
2

≥ µ(F (w,λ∗(w)− min
w′∈W

F (w′,λ∗(w))

≥ µ(F (w,λ∗(w)− F (w∗,λ∗(w))

≥ µ(F (w,λ∗(w)− F (w∗,λ∗(w∗)).

which immediately implies 1
2η2 ‖w−

∏
W (w − η∇Φ(w)) ‖2 ≥ µ(Φ(w)−Φ(w∗)) as desired.

Lemma 18. For DRFA-GA, under Theorem 6’s assumptions, we have:

E
[
Φ(w(t+1))− Φ(w∗)

]
≤
(

1− µη

4

)
E
[
Φ(w(t))− Φ(w∗)

]
+

3η

2
E

∥∥∥∥∥
N∑
i=1

λ
(b tτ c)
i ∇fi(w(t)

i )−∇Φ(w(t))

∥∥∥∥∥
2

+ 3η
2σ2

w + 4G2
w

2m
,

(43)

where α = L+ κL

Proof. Define the following quantities:

ut =
1

m

∑
i∈Dt
∇fi(w(t)

i ; ξti), ūt =

N∑
i=1

λ
(b tτ c)
i ∇fi(w(t)

i ).

R̃(t) = PW(wt,ut, η) = w(t) − 1

η

∏
W

(
w(t) − ηut

)
R(t) = PW(wt, ūt, η) = w(t) − 1

η

∏
W

(
w(t) − ηūt

)
R̂(t) = PW(wt,Φ(w(t)), η) = w(t) − 1

η

∏
W

(
w(t) − η∇Φ(w(t))

)
.

By the α-smoothness of Φ and the updating rule of w we have:
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E[Φ(w(t+1))]− E[Φ(w(t))] ≤ α

2
E
[∥∥∥w(t+1) −w(t)

∥∥∥2
]

+
〈
∇Φ(w(t)),w(t+1) −w(t)

〉
≤ η2α

2
E
[∥∥∥R̃(t)

∥∥∥2
]
− ηE

[〈
∇Φ(w(t)), R̃(t)

〉]
≤ η2α

2
E
[∥∥∥R̃(t)

∥∥∥2
]
− ηE

[〈
ut, PW(yt,ut, η)

〉]
− ηE

[〈
∇Φ(w(t))− ut, R̃(t)

〉]
.

According to Lemma 16, we can bound the first dot product term in the last inequality by ‖R̃(t)‖2, so
then we have:

E[Φ(w(t+1))]− E[Φ(w(t))]

≤ η2α

2
E
[∥∥∥R̃(t)

∥∥∥2
]
− ηE

[
‖R̃(t)‖2

]
− ηE

[〈
∇Φ(w(t))− ut, R̃(t)

〉]
≤ −

(
η − η2α

2

)
E
[∥∥∥R̃(t)

∥∥∥2
]
− ηE

[〈
∇Φ(w(t))− ut, R̃(t)

〉]
≤ −

(
η − η2α

2

)
E
[∥∥∥R̃(t)

∥∥∥2
]

+
η

2
E
[∥∥∥∇Φ(w(t))− ut

∥∥∥2

+
∥∥∥R̃(t)

∥∥∥2
]

≤ −
(
η

2
− η2α

2

)
︸ ︷︷ ︸

≤− 1
4η

E
[∥∥∥R̃(t)

∥∥∥2
]

+ ηE
[∥∥∥∇Φ(w(t))− ūt

∥∥∥2

+ ‖ūt − ut‖2
]

≤ −1

4
ηE
[∥∥∥R̃(t)

∥∥∥2
]

+ ηE
[∥∥∥∇Φ(w(t))− ūt

∥∥∥2
]

+
η(2σ2

w + 4G2
w)

m
. (44)

Notice that:

E
[∥∥∥R̂(t)

∥∥∥2
]
≤ 2E

[∥∥∥R̃(t)
∥∥∥2
]

+ 2E
[∥∥∥R̂(t) − R̃(t)

∥∥∥2
]

≤ 2E
[∥∥∥R̃(t)

∥∥∥2
]

+ 4E
[∥∥∥R̂(t) −R(t)

∥∥∥2
]

+ 4E
[∥∥∥R(t) − R̃(t)

∥∥∥2
]

≤ 2E
[∥∥∥R̃(t)

∥∥∥2
]

+ 4E
[∥∥∥R̂(t) −R(t)

∥∥∥2
]

+ 4E
[∥∥∥u(t) − ū(t)

∥∥∥2
]

≤ 2E
[∥∥∥R̃(t)

∥∥∥2
]

+ 4E
[∥∥∥∇Φ(w(t))− ūt

∥∥∥2
]

+
4η(2σ2

w + 4G2
w)

m
. (45)

Thus, plugging (45) into (44) to substitute E
[∥∥∥R̃(t)

∥∥∥2
]

yields:

E[Φ(w(t+1))]− E[Φ(w(t))]

≤ −1

8
ηE
[∥∥∥R̂(t)

∥∥∥2
]

+
1

2
ηE
[∥∥∥∇Φ(w(t))− ūt

∥∥∥2
]

+
η(2σ2

w + 4G2
w)

2m

+ ηE
[∥∥∥∇Φ(w(t))− ūt

∥∥∥2
]

+
η(2σ2

w + 4G2
w)

m

≤ −1

8
ηE
[∥∥∥R̂(t)

∥∥∥2
]

+
3

2
ηE
[∥∥∥∇Φ(w(t))− ūt

∥∥∥2
]

+
3η(2σ2

w + 4G2
w)

2m
. (46)

Plugging in the generalized PL-condition:

1

η2
E

∥∥∥∥∥∏
W

(
w(t) − η∇Φ(w(t))

)
−w(t)

∥∥∥∥∥
2
 = E

[∥∥∥R̂(t)
∥∥∥2
]
≥ 2µ

(
E[Φ(wt)]− E[Φ(w∗)]

)
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into (46) yields:

E
[
Φ(w(t+1))− Φ(w∗)

]
≤
(

1− µη

4

)
E
[
Φ(w(t))− Φ(w∗)

]
+

3η

2
E

∥∥∥∥∥
N∑
i=1

λ
(b tτ c)
i ∇fi(w(t)

i )−∇Φ(w(t))

∥∥∥∥∥
2

+ 3η
2σ2

w + 4G2
w

2m
.

G.3 Proof for Theorem 6

Now we proceed to the proof of Theorem 6. According to Lemma 18 we have:

E
[
Φ(w(t+1))− Φ(w∗)

]
≤
(

1− µη

4

)
E
[
Φ(w(t))− Φ(w∗)

]
+

3η

2
E

∥∥∥∥∥
N∑
i=1

λ
(b tτ c)
i ∇fi(w(t)

i )−∇Φ(w(t))

∥∥∥∥∥
2

︸ ︷︷ ︸
T1

+3η
2σ2

w + 4G2
w

2m
.

Now, we bound the term T1 in above as:

T1 ≤ 2E

∥∥∥∥∥∇wΦ(w(t))−
N∑
i=1

λ
(b tτ c)
i ∇wfi(w(t))

∥∥∥∥∥
2

+ 2E

∥∥∥∥∥
N∑
i=1

λ
(b tτ c)
i ∇wfi(w(t))−

N∑
i=1

λ
(b tτ c)
i ∇fi(w(t)

i )

∥∥∥∥∥
2

≤ 2E
∥∥∥∇wF (w(t),λ∗(w(t)))−∇wF (w(t),λ(b tτ c))

∥∥∥2

+ 2

N∑
i=1

λ
(b tτ c)
i E

∥∥∥∇wfi(w(t))−∇fi(w(t)
i )
∥∥∥2

≤ 2L2E
∥∥∥λ∗(w(t))− λ(b tτ c))

∥∥∥2

+ 2L2E
[
δ(t)
]

≤ 2L2

(
2

(
1− 1

2κ

)b tτ c
E‖λ(0) − λ∗(w(0))‖2 + 2κ2τ2η2G2

w

(
4κ2 + 1

))
+ 2L2E

[
δ(t)
]
,

where we plug in the Lemma 14. Plugging T1 back yields:

E
[
Φ(w(t+1))− Φ(w∗)

]
≤
(

1− 1

4
µη

)
E
[
Φ(w(t))− Φ(w∗)

]
+ 3η

2σ2
w + 4G2

w

2m

+
3η

2

(
4L2

(
1− 1

2κ

)b tτ c
E‖λ∗(w(0))− λ(0)‖2 + 4L2κ2τ2η2G2

w

(
4κ2 + 1

)
+ 2L2E

[
δ(t)
])

≤
(

1− 1

4
µη

)
E
[
Φ(w(t))− Φ(w∗)

]
+ 3η

2σ2
w + 4G2

w

2m

+ 6ηL2

((
1− 1

2κ

)b tτ c
E‖λ∗(w(0))− λ(0)‖2

)

+
3η

2

(
4L2κ2τ2η2G2

w

(
4κ2 + 1

)
+ 2L2E

[
δ(t)
])
.
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Unrolling the recursion yields

E
[
Φ(w(T ))− Φ(w∗)

]
≤
(

1− 1

4
µη

)T
E
[
Φ(w(0))− Φ(w∗)

]
+

T∑
t=0

(
1− 1

4
µη

)t
3η

2σ2
w + 4G2

w

2m

+ 6ηL2E‖λ∗(w(0))− λ0‖2
T∑
t=0

[(
1− 1

2
µη

)t(
1− 1

2κ

)b tτ c]

+
3

2
η

(
T∑
t=0

(
1− 1

4
µη

)t
4L2κ2τ2η2G2

w

(
4κ2 + 1

)
+ 2L2

T∑
t=0

(
1− 1

4
µη

)t
E
[
δ(t)
])

≤ exp

(
−µηT

4

)
E
[
Φ(w(0))− Φ(w∗)

]
+ 12

2σ2
w + 4G2

w

2µm

+ 6ηL2E‖λ∗(w(0))− λ(0)‖2
(

2κτ

1− 1
4ηµ

)
+

6

µ

(
4L2κ2τ2η2G2

w

(
4κ2 + 1

))
+ 3ηL2

(
10η2τ2

(
σ2
w +

σ2
w

m
+ Γ

))
T,

where we use the result of Lemmas 4 and 15. Plugging in η = 4 log T
µT , and m ≥ T , we have:

Φ(w(t))− Φ(w∗) ≤ O
(

Φ(w(0))− Φ(w∗)

T

)
+ Õ

(
σ2
w +G2

w

µT

)
+ Õ

(
κ2LτD2

Λ

T

)
+ Õ

(
κ6τ2G2

w

µT 2

)
+ Õ

(
κ2τ2(σ2

w + Γ)

µT 2

)
,

thus concluding the proof.
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