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Abstract

We study the problem of online learning with dynamics, where a learner interacts
with a stateful environment over multiple rounds. In each round of the interaction,
the learner selects a policy to deploy and incurs a cost that depends on both the
chosen policy and current state of the world. The state-evolution dynamics and the
costs are allowed to be time-varying, in a possibly adversarial way. In this setting,
we study the problem of minimizing policy regret and provide non-constructive
upper bounds on the minimax rate for the problem.

Our main results provide sufficient conditions for online learnability for this setup
with corresponding rates. The rates are characterized by: 1) a complexity term
capturing the expressiveness of the underlying policy class under the dynamics
of state change, and 2) a dynamic stability term measuring the deviation of the
instantaneous loss from a certain counterfactual loss. Further, we provide matching
lower bounds which show that both the complexity terms are indeed necessary.

Our approach provides a unifying analysis that recovers regret bounds for several
well studied problems including online learning with memory, online control
of linear quadratic regulators, online Markov decision processes, and tracking
adversarial targets. In addition, we show how our tools help obtain tight regret
bounds for a new problems (with non-linear dynamics and non-convex losses) for
which such bounds were not known prior to our work.

1 Introduction

Machine learning systems deployed in the real-world interact with people through their decision
making. Such systems form a feedback loop with their environment: they learn to make decisions
from real-world data and decisions made by these systems in turn affect the data that is collected. In
addition, people often learn to adapt to such automated decision makers in an attempt to maximize
their own utility rendering any assumption on the data generation process futile. Motivated by these
aspects of decision making, we propose the problem of online learning with dynamics which involves
repeated interaction between a learner and an environment with an underlying state. The decisions
made by the learner affect this state of the environment which evolves as a dynamical system. Further,
we place no distributional assumptions on the learning data and allow this to be adversarial.

Given such a setup, a natural question to ask is how does one measure the performance of the learner?
Classical online learning studies one such notion of performance known as regret. This measure
compares the performance of the learner to that of a fixed best policy in hindsight, when evaluated on
the same states which were observed by the learner. Such a measure of performance clearly does not
work for the above setup: if we would have deployed a different policy, we would have observed
different states of the environment. To overcome this, we study a counterfactual notion of regret,
called Policy Regret, where the comparator term is the performance of a policy on the states one
would have observed if this policy was deployed from the beginning of time.
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Such a notion of regret has been studied in the online learning literature for understanding memory
based adversaries [20, 4, 5] and more recently, for the study of specific reinforcement learning
models [11, 1, 10]. However, a vast majority of these works have focused on known and fixed models
of state evolution, often restricting the scope to linear dynamical systems. Further, these works have
focused on simplistic policy classes as the comparators in their notion of policy regret. Contrast this
with the vast literature on statistical learning [28, 6] and classical online learning [22] which study
the question of learnability in full generality; for arbitrary losses and general function classes.

Our work is a step towards addressing this gap. We study the problem of learnability for a class
of online learning problems with underlying states evolving as a dynamical system in its full gen-
erality. Our main results provide sufficient conditions (along with non-asymptotic upper bounds)
on when such problems are learnable, that is, can have vanishing policy regret. Our approach is
non-constructive and provides a complexity term that provides upper bounds on the minimax rates
for these problems. Further, we provide lower bounds showing that for a large class of problems, our
upper bounds are tight up to constant factors. By studying the problem in full generality, we show
how several well-studied problems in the literature comprising online Markov decision processes [1 1],
online adversarial tracking [1], online linear quadratic regulator [10], online control with adversarial
noise [2], and online learning with memory [5, 4] can be seen as specific examples of our general
framework. We recover the best known rates for a majority of these problems, often times even
generalizing these setups. We also provide examples where, to the best of our knowledge, previous
techniques are not able to obtain useful bounds on regret; however using our minimax tools, we are
able to provide tight bounds on the policy regret for these examples.

Formally, we consider the setup where X denotes an arbitrary set of states, II an arbitrary class of
policies and Z an arbitrary instance space. Given this, the interaction between the learner and nature
can be expressed as a T  round protocol where on each round ¢ € [T], the learner picks a policy m; € I1,
the adversary simultaneously picks instance (z¢,(;) € Z. The learner suffers loss ¢( 7, x¢, 2;) and
the state of the system evolves' as z4,1 < & (x4, 7, (), where @ is known to the learner. The goal
of the learner is to minimize policy regret

T T
Regf;’l = Zﬁ(ﬂ't,mt,zt) — inf Zﬁ(ﬂ,xt[ﬂ'(t*l),gzt_l],zt) ,
t=1

mell ¢=1

where x; are the states of the system based on learners choices of policies and z; [W(t_l), Cri-1]
represents the state of the system at time ¢ if the policy 7 was used the previous ¢ — 1 rounds. We refer
to the loss £(r, z: [ ¢1..1], z¢) as the counterfactual loss of policy . Notice that dynamics ®
being fixed or known in advance to the learner is not really restrictive since an adversary can encode
arbitrary state dynamics mapping in (;’s and ® can just be seen as an applicator of these mapping.

Our contributions. We are interested in the following question: for a given problem instance
(I, Z,®, ¢), is the problem learnable, that is, does there exists a learning algorithm such that policy

regret is such that Reg?lf" =0o(T). Below we highlight some of the key contributions of this paper.

1. We show that the minimax policy regret for any problem specified by (II, Z, ®, £) can be
upper bounded by sum of two terms: i) a sequential Rademacher complexity like term for
the class of counterfactual losses of the policy class, and ii) a term we refer to as dynamic
stability term for the Empirical Risk Minimizer (ERM) (or regularized ERM) algorithm.

2. We analyze the problem in the dual game. While in most cases ERM does not even have
low classical regret let alone policy regret, we show that ERM like strategy in the dual game
can lead to the two term decomposition of minimax policy regret we mention above.

3. Ours is the first work that studies arbitrary online dynamical systems, and provides an
analysis for general policy classes and loss functions (possibly non-convex).

4. We provide lower bounds that show that our sufficient conditions are tight for a large class
of problem instances showing that both the terms in our upper bounds are indeed necessary.

5. We delineate a number of previously studied problems including online linear quadratic
regulator, and online learning with memory for which we recover rates. More importantly, we
provide examples of new non-convex and general online learning with dynamics problems
and obtain tight regret bounds. For these examples, none of the previous methods are able to
obtain any non-degenerate regret bounds.

while we consider deterministic dynamics here, Section 2 considers general dynamics with stochastic noise



Related work. The classical online learning setup [8] considers a repeated interactive game between
a learner and an environment without any notion of underlying dynamics. Sequential complexity
measures were introduced in [22] to get tight characterization of minimax regret rates for the classical
online learning setting. They showed that for the class of online supervised learning problems, one
can upper and lower bound minimax rate in terms of a sequential Rademacher complexity of the
predictor class. The works [18, 7] provided an analog of VC theory for online classification and the
sequential complexity measures in work [22] provided such a theory for general supervised online
learning. This paper can be seen as deriving such characterization of learnability and tight rates
for the problem of online learning with dynamics. In the more general setting we consider, while
the main mathematical tools introduced in [22] are useful, they are not by themselves sufficient
because of the complexities of policy regret and the state dynamics. This is evident from our upper
bound which consists of two terms (both of which we show are necessary) and only one of them is a
sequential Rademacher complexity type term.

Another line of work closes related ours is that on the theory of optimal control (see [17] for a review).
Linear dynamical systems with simple zero mean noise models like Gaussian noise for state dynamics
have been extensively studied (see the surveys [19] and [14] for an extensive review). While majority
of the work in control have focused on linear dynamics with fixed noise models, H., control (and
more generally robust control) literature has aimed at extending the setting to worst case perturbations
(see [26]). However these works focus on cumulative costs and are often not practical for machine
learning scenarios where such algorithms tend to be overly conservative.

There has been recent work dealing with adversarial costs and linear dynamics with either stochastic
or adversarial noise. Online Markov decision processes [1 1], Online Adversarial Tracking [1] and
Online Linear Quadratic Regulator [10, 25] are all examples of such work that deal with specific
form of possibly adversarially chosen cost functions, albeit the loss functions in these problems are
very specific and the dynamics are basically linear with either fixed stochastic noise or no noise.
Perhaps the closest comparison to our work is the work by Agarwal et. al [2] (and also [3, 12]) where
adversarial but convex costs, linear policies and linear dynamics with an adversarial component
are considered. In contrast, we consider arbitrary class of policies, both adversarially chosen costs
(possibly non-convex) and dynamics that are presented on the fly and arbitrary state space.

2 Online learning with dynamics

We now formally define the online learning with dynamics problem. We let X’ represent the state
space, I denote the set of learner polices, and Z = Z, x Zg denote the space of adversary’s moves.

2.1 Problem setup

The problem of online learning with dynamics proceeds as a repeated game between a learner and
an adversary played over 7" rounds. The state of the system at time ¢, denoted by z; € X, evolves
according to a stochastic dynamical system as x;1 = ®(xy, 7, () + wy, where @ : X x[Ix Zg - X
is the transition function and w; ~ D,, is a zero-mean additive noise. The transition function & is
allowed to depend on adversary’s action (; allowing the dynamics to change across time steps. We
assume that the dynamics function ® and distribution D,, are fixed apriori and are known to the
learner before the game begins.

Given these dynamics, the repeated online game between the learner and the adversary starts at an
initial state 1 proceeds via the following interactive protocol:

Onroundt=1,...,T,
o the learner picks policy 7 € IT, adversary simultaneously selects instance (2;,(;) € Z

* the learner receives payoff (loss) signal £(my, x¢, z¢)
* the state of the system transitions to x¢+1 = ®(x¢, 7, (t) + Wy

We consider the full information version of the above game: the learner gets to observe the instances
(2t, () at time ¢. The objective of the learner is to minimize, in expectation, the policy regret

T T
RengOI = ZE[f(ﬂt,xt[m:t—l,wlzt—l,Cl:t—1]72t)] —inf E Zé(ﬂ'>xt[7r(t71)7wl:t—hCl:t—lL 2t) (1)

t=1w mwell w [ ¢=1



with respect to a policy class II and dynamics model ®. In the above definition, the notation
Z¢[T1:-1, W1:e-1, C1:4-1 | makes the dependence of the state x; explicit on the previous policies, noise
and adversarial actions. For notational convenience, we will often drop dependencies on the noise
variables w and adversarial actions ( when it is clear from context.

Observe that in the definition of policy regret, the loss depends on the state of the system at that
instance which can be potentially very different for the learner and a comparator policy 7. This lends
an additional source of complexity to the interactive game, and can make the problem much harder
than its counterpart without a dynamics.

The problem of online learning with dynamics generalizes the online learning problem where the
loss functions ¢(m,x,z) = £(m, z) are independent of the underlying state variables. Indeed, our
notion of policy regret in equation (1) reduces to the notion of external regret studied in the online
learning literature. Also, the problem of online learning with memory involves adversaries which
have bounded memory of length m and thus the loss incurred by the learner at any time is a function
of its past m moves. By setting the state variable x; = [7t_m, ..., 7t-1], the dynamics function
&(zy,m) = [T4—ms1,---,7t], and the noise disturbances w; = 0, we can see that the bounded
memory adversaries can be seen as a special case of our problem with dynamics.

2.2 Minimax Policy Regret

Given the setup of the previous section, we study the online learning with dynamics game between
the learner and the adversary through a minimax perspective. Studying this minimax value allows
one to understand the limits of learnability for a tuple (II, Z, ®, ¢): upper bounds on this value imply
existence of algorithms with corresponding rates while lower bounds on this values represent the
information-theoretic limits of learnability. In the following lemma, we formally define the value
Vr(I1, Z, ®, £) of the minimax policy regret for a given problem which informally is the policy regret
of best learning algorithm against the worst case adversary.

Proposition 1 (Value — Dual Game). Let Q and P denote the sets of probability distributions over
the policy class 11 and the adversarial actions Z respectively, satisfying the necessary conditions for
the minimax theorem to hold. Then, we have that*

Vr(I1, Z,®,¢0) := << inf . sup E >>T [Regfﬁ"] - << supinf E »T [Regf;"] ‘ ?)

qt€Q (z¢,Ce)eZ me~at |l ,_q PteP 7t (2¢,6e)~pell 4_q

The proof of the proposition is deferred to Appendix A. The proof proceeds via a repeated application
of von Neumann’s minimax theorem (for instance see [23, Appendix A]). Notice that the minimax
theorem changes the order of the online sequential game defined in the setup above: at every time step
t, the adversary proceeds first and outputs a distribution p, over instances and the learner responds
back with 7; after having observed the distribution. The actual loss instance (z¢, (;) is then sampled
from the revealed distribution p,. On the other hand, the comparator remains the same as before: the
best policy 7 € II in hindsight. This reversed game, termed the Dual Game, forms the basis of our
analysis and allows us to study the complexity of the online learning with dynamics problem.

3 Upper bounds on value of the game

Our main result in this section concerns an upper bound on the value of the sequential game
Vr(1I, Z,®,¢) relating it to the study of certain stability properties of empirical minimizers and
stochastic processes associated with them. Before we proceed to describe the main result, we revisit
some preliminaries and setup notation which would be helpful in describing the main result.

Sequential Rademacher complexity. The notion of Sequential Rademacher Complexity, intro-
duced in [22], is a natural generalization of the Rademacher complexity for online learning. However,
observe that the loss of the comparator term in the definition of policy regret in equation (1) depends
on the adversarial actions (y:;—1 through the dynamics and z; through the loss function ¢. We define
the following version of sequential Rademacher complexity for such dynamics based losses.

(.. ))?:1 denotes interleaved application of the sequence of operator inside. For example, for T' = 2,

. 2 . .
«suppt infg, >>t:1 [-] = sup,, infy, sup,, infg,[-]



Definition 1. The Sequential Rademacher Complexity of a policy class 11 with respect to loss function
01D x X x Zp = R and dynamics ® : X x Il x 25 - X is defined as

T
i)‘{sz‘f‘?l(fol'[)::(sup)IE6 sugZetﬁ(mxt[Cl(e),...,Ct_l(e)],zt(e)) ,
z,¢ mell ¢=1

where the outer supremum is taken over Z = Zy x Zg-valued trees > of depth T and € = (e1, ..., er)
is a sequence of i.i.d. Rademacher random variables.

A similar definition was also used by Han et al. [13] in the context of online learning with strategies
where the notion of regret was defined w.r.t. a set of strategies rather than a fixed action. As compared
with the classical online learning problem, the above comprises problems where the loss at time ¢
depends on the complete history (1, ...,(;—1) of the adversarial choices along with z;. As noted
by [13], such dependence on the the adversary’s history can often make the online learning problem
harder to learn compared with the online learning problem.

Empirical Risk Minimization (ERM). Given a sequence of loss functions ¢; : F — R for ¢ € [T],
the ERM with respect to a function class F is defined to be the minimizer of the cumulative loss
with ferm,7 € argmin ¢z Zthl £.(f). In the statistical learning setup, the problems of supervised
classification and regression are known to be learnable with respect to a function class F if and only
if the empirical risks uniformly converge over this class F to the population risks. In contrast, our
results provide sufficient conditions for learnability in terms of certain stability properties of such
empirical risk minimizers.

Dynamic stability. We introduce the notion of dynamic stability which captures the stability of
an algorithm’s interaction with the underlying dynamics ®. In order to do so, we define a notion of
counterfactual loss E? of a policy 7 as the loss incurred by a learner which selects 7 for time 1 : £.

Definition 2 (Counterfactual Losses). Given a sequence of adversarial actions (1.4-1, 2¢, dynamics
function ®, and noise distribution D,,, the counterfactual loss of a policy 7 at time t is

0 (m,Cree1,2¢) i= B [5(71',17t[7T(t71),w1:t—17C1:t—1],Zt)] :

wWs~Dy

With this definition, observe that the comparator term in the value Vr in equation (2) is in fact a
cumulative sum of counterfactual losses for a policy 7. Any algorithm A that plays a sequence of
policies {; } in the online game incurs an instantaneous loss ¢(my, z¢[m1:4-1, C1:4-1], 2¢) at time ¢. In
comparison, the counterfactual loss % (¢, C1:¢-1, 2¢ ) represents a scenario where the algorithm com-
mits to the policy m; from the beginning of the game. Our notion of dynamic stability of an algorithm
is precisely the deviation between these two types of losses: instantaneous and counterfactual.
Definition 3 (Dynamic Stability). An algorithm A is said to be {B; }-dynamically stable if for all
sequences of adversarial actions [(21,(1),- .., (zr,(r)] and time instances t € [T]

|]Ew1;t,1 [(7re, Te[T1:0—1, Wit—1, Crit=1], 22 ) ] —fq)(m, Ciee-1, Zt)‘ < B: where w=A((21:t-1,C1:t-1)).

It is interesting to note that if that loss functions are independent of the underlying states, that is

{(m,x,2) = {(, ), then any algorithm is dynamically stable in a trivial manner with the stability
parameters (3; = 0 for all time instances ¢.

With these definitions, we now proceed to describe our main result. Recall that Proposition 1 translates
the problem of studying the value of the game Vr (I, Z, @, ¢) to that of studying the policy regret in
a dual game. In this dual game, the learner has access to the set of adversaries distribution {ps}%_; at
time ¢ and the policy 7, can be a function of these. For a regularization function 2 : IT —» R, we
denote the regularized ERMs with respect to function class IT and counterfactual losses £® by

t
TRerm,¢ € argmin Y B [0% (7, Crso1, 25) |+ A Q1) (3)
mell s=1Zs
where \ > 0 is the regularization parameter. The following theorem provides an upper bound on
the value Vr in terms of the dynamic stability parameters of the regularized ERMs above as well a
sequential Rademacher complexity of the effective loss class £* o Il := {¢®(7,-) : weIl}.

A Z-valued tree z of depth d is defined as a sequence (z1, . . ., z4) of mappings z; : {1}~ > Z (see [21])



Theorem 1 (Upper bound on value). For any online learning with dynamics instance (I, Z, @, (),
consider the set of regularized ERMs given by eq. (3) with regularization function §) and parameter
A > 0 having dynamic stability parameters { ﬁRERM’t}il. Then, we have that the value of the game

T
Vr(IL Z,®,0) < " Brerm,e + 2850 (£ o IT) + 2X - sup Q(7r) . 4)

t=1 mell

The complete proof of the above theorem can be found in Appendix B. A few comments on Theorem 1
are in order. The theorem provides sufficient conditions to ensure learnability of the online learning
with dynamics problem. In particular, the two terms Term (I) = Zthl Brerm,: and Term (II) =
R (¢% oTI) contain the main essence of the upper bound. Term (T) concerns the dynamic mixability
property of the regularized ERM in the dual game. If there exist approximate minimizers (regularized)
of the sequence of counterfactual losses within the policy class II such that mrgrm,¢ 1s uniformly
close to mrerm,¢+1 the dynamic stability parameters can be made to be small. Term (II) comprises of
the sequential Rademacher complexity of the loss class £® o IT which involves the underlying policy
class IT as well as the counterfactual loss ¢®. This measure of complexity can be seen as one which
corresponds to an effective online game where the the loss at time ¢ depends on the adversarial actions
up to time ¢. Compare this to the instantaneous loss £(7y, [ 7m1:4-1, (1:4-1], 2¢) Which depends on
both the policies as well as the adversarial actions up to time ¢. Observe that for the classical online
learning setup without dynamics, the dynamic stability parameters Srerm,+ = 0. On setting the value
of regularization parameter A\ = 0, we recover back the learnability result of Rakhlin et al. [22].

We would like to highlight that the complexity-based learnability guarantees of Theorem 1 are
non-constructive in nature. In particular, the theorem says that any non-trivial upper bounds on
the stability and sequential complexity terms would guarantee the existence of an online learning
algorithm with the corresponding policy regret. Our minimax perspective on the problem allows us
to study the problem in full generality without making assumptions with respect to the policy class II,
adversarial actions Z and the underlying (possibly adversarial) dynamics ®, and provide sufficient
conditions for learnability.

Given the upper bound on the value V1 (II, Z, ®, ¢), one can observe that there is a possible tension
between the two complexity terms: while dynamic stability term promotes using policies which are
“similar" across time steps, the regularized complexity term seeks policies which are minimizers of
cumulative losses and might vary across time steps. In order to balance similar trade-offs, a natural
Mini-Batching Algorithm has been proposed in various works on online learning with memory [5]
and online learning with switching costs [9]. The key idea is that the learner divides the time 7" into
intervals of length 7 > 0 and commits to playing the same strategy over this time period.

Let us denote any such mini-batching algorithm by A, and the corresponding minimax value
restricted to this class of algorithms by Vr . (II, Z, ®, ) where the infimum in equation 2 is taken
over all mini-batching algorithms .4 ,. Similar to the regularized ERM of equation (3), we define the
following mini-batched ERMs:

; &)

. | merm(t) fort =0 mod 7
ERM,t ~ merm(T[£])  otherwise

where we have used the notation mgrm (t) : = mgrm,; In the following proposition, we prove an upper

bound analogous to that of Theorem 1 for this class of mini-batching algorithms*.

Proposition 2 (Mini-batching algorithms.). For any online learning with dynamics game (11, Z, ®, £),
consider the set of mini-batch ERMs given by equation (5) having dynamic stability parameters
{ﬂERM,t}g;l‘ Then, we have that the value of the game

T
VT(H7 Z7 @76) < lng VT,T(H7 Z? ®7‘€) < ll’lg (Z BERM,t +27- sup m’sl?‘(/t—(éf o H)) I (6)
> >0\ se[r]

where (2 is the counterfactual loss for the s batch.

We defer the proof of the above proposition to Appendix B. In comparison with the upper bound of
Theorem 1, this bound concerns the dynamic stability of the mini-batched ERMS as compared to

*For this class of mini-batching algorithms, we consider an oblivious adversary which cannot adapt to the
randomness of the learner.



their regularized counterparts. Often times, obtaining bounds on the stability parameters { ﬁgRM’t}thl
can be much easier than the ones for regularized ERMS. For instance, it is easy to see that for
the problem of online learning with memory with adversaries having memory m, one can bound
Yi Berm,t = O(mTT) whenever the losses are bounded, providing a natural trade-off between the
two complexity terms.

4 Lower bounds on value of the game

Having established sufficient conditions for the learnability of the online learning with dynamics
problem in the previous section, we now turn to address the optimality of these conditions. Recall
that Theorem 1 and Proposition 2 established upper bounds on the value V- (II, Z, ®, ¢) for instances
of our problem. The following theorem shows that both the upper bounds of equations (4) and (6)
are indeed tight upto constant factors.

Theorem 2 (Lower Bound). For the online learning with dynamics problem, there exist problem
instances {(I1, Z,®,0;)}?_,, a regularization function Q) and a universal constant c¢ > 0 such that

Vr(IL 2,8, 6,) > c- R5((F o T0) (7a)
T
VT(HaZ7q)7€2) Zcing(z /BRERM,t+)\'SupQ(ﬂ-)) (7b)
>0\ =1 mell
z o]
VT(Ha Za (1)763) 2cC: }I_Ilg (; IBERM,t + QTmT;]T(é?) ° H)) ) (7C)

where Srerm,+ and BERM,t are the dynamic mixability parameters of the regularized ERM w.r.t. {5
(eq. (3)) and mini-batching ERM w.r.t. {3 (eq. (5)) respectively.

A few comments on Theorem 2 are in order. The theorem exhibits that the sufficiency conditions
from Theorem 1 and Proposition 2 are indeed necessary by exhibiting instances whose value is lower
bounded by these terms. In particular, equation (7a) shows that the sequential Rademacher term is
necessary, (7b) establishes necessity for the dynamic stability of the regularized ERM, while (7¢)
shows that the mini-batching upper bound is also tight. It is worth noting that these lower bounds
are not instance dependent but rather construct specific examples to demonstrate the tightness of our
upper bound from the previous section. We next present the key idea for the proof of the theorem and
defer the complete details to Appendix C.

Proof sketch. We now describe the example instances which form the crux of the proof for
Theorem 2. Consider the online learning with dynamics game between a learner and an adversary with
the state space X' = {x € R? | |z] < 1} and the set of adversarial actions Zt™ = {z e R? | |z < 1}.
Further, we consider the constant policy class ITjj, = {7 | 7() = f for all states « with f € B4(1)},
consisting of policies 7wy which select the same action f at each state x. With a slight abuse of
notation, we represent the policy m; played by the learner at time by the corresponding d-dimensional
vector f;. Further, we let the dynamics function ®\in (x4, ft,(¢) = fi- We now define the loss
function which consists of two parts, a linear loss and a L-Lipschitz loss involving the dynamics:

EL(ft,mt,Zt):<ft72t)+0(ft,$t) where U(ft,l”t):{Llft_xt'Q for||ft—xt||2£%

1 otherwise
Observe that this example constructs a family of instances one for each value of the Lipschitz constant
of L of the function o. For this family of instances, we establish that the value

VT — for0O<L<1
Vr(Iiin, Z, ®uin, £2) 2 {VIT for1< L < (4T)5 .
25T for L > (4T)3
The proof finally connects these lower bounds to the upper bounds of Theorem 1 and Proposition 2.4

.8

With the lower bounds given in Theorem 2, it is natural to ask whether the sufficient conditions in
Theorem 1 and Proposition 2 are indeed necessary for every instance of the online learning with
dynamics problem. The answer to this question is unsurprisingly No given the generality in which we
study this problem. Consider the following simple instance of the problem:

M=X, Umaxz)=0mz)+[r=2], and x¢q=m,



for any non-negative bounded loss (7, z) € [0,1] for all 7w € II, z € Z,. Consider any policy class
for which 71 (¢® o II) > 0. Both bounds (4) and (6) suggest that the problem is learnable with
rate at least R (¢® o II). However, observe that the indicator term in the loss is quite severe on
the comparator; it ensures that the comparator term is at least 7". Thus, any algorithm which selects
a policy from II at every instance can ensure that the policy regret is at most 0! While the above
example establishes that the sufficient conditions are not necessary in an instance dependent manner,
our next proposition establishes that they are indeed tight for large class of problems instances.

Proposition 3 (Instance-dependent lower bound). a) Given any online learning problem (F, Z;, ()
with a bounded loss function £ : F x Z; — [—1,1], there exists an online learning with dynamics

problem (I1z, Z; x {-1,1},®,0) and a universal constant ¢ > 0 such that
_ T
VT(H]:a Zpx {_lv 1}7<I)7£) 2c Hgg (; BERM,t + 27—%5;?7—([1) ° H)) )

where gy , are the dynamic mixability parameters of the mini-batching ERM w.r:t. € (eq. (5)).

b) Given a policy class 11 and dynamics function ®, there exists an online learning with dynamics
problem (11, Z, ®,{) and a universal constant ¢ > 0 such that

Vr(IL Z,®,0) > c- R (° o IT).

We defer the proof of the proposition to Appendix C. This proposition can be seen as a strengthening
of the lower bounds (7a) and (7c) showing that for a very large class of problems, the upper bound
given by the mini-batching algorithm and the sequential complexity terms are in fact necessary.

5 Examples

In this section, we look at specific examples of the online learning with dynamics problem and obtain
learnability guarantees for these instances using our upper bounds from Theorem 1. For clarity of
exposition, our focus in this section on the scaling of the value V- (I1, Z, ®, £) with the time horizon
T. The proofs in Appendix D explicitly detail out all the problem dependent parameters.

Example 1: Online Isotron with dynamics. Single Index Models (SIM) are class of semi-
parametric models widely studied in the econometric and operations research community. Kalai and
Sastry [16] introduced the Isotron algorithm for learning SIMs and Rakhlin et al [23] established that
the online version of this problem is learnable. Here, we introduce a version of this problem with a
state variable that requires a component of the model to vary slowly across time:

X =R, F={f=(o,w=(w1,w)|o:[-1,1] = [~1,1] 1-Lipschitz, w ¢ R*"" jw;| < 1, |w]2 < 1} ,
Ir={n;|meF, np(z) = forallz e X}, Z, = [-1,1]"" x [-1,1], Za = ¢,
E(Tl'f,:E,Z = (217X7 y)) = (y - O'((X,U))))2 + (251 - w1)2 + ("lj - w1)27 ‘b(ib,ﬂ'(o_’w), C) = W1, Dy =0. (9)
The following corollary establishes the learnability of the online Isotron problem with dynamics.

Corollary 1. For the online Isotron problem with dynamics given by (ILx, Z, ®,¢) in equation (5),
we have that the minimax value

VlSO,T(H]:a Z,9, E) = 6(ﬁ)

It is important to note that as with the online learning problem [23], it is not clear whether a
computationally efficient method attaining the above guarantee exists. »

Example 2: Online Markov decision processes [11]. This example considers the problem of
Online Markov Decision Processes (MDPs) studied in Even-Dar et al. [11]. The setup consists of a
finite state space |X| = S, a finite action space [U/| = A, and

Zi={z]z¢€]0, 1]SXA}, Ze=¢, Uupp ={m | m: X = AU)}, (7, x,2) = 2(z,7(x)),

® given by P: X xU = A(U) with 2’ ~ P(z,7(z)). (10)
With this setup, we now provide a bound on the minimax value V¥DP , assuming, as in [11], that the

underlying MDP is unichain and satisfies a mixability assumption (see Appendix D for details).

Corollary 2. For the online MDP problem given by (Ilypp, Z, ®,£) in equation (5), we have that
the minimax value
Vwop. 7 (vpp, Z,8,0) = O(VT).

The above corollary helps one recover the same O(\/T ) regret bound that was obtained by [11]. #



Example 3: Online Linear Quadratic Regulator [10]. The online Linear Quadratic Regulator
(LQR) setup studied in this section was first studied in Cohen et al. [10]. The setup consists of a LQ
system - with linear dynamics and quadratic costs - where the cost functions are chosen adversarially.
The comparator class consists of a set of strongly stable linear policies (see Appendix D).

X=R% Z,={(Q,R)| Q,R >0, tr(Q),tr(R) < C}, Miqr = {K ¢ R | K is (x,~) - strongly stable},
Zp =@, U(m,x,2) =2 Qu+ (Kz) R(Kz), ®(x,K) = (A+ BK)z, Dy =N (0,1). (11)
With this setup, we now establish the learnability of this problem in the following corollary.

Corollary 3. For the online LOR problem given by (11, qr, Z,®, ¢) in equation (5), we have that the
minimax value _
Vigrr(Migr, Z,®,£) = O(VT).

Note that [10] obtained a similar policy regret bound of O(~+/T') but their analysis only worked for
an oblivious adversary whereas the guarantee of Corollary 3 holds for an adaptive adversary. »

Example 4: Online Control with Adversarial Disturbances [2]. In this example, we consider
a simplified version of the setup from Agarwal et al. [2] where the adversary is allowed to perturb
the dynamics at each time instance along with the loss functions. We consider the LQ version of
the problem where the dynamics are linear and the cost functions quadratic. Similar to the example
above, the comparator class consists of a set of strongly stable linear policies (see Appendix D).

xX=R% Z,={(Q,R) |Q,R>0, tr(Q),tr(R) <C}, Hiqr={K ¢ R4 | K is (k,~y) — strongly stable},
Zs = {C| ¢z < W}, €(m,2,2) =2'Qx + (Kz) R(Kz), ®(x,K,() = (A+ BK)x+(, Dy = ¢. (12)
With this setup, we now establish the learnability of this problem in the following corollary.
Corollary 4. For the Online Control with Adversarial Disturbances problem instance
(I qr, Z, D, ¢) detailed in equation (5), we have that the minimax value
Vaav,r (iR, 2,8, £) = O(VT).

In contrast to Example 3 above, the disturbances in the dynamics are actually controlled by the
adversary instead of being random. Our result above shows that this harder version of the problem is

also learnable at /T rate. *

In addition to these four examples, in Appendix D we consider additional examples of the framework
including online adversarial tracking [1] and a non-linear generalization of the LQ problem [10, 2]
which we call online non-linear control.

Broader Impact

This work is mainly theoretical in nature and hopes to provide theoretical foundations for learning
under dynamical systems. The work is expected to have a broader impact in the future by opening up
research on learning and non-linear dynamical systems with complex policy classes. In the future, we
hope that our work will enable ML systems to be deployed reliably in more reactive environments.
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A Proof of Proposition 1

The minimax value of the policy regret for the online learning with dynamics protocol is acheieved
when at every time ¢, the learner picks the best distribution ¢;, the adversary picks the worst-case z;
and a sample of policy 7 is then drawn from g;. This can be succinctly represented as a sequence of
infimum, suprememum and expectations as

T-1
Vr(I1,Z,®,0) = << inf sup E >> inf  sup E [Reg%‘"]
q:€Q (2¢,Ge)eZ2 me~ae|] ,_q aT€Q (27,(1)eZ TT~4T

T-1
@ << inf sup E >> sup inf E [Reg%ol]

q:€Q (2¢,G)eZ Te~qt]| ,_y PTEP T (27.(T)~pT

T
(g) << sup inf E >> I:Reg};?ljl )
PP T (2e,Ce)~pell 4q

where (i) follows from an application of the von Neumann’s minimax theorem for the distributions
Q and P (see [23, Appendix A]) and (ii) follows from repeatedly performing the same step for
t={1,...,T - 1}. This establishes the desired claim. O

B Proofs of upper bounds

B.1 Proof of Theorem 1

Recall from equation (3) that the dual regularized ERM for a regularization function €2 and parameter
A>0is

t
TRERM ¢ € argmin Z E [Zé(w, Clis—1, zs)] +A-Q(7).
mwell  g=1 2s
The proof of our main result relies on the following intermediate result which relates the performance
of the above RERM with that of any policy 7 € IT when compared on the counterfactual losses /.

Lemma 1. For any policy 7 € Il and any sequence of distributions {p;}L_, over instance space Z,
we have

T T
Z E [fq)(WRERM,t, Cl:t—hzt)] < Z E |:£¢(7T7<1:t—17zt)] + A () - Q(7rRerRM,1))- (13)

t=17%2t t=1 %2t

Taking this lemma as given, let us proceed to the proof of the theorem statement. For the purpose of
this proof, we will use the notation 7; : = mTrerm,¢. Let us begin by considering the value of the game

and its equivalence to the dual game established by Proposition 1 as’

T T T

Vr(IL, 2, ®,0) :<<sup inf E >> (ZE[Z(m,mt[ﬂl;t,hCl;t,l],zt)] —infIE[Zé(w,mt[w(t_l),glzt,l],zt)])

Pt€P 7wt (2¢,(t)~pt =1 t=1w well w | ¢=1

0) T °

< <<Sup E » (ZE[E(ﬁ'umt[ﬁ'l:t—hCl:t—l]azt)]_ E  [£7 (7, Cie-1, 2t)]
t=1

Pt€P (2¢,(t)~pt t=1w C1it-1,%t

i E [¢%(#4,Cia1,2)] - inf E [i O,z [7D G ], zt)])

t=1C1:t-1,2t mellw | ¢=1

2) <<sup E >> (ZE[f(fl’t,xt[ﬁj:t_l,C1;t_1],Zt)] - E [Eq)(ﬁt,(u_l,zt)]) [Term (I)]

PteP (26,6 )~pell y_q \t=1w C1it-1,2t

~

+ << sup E >> (i E [Zq)(frz,clzt,l, zt)] - inf E [ié(w,xt [ﬂ(t_l),gl;t,l],zt)]) [Term (I1)],

PteP (2¢,Ce)~pell y_q \t=1C1:t-1,2¢ mell w | =1
(14)

where (i) follows from upper bounding the infimum over the policies 7; by the choice of 7; = 7;
and (ii) follows from the linearity of the expectation and sub-additivity of the supremum function.

Swe supress the dependence of the state [7r1;t_1, Cl;t_l] on the random noise w1.¢—1.
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Focussing on the first term in the above decomposition,

Term (I)= <<sup E >> (ZE[K(ﬁ't,xt[frl;t_l,Cl;t_1]7zt)] _Ez[eq)(ﬁ'uCl:t—l,Zt)])

Pt€P (z¢,(t)~pt t=1w

=<<Sup E» (Z ]E f(m,m[ﬂlt 1,C1t 1] Zt)] [f (7Tt,C1t 17Zt):|)

Pt€P (el poq \t=1w>2t

=

b <<Sup E>> (i sup [E[£(7s, ze[F1:-1, Crue-1], Zt)]7[6@(ﬁt,§1:t,1,zt)]|)

PteP Gt 1 2t w

i &
<> Brermt, (15)

t=1

where (i) follows from an application of Holder’s inequality and (ii) folllows from the definition of
the dynamic stability of the regularized ERM algorithm.

Having established the upper bound on the first term, we now proceed to the second term of
equation (14).

T T ’
Term (IT) ® << sup E >> sup (Z [6% (e, Crovn, 2¢)] - Z () Cron, Zt))

PteP (2¢,Ce)~pt mell \¢=1 =

(ii)

< <<Sup E » Sup(zg (7T Clt 1,Zt) Ze (ﬂ' <1t 1Zt))+)\supQ(7r)
Pt€P (2¢,(t),2) 1 mell

i) T

< << sup >> E Sllp( €t ([b(ﬂ', Cl:t—h Z;) — [I) (7'('7 (:M,lzt))) + Asup Q(ﬂ—)
PteP (2¢,(t) o1 €. mell ell

£2<<sup E >> E sup(Zetﬁ (7, Crae— 1,zt))+)\bupﬂ(7r)

PteP (2¢,Ce) ] 4o €1:7 mell \¢=1

where (i) follows from rewriting the comparator in terms of the counterfactual loss ¢, (ii) follows
from Lemma 1, and in (iii) we introduce the Rademacher variables ¢,. Using Jensen’s inequality, we
can obtain a further upper bound on Term (II) as

T T
Term (II) < 2 << sup E >> sup (Z el®(m,Clape1, zt)) + Asup Q(7)

Pt€P (21,Ge) €t mell \¢=1 mell

<2sup E sup(Z el ( [Cl(e),...,Ct_l(e)],zt(e))) +)\su11£[)Q(ﬂ') (16)

z,( €17 well

where in the last line, we have replaced the worst case joint distributions over the Z space by the
corresponding worst case Z-valued trees (see [13, 23] for more details). The upper bound on the value
Vr(I1, Z, ®, £) now follows from combining the bounds obtained in equations (15) and (16). O

Proof of Lemma 1. For the purpose of this proof, we will use the short hand 7; : = mrgrm,¢:. We
will prove the statement of the lemma via an inductive argument on the number of time steps ¢.

Base Case: For time step ¢ = 1, we have that mrgrm,1 is the minimizer of the regularized loss implying
E [eé(ﬁ'h (po21)] <E [f@(ﬂv o 21) ]+ A(Q(m) = Q71))
z1 zZ1

for any 7 € II.
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Inductive Step: Assume that the equation (13) holds for some time step s and consider the cumulative
loss at time step s + 1

s+1 s
ZE[eq)(ﬁt,Cl:t—l,Zt)]:Z [5 (7t Crae— 17Zt)]+ E [E (51, Ca: 572’5+1)]
t=1 %t t=1 7%t Zs+1
SB[ (e, Gt 20)] + AMQe) - (A1)
t=1%t
+ E [eq)(ﬁerlaCl:s,Zerl)]
s+1
QSB[ (r, Gty 20)] + AQUm) - 251)),
t=1 2t

where (i) follows from the induction hypothesis for time s and applying it for 7 = 74,1, and (ii)
follows from the fact that 74, is the minimizer of the regularized objective at time s + 1. This
concludes the proof of the lemma. O

B.2 Proof of Proposition 2

For the purpose of this proof, we restrict our attention to an oblivious adversary wherein the adversary
selects instances {z; }._, before the game begins. Several recent works [5, 9] have studied specific
versions of a mini-batching algorithms under such an oblivious adversary.

For any mini-batching algorithm with parameter 7, we consider denote by T= T/r as the effective
time horizon® of the game. We now look at the mini-batched value of the game

. 7
Vr,-(IL, Z,®,0) < <<inf << sup >> E >> w[Reg?']
qt zt,s,Ct,s s=1 Ts~at

represents the minimax policy regret for any such mini-batching algorithm A, in the presence of an
oblivious adversary. Let us denote the comparator term by

T
Y(Cur, 217) 1= inf [E ZE(Waxt[W(t_l)aCI:t1]7Zt):| .

well | w¢=1

Following a repeated application of von Neumann’s minimax theorem similar to the proof of Proposi-
tion 1, we upper bound the value

T A T
VT7T(H,Z,<I>,€)S<<sup1nf E » Zzé(ﬂ—i:xt 71—1,5 1:7r7£ 1)7<1t 17<t ] 55)—¢(§1:T751;T) )
P 7t (2¢,Ce)~pell g [Wi=1s=1
B a7
where the distribution p € P7 is a joint distribution over instances (Z,() € Z7 and we have explicity
indicated the dependence of the state variable on the past sequence of policies and adversarial

instances. Define the mini-batched loss at time ¢

L (7Tt7C1t 17Zt7<t77r1t 1) _Ezé(ﬂ-hxt[ﬂ—gt)laﬂ—t 7C1t 17Ct T 1]77:)

w s=1
and the corresponding mini-batched counterfactual loss
(r) _(s-1) is-17 58
L2 (74, Croaty 26, Cr) : Ezf(ﬂt,xt[ m o G, G 7
w g=1

Given these definitions, we can rewrite equation (17) as

T [
VT,T(HaZa(I)7€) < <<Supinf E >> lzLT(T‘-taCl:t—lvztyct;ﬂ-ltt—l) _w(<1;T7Z1;T)]
)~pell g

Dt Tt (24,Cs t=1

(18)

We assume 7'/ to be an integer; if not, it affects the bound by an additive factor of 7.
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The expression on the right can be seen as a dual game between a learner and an adversary of T’
rounds. At each round, the adversary reveals a joint distribution p; over the instances and the learner
selects a policy g;. The learner then receives the loss L, for that round. We further bound the value
by selecting the mini-batched dual ERM strategies for the learner, given by

Ty —WERMt—afgmm(Z E [LY(m, Crise 1,ZS,C5)])-

LI P

Substituting the above mini-batched policies in equation (18) and following a similar set of steps as
in proof of Theorem 1, we get,

~»
~»

Vr(IL Z,®,0) < <<sup E >>

Pt (Z¢,(e)~Pe

lZL (ﬂ-taClt 17ZtaCt77T1t 1) w(cszle)]

t=1 Lt=1

~»

=

S<<sup E >> Ly (7, Creem1s 25 Gy mia-1) — LY (e, Craees 22, G
Pt (Z¢,Ce)~pell y_q | t=1

+<<sup E >> lz E L (e, Crat— 1,Zt7Ct)]—¢(§1:Ta51:T)l

Dt (2¢,Ct)~Pe t=12;,Ct

Pt (Z¢,Ct t=12¢,Ct

oA I A _ _ _
S Z ERM,¢ T <<Sup E) >> lZ E (L2 (74, Cre—1, 2, Ce)] — w(Cl;TnZLT‘)} ,
t=1 ~PDt 1

where step (i) follows from upper bounding the sequence of joint distributions by the worst-case

sequence of the adversary instances Z;, (;. The second term in the above expression can be upper
bounded by using an induction argument, similar to that used in Lemma 1. The resulting bound is
given by

Pt (2¢,Ct) mell | 1=12¢,¢¢

T 7
VTT(H Z ® e) < zﬁERM t+<<sup E >> Sup|:z Eﬁ [Lf(ﬂ—7§1¢t*172ia€t)] _Lf(ﬂ—7<-1¢t172tact):| .

Symmetrizing the above expression and introducing Rademacher variables, we get,

Pt (z¢,Ce)etl] ,_q mell | ¢=1

T T
Vr (I, Z,9,0) < ZIBERM ¢ +2<<SUP E E>> SUP[Z Eth(W7<1:tl7Zt,Ct):|
t=1

~

D)

T T -
< ZﬁERM,t+2<<SUP E E» SUPZ[ Zétfst(ﬂ' Cr-1,2,Gt)
=1 _

Pt (Z¢,Cr)€t well =1

|

Z 6t€§t(7ﬂ Crit-1, Zt, Ct)”
=1

<
s=1 Dt (z,Ce)et]] ,_, mell

ﬂERMt+QZ<<sup E E>>Tlsup[

& ‘FMH

<Y Birm,e + 27 sup Ry (£7 o TI),

t=1 se[T]

where step (i) follows from swapping the supremum with the summation and in the last step we have
used the definition of sequential Rademacher complexity with an absolute value. This establishes the
desired claim. O

C Proofs of lower bounds

C.1 Proof of Theorem 2

We begin by recalling the example instance described in the proof sketch of Theorem 2. The
online learning game between learner and adversary is given comprises of the state space X = {z €
R? | |z[2 < 1} and the set of adversarial actions Zt™ = {z € R? | |z|2 < 1} for some dimension
d > 3. In our setup, the adversarial instance space for the dynamics is empty. Given this state space,
our policy class I}, is a constant class of policies

Iyjn = {my | m(x) = f for all states x with f e B4(1)},
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consisting of policies my which select the same action f at each state x. With a slight abuse of
notation, we represent the policy m; played by the learner at time by the corresponding d-dimensional
vector f;. Further, we let the dynamics function ®\in (¢, fi,(;) = f; with the noise distribution
D, = 0. Observe that the dynamics simply remembers the last action played by the learner and sets
the next state as ;.1 = f; in a deterministic way with the starting state 1 = 0. We now define the
loss function which consists of two parts, a linear loss and a L-Lipschitz loss involving the dynamics:

1
L . (19)

r(fe, ey 2e) = (fr, 2e) +o(fr,xe) where o(fi,x;) = {f”ft —xylla for || fi — a¢l|2 <

otherwise

Observe that this example constructs a family of instances one for each value of the Lipschitz constant
of L of the function &. For this setup, the loss function ¢® for any time ¢ > 1 is just the linear part of

the loss
fp(f’x[ft_l]vz) = <f,Z> +0'(f,$) = <f,Z> .

——
=0

Let us now break down the lower bound analysis into two cases: that of the Lipschitz constant L < 1
and L > 1.

Case 1: L <1. For the case when L < 1, we lower bound the value of the game by ignoring the
dynamics loss o.

VT(HLimZLinaq’Lin,E)=<<infSUPE>> ZT:( feoze) + o (fes fro1) = mf Z [y zt) +0(f7331))

qt 2zt [t t=1 Iin t 7
() v T T
> <<infsupE>> (Z feyze) — inf (Z<fvzt>))+1
q  zt fy 1 felliin t=1

where (i) follows by noting that o ( f, fi-1) € [0,1]. The above lower bound reduces the value to
that of a online linear game between a learner and an adversary. A lower bound on the value of this
game can be shown to be \/T/ 2 (see [21]) and thus for the case when L < 1, we have that the value
Vr(Hiin, 250, ®in, £) > eV/T for some ¢ = 0.5.

Case2: L > 1. We now proceed to the case when the Lipschitz constant” L > 1. In order to prove
the requisite lower bound, we will describe the adversaries choice of action z,. The adversaries
strategy is to stick to some action z and only switch to a new action when one of events E1 or E2
happen.

El Thetimet= AL for A={1,...,T/L}.

E2 Let ty denote the last time the adversary had switched and denote the expected deviation
from the previous move by &, :=Ey, r, | f; — fi-1]. Further, let Ay, = Y%, &, denote
the cumulative deviation of the moves from time ¢, upto time ¢. The adversary switches at
time ¢ whenever A, ; > %

Given the above events, we now define the adversarial action when it switches. Let ¢ be a time
instance when one of E1 or E2 happens. Then the adversary selects z; such that

lzel2 =1, (Zi1,20)=0.  E (fi,2) =0,
fe~qe
where Z;_ 1 = Z'f;j zs 1s the cumulative sum of the adversary’s past actions. Note that our choice of
dimensions d > 3 ensures that such a z; will always exist.

In order to undersatnd the performance of any algorithm, let us partition the time interval into 7'/ L
blocks each of length L and denote each such bock I; := [L(i—-1) + 1, Li]. Let k; denote the number
of times the learner causes event E2 to occur in the interval I;. Observe that the cumulative loss
within an interval I;

-0 if ki = 0
<<£]::>>td t;(ft,zt) +0(fe, fi-1) {2 ko1 ifk; > 1 (20)

7 Assume L to be an integer; if not, redefine L = | L|.
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where the lower bound for the case k; > 1 follows since at each round the learner can only obtain
inner product Ey, ( f¢, z:) > —1/L at each round of the interval. As soon as Ey, (fi, z:) < —1/L, the
adversary switches and ensures that E, (ft, z¢) = 0 for that time. The lower bound of k; — 1 follows
since the total length of the interval is L and each time event E2 occurs, the learner pays a cuamulative
cost of 1. Note that the case for k; = 0 is equivalent to the case k; = 1 and hence going forward, we
assume each k; > 1.

Let K = ZiTz/lL k; denote the total number of times an algorithm causes event E2 to happen and let

K = BT/L for some 3 € [1, L]. Then, for any sequence of learner distributions [q1,...,qr], we
have that the policy regret is lower bounded as

T T ,
Reg?® (A) = << E » ((ft, )+ o(fo fro) inf S/, zt)) Ck-L iz @)
Se~aell 421 Jelliin 123 L
where (i) follows from an application of the Cauchy-Schwarz inequality and from the bound in
(20). In order to lower bound the term || Zr |2, we define the set of times Ty = [f1, ... ,x,, ] Where
K,q <T/L + K is the total number of switches that the adversary makes. Further, let us denote by 2;
the choice of the adversary at time t; and by v; : = tiv1 — 1; as the length of the interval for which the

adversary played Z;. Then, the squared norm

o]

ad

, e K Ko gl )
1Zo05 = | D) vizills = Do 2125 +2 D i D0 vike, 25) = D0 vi,s
=1 =1 j=2 =1 =1

where the last inegality follows from the choice of adversary ensuring that (Z;_1, z;) = 0 and noting
that ||z¢| = 1 for all time . We can now obtain a lower bound on | Zr |2 by an application of the
cauchy-Schwarz inequality as

Kag ZKad i T
Zpls = 2> Zisl B .
H H2 ; ’ V Kad Kad

Substituting the above value in equation (21) and taking an infimum over all algorithms, we have that
the minimax value

~ T VIT
Oin, 2. &0, ) > inf -1)=
Vr (Min, , Plin, Lgéﬁq((ﬁ L+\/m)’

where the inequality above follows from setting K = S7T/L and the fact that Ky < T/L + K.
Optimizing for the value of 3, we get that the minimax value

T for0<L<1

Vr(Myin, 2, ®Lin, 1) > % for1< L<(32T)5 . (22)

25T% for L > (327)5
Thus, we have that the value is lower bounded by these three different terms each corresponding to

different ranges of the Lipschitz constant L. In order to obtain the requisite lower bounds, we now
evaluate each term on the right hand side of equations (7a)- (7¢).

Bound (7a). This corresponds to the sequential Rademacher complexity of the class II which
corresponds to the unit Euclidean ball with respect to the linear loss. Following the calculations in
Rakhlin and Sridharan (see[2 1, Chapter 10]), we have that

REI(P 0 F) < VT. (23)

Bound (7b). In order to establish an upper bound on the dynamic stability parameters, we consider

2
the reqularization given by the squared loss as Q(f) = % with some regularization parameter A > 0.

Given that the form of the counterfactual loss £%, the regularized ERM

. 1<
frerm,¢ = Projg (1) ()\ >, E [Za])
s=1%2s~Ps
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for the dual game and the adversarial distributions given by {p;}. Consequently, the stability
parameters

L
Brerm,t = 0(fRErRM, ¢, fRERM,t-1) < L|| fRerm,t — fRERM, -1 2 < "

Finally, the bound of equation (7b) can now be evaluated as

& (LT X LT
;EE(; Prerus + A'it‘SQ(”)) <t (5 +3)-Ve @4

Bound (7c). We now proceed to the bound given by the mini-batching ERMs with parameter 7 > 0.
The stability parameters for the mini-batching ERM can be upper bounded as

<2 fort=0modT
=0 otherwise

)

/BERM,t : {

where the first case follows trivially from the fact that two unit norm vectors can have a distance at
most 2 and the second case is a consequence of the fact that £ = /% anytime an algorithm repeats the
past two policies. Combining this with the sequential Rademacher bound of equation (23) we have

r o oT T
inf | 3" A, + 27 R (€ o T0) | < inf = + 27 [ = = 275, (25)
t=1 ’ T 7> T

>0 T

Comparing equations (23), (24) and (25) with the lower bounds on the value Vr in equation (22),
we see that the sequential Rademacher bound is tight up to constant factors in the regime L < 1, the

dynamic stability bounds are tight for the regime 1 < L < (32T)% and the mini-batching bounds are
tight for the range (32T)% < L <T. This establishes the desired claim. O

C.2  Proof of Proposition 3

We establish both parts of the proposition separately. For both the subparts, we lower bound the value
Vr be first describing a problem instance (I, Z, ®, ¢) and compute the value for a specific choice
of adversarial actions. We assume that the loss function |[((f,z)| <1 for all f € F and z € Z,. The
bounds for larger loss values can be obtained by a corresponding scaling.

C.2.1 Proof of part (a)

We denote by K = T'/7 the number of times a mini-batching algorithm changes its policy.

Constructing online learning with dynamics instance. Given an instance of the online learning
problem (F, Zy,¢), we construct the online learning with dynamics instance with state space X’ = F
and policy class

Op={ry| feF,np(x)=fforallxz e X},

which plays the same action f for all states x € X'. Going forward, with a slight abuse of notation we
use the action f and the constant policy 7 interchangeably.

The adversary’s loss instance space is given by Zy= Zyx {-1,+1} with the actions z; € Z; and
€: € {-1,+1}. The dynamics function ®(z, 7, () = f represent the deterministic dynamics which
remembers the last action played by the learner and is not affect by the adversary. The instantaneous

loss £( fi, s, (2, €;)) is given as

U(fr, e, (ze,€0)) = €l fr, 2¢) + I fr # @]

With the above loss function, notice that the counterfactual loss £ ( f;, (2¢,¢;)) = €:£( f+, z;) for all
time ¢ > 1 and the dynamic stability parameters for any algorithm 8; = E4[I[ f; # fi-1]].

Specifying the adversary. Given the online learning with dynamics problem above, we now specify
an adversary for this setup. Let K* = T'/7* denote the optimal number of switches given by

T
K* = argmin (K +2—M(lo H_']:)) .
K K
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Note that such a value of K* is an equalizer of the two terms and ensures that K* and fg; R
are equal. Now, consider the worst case Z,-valued tree z7 of depth 1" corresponding to the online

learning problem (F, Z4,{)

T
z7 = argsup E, supZetE(f,z(e)) .
z feF t=1

The adversary computes the tree zo i+ produces instances (z;, €;) as

Case 1. Whenever t = A7*/2 for A = {1,...,2T/K*}, the adversary samples ¢; as a Rademacher
random variable and sets z; = Zofc+ (€1:2(4-1)/r+ )-

Case 2. Forany time ¢ # A7*, the adversary computes the probability of switch pi* = E4I[ f; # fi-1]
and selects instance (z¢, €;) as

. 1
(21, 6) = (zt-1 €0~ Rad) - if57" > 5
(241, €t-1) otherwise

Lower bound on the value. For any algorithm A producing distributions ¢, . . ., q7, the expected
policy regret is

—~

M=

) I
Eac[Regh'] > Y I[P > 0.5] - Ec inf > 6% (f, 2, ¢)

t=1 feF t=1
T T

= > 1[pi" > 0.5] + Ecsup > e.0(f, 2)
t=1 feF t=1

where inequality (i) follows from fact that whenever pi* > 0.5, the adversary samples a new
rademacher variable €;. For any algorithm, let K*¥ = 3>, I[p}" > 0.5] denote the number of time
periods for which the switching probability is greater than half. We break the lower bound in two
separate cases depending on the value of K*®".

Case 1: K* > K*. For this case, the policy regret for any algorithm can be lower bounded as

1 T
E‘A’E[Reg%()l] > K* (:) 5 (K* + 2;%;?1 ([ o H}') 5 (26)

where (i) follows from our previous observation that K™ = f(T* Rer-

Case 2: K*" < K*. For this case, not that the complete time horizon can be divided into atmost 3K *
intervals wherein the adversary selects the same instances (z, €), each of length at most T/2K*. By
the pigeonhole principle, we must have at least K* intervals having length T'/2K* beginning at time
t = At*/2 for some integral \. Denote the collection of times in these intervals by Z. We can now
lower bound the policy regret as

T

EA,E[Reg?FO'] >Esup Y el(m, z2x+(€))
€ feF t=1

g E [sup Z el (T, Zogc+ (6))]

eritel | feF teT

=

@ T

= oK+
1 T

- (K* + 2R (Lo Hf) @7)

(Lo F)

whre (i) follows from the an application of Jensen’s inequality and the fact that the respampled ¢;
when adversary switched because of the learner are not used to parse the tree zox+ and (ii) follows
from noting that each pair (z, €) was used exaclty T/2K* times.

Combining equations (26) and (27) along with theNObservation that the minimax value of the online
learning with dynamics V- (I1, Z¢ x {+1,-1}, ®, £) is the minimum policy regret for any algorithm
establishes the desired claim.
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C.2.2 Proof of part (b)

We will proof a slighlty stronger version of the lower bound from which the desired statement will
follow. We follow a strategy similar to the one used in the proof of part (a) above.

Constructing online learning with dynamics instance. Let the dynamics function be defined
over states space X’ and adversary instance space Zg. Consider any loss function (:TUxXxZ,»R
for some instance space Zg We define the space of adversarial loss actions Z, = Zg x {-1,+1} and

the corresponding loss ¢(, z, (z,€)) = € - £(m, x, z). This defines an instance of the online learning
with dynamics problem (I1, Z = Z; x Zg, ®, {).

Specifying the adversary. Consider the Z, and Z4 valued trees z7 and Cr defined as

(z7,¢r) = argsqupE6 supZetﬂ (7, C14-1(€),2(€)) |,

mell ¢=1

which correspond to the worst-case trees of the sequential Rademacher complexity of the class % o II.
At every time ¢, the adversary selects (z¢, ¢, (;) by sampling a uniform Rademacher variable and
traversing the two trees as

~Rad, 2z = ZT(€1:t-1) and (; = CT(ﬁlzt—1)-

Lower bound on the value. For any algorithm .4, the expected policy regret is given by

. T ;
E4, 6[RengI] @ Ec [sup ), el (m, Crets 2¢) @ R (0% o1I),

well ¢=1

where (i) follows from noting that the loss at time ¢ is a zero-mean random variable and (ii) is implied
by the definition of the trees z7 and (r.

Finally, observing that the minimax value is equal to the policy regret of the best algorithm completes
the proof. O

D Details of examples

In this section, we work out the examples mentioned in Section 5 in detail and prove the rates for
their respective value functions.

Before proceeding to the examples, we introduce some notation. Most of the examples that we
consider have dynamics which are not affected by the adversary, that is, the instance space Z3 is
empty. We focus on this special case and derive a few results which will be helpful in deriving bounds
for the examples.

Borrowing from the theory of stochastic processes, we next define ergodicity of the dynamics which
relates a sequence of instantaneous losses to a notion of stainary loss £& : II x Z ~ R.

Definition 4 (Ergodicity). We say that the dynamics ® are ergodic with respect to the loss ¢ if for any
policy w € Il and adversarial action z € Z, the expected loss converges to a stationary loss starting
from any state x1 as

thm E{wt}g(ﬂv Tt [W(til)]v Z) = E?(ﬂ'v Z)

The loss function é? can be seen as the limit of the counterfactual losses £® and as we shortly show,
the losses and dynamics in most of our examples satisfy this ergodicity assumption. For setups where
such a stationary loss exists, we define the ergodic stability parameters 3; analogous to the dynamic
stability parameters.

Definition 5 (Ergodic Stability). An algorithm A is said to be { 8; }-ergodic stable if for all sequences
of adversarial actions (21, . .., zr | and time instances t € [T']

|Ew1:t,1 [U(me, e[ mre-1, wi-1], 2¢) ] *ET(Wt,ZtN <Bi where m=A(z1:4-1).
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Observe that the ergodic stability parameters are defined with respect to the stationary loss as
compared to their dynamic stability counterparts which were defined with respect to the counterfactual
losses. Next, we define the set of regularized ERMs mgeg) With respect to these stationary loss as

T
T Rerm, = argmin y | E [ﬂf(w, zt)] +A-Q(m), (28)
mwell  ¢=1 z¢~Pt
for some regularization function 2 and parameter A > 0. Given this notation, the following corollary
upper bounds the value of the game V- (I1, Z, ®, £) in terms of the sequential Rademacher complexity
of the loss class ¢2 o IT and the ergodic stability of the RERMs TRERM-

Corollary 5. For any online learning with dynamics instance (I, Z, ®, {) with ergodic dynamics ®,
consider the set of regularized ERMs given by eq. (28) with regularization function € and parameter
A > 0 having ergodic stability parameters {,BF’EERMJ}?:P Then, we have that the value of the game

Vr(Il,Z,®,0) < ZBRERM (H2RTI(LF oTT) +2\ bupQ(ﬂ')+bupZ |€¢(7r 2, t) =2 (m, 2)|. 29)
t=1 ell ¢=1

Mixing Gap

Compared with the corrresponding upper bound in Theorem 1, the above bound has an additional
term: the worst case deviation of the counterfactual losses® from the stationary losses. This term,
which we call the Mixing Gap, captures how quickly the dynamics mix to these stationary stationary
losses when the same policy is repeatedly played over a period of time. The proof of the corollary is
very similar to that of Theorem 1 and we provide it below for completeness.

Proof of Corollary 5. We begin by considering the value of the game and its equivalence to the dual
game established by Proposition 1 as

Vr(I1, Z,®) = <<sup inf E >> [E [i é(m7xt[7r1;t1]7zt):| —inf E [i Z(Tl’,l‘t[ﬂ'(til)], zt)]:|

pteP T zg~pt w | ¢=1 mellw [ ¢=1

(i

< «sup E >> [E[i K(WRERM,t,mt[TrRERM,M,l],zt)] - infE[i K(W,xt[n(t_l)],zt)]]

pt€P zt~pe || 41 Lw Lt=1 mell w | ¢t=1

=

('_') <<sup E >> [E[i E [E(WI){ERMJ,l‘t[ﬂ';ERM,l:t—l]vzt)]:I—inf(i[f(ﬂ',zt)):l [Term (D)]

PteP zt~pt w | t=1 Zt~Pt mell \t=1

o 2 ) oS -e[S e aer0])]

where (i) follows from replacing the inf ., at every time step with 7gggy ; and (ii) follows from the

subadditivity of the sup function and the fact that inf, (g(y) + h(y)) > 1nfy g(y) +inf, h(y). The
second term in the expression now corresponds to the worst-case deviation of the statlonary loss from
the counterfactual losses.

Further, observe that Term (I) above is similar to the term obtained in equation 14 and the desired upper
bound can be obtained by following the same sequence of steps as in the proof of Theorem 1.  [J

Having established the above corollary, we proceed to studying the examples from Section 5 in detail.

D.1 Online Isotron with dynamics

In this section, we look at the online Isotron with dynamics problem introduced in Section 5. The
setup consists of a real valued state space X = R. The policy class II is based on a function class F
consisting of a 1-Lipschitz function along with a d + 1 unit dimensional vector and is given as

F={f=(o,w=(w,w))|o:[-1,1]~ [~1,1] 1-Lipschitz, w € R*! jw;| <1 |w]| < 1},
Op={ry|meF, mp(x) = fforall z e X'}.

8since the dynamics are independent of the adversary, we have added an additional time index ¢ to make
explicit the number of times policy 7 is run in the environment.
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The adversary selects instances in the space Z = [~1,1]%*! x [~1, 1] and we represent each instance
z = (z1,%,y). Given this setup, we now formalize the online learning protocol, starting from initial
state x1 = 0.

Onroundt=1,...,T,
* the learner selects a policy 7 € Il r and the adversary selects z; € Z
» the learner receives losst(7¢, 4, 2¢) = (yr — o ({Xg, we)))* + (261 —wi1)? + (24 —wi1)?

* the state of the system transitions to T+ = w1

Given this setup, the next corollary provides a bound on the value of this game Viso (112, Z, @, £).

Corollary 6 (Online Isotron with dynamics). For the online Isotron with dynamics problem, there
exists a universal constant ¢ > 0 such that

VlSO,T(H]‘—J Za (P7 é) < Cﬁ10g3/2(T).

It is worth recalling that the above game is an dynamical extension of the online Isotron problem

instance studied by [23]. We are not aware of any primal algorithm which can get a rate of /7T for
both the online learning version as well the dynamical version of this game. Our non-constructive
analysis on the other hand proved a way to gaurantee learnabaility at this rate for the Isotron problem.

Proof of Corollary 6. We prove the above statement by bounding the mixing gap and the ergodic
stability parameters for the appropriate regularized ERMs.

Bound on mixing gap. Note that for any time ¢ > 1, the losses /% and ¢® are identical since the
state variable only depends on the policy at time ¢ — 1. Therefore, one can upper bound the loss by
constant ¢ = 12.

ERMs. For the dual game, we consider the ERM at time ¢ given by
t
ferm,t = (o¢, wy) = argmin{z ( E [(ys - U(<Xs>w>))2 + (Zs,l - wl)z])} )
o,w s=1 \Zs~Ps

and set my = T pepy, -

Ergodic stability parameters. Note that objective function in the above equation is strongly-
convex with respect to the paramter w; and a simple calculation shows that [w; 1 — wy_1 1] < % We
can now bound the ergodic stability parameter as

. 4
Brerm.t = [0(me, 2e[T1:6-1], 2¢) 02 (T 20)] = lwie1 0 = wi [ < 2 (30)

Bound on the value. Having established bounds on the mixing gap and the ergodic stability
parameters of the ERM, we now use Corollary 5 to upper bound the value of the game as

W Z .
Viso,r (117, Z,®,€) <" Brerm,e + 2R5I(LF o T1x) + 16
=
Eq. (30)
<

8+ 2R5I(4T o [1£) + 16

(2) C\/Tlogg/Q(T) ,
where (i) follows by the upper bound of 16 on the mixing gap and (ii) follows by the corresponding
bound on the sequential Rademacher complexity 29371 (¢2 o I1£) from [23, Proposition 18]. O

D.2 Online Markov decision processes

In this section, we revisit the problem of Online Markov Decision Processes (MDPs) studied in [11].
The setup consists of a finite state space such that | X'| = .S and a finite action space with /| = A. The
policy class 11 consists of all stationary policies, that is,

HMDP = {7T|7TIX'—>A(U)},
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where A(U) represents the set of all probability disitributions over the action space. Un addition, the
transitions are drawn according to a known function P : X x U — A(U). The sequential game then
proceeds as follows, starting from some state x; ~ d:

Onroundt=1,...,T,
* the learner selects a policy 7 € IIypp and the adversary selects z; € Z = [0, 1]5 xA
o the learner receives loss £(my, zy, 2¢) = z¢ (2, T (x4))

* the state of the system transitions to x;.1 ~ P (x4, u;)

For every stationary policy 7, we let P/ denote the transition function induced by =, that is,

Pf(m,x’) 1= Z ﬂ'u(SC)PII(x,U),
ueld

where we have used superscript to denote the relevant coordinate of the vector. As in [11], we make
the following mixability assumptions about the underlying MDP.

Assumption 1 (MDP Unichain). We assume that the underlying MDP given by the transition function
P is unichain. Further, there exists T > 1 such that for all policies w and distributions d,d' € A(U)
we have

|dP™ —d'PT|y < eV |d - d'|;.

The parameter 7 is often referred to as the mixing time of the MDP. Since the MDP is assumed to be
unichain, every policy 7 has a well defined unique stationary distribution d, with the stationary loss
given by £2(7,2) = Egoq. Eq~r(2)2(2,u). Given this setup, we can obtain an upper bound on the
value Vvipp, T as follows:

Corollary 7 (Online MDP). For the online Markov Decision Process sequential game satisfying
Assumption 1, the value VMDP,T(HMDP, Z,®) is bounded by

Vwop.7(lvpp, Z,®,£) < 47\/TSTlog A+ 27(1 + €'/7).

The above corollary helps one recover the same O(+/T") regret bound that was obtained by [11].

In terms of the dependence of problem specific parameters, while our bound above shows a \/S
dependence, their bound was independent of .S. However note that while the setting studied by [11]
consisted of the weaker oblivious adversary, we consider the stronger adaptive adversary which can
adapt to the learners strategy.

Proof of Corollary 7. In order to establish the bound, we begin by bounding the ergodic stability
parameters as well as the mixing gap for loss /® and /2.

Bound on mixing gap. Consider any policy 7 € IIypp and the associated steady state distribution
d,. The stationary loss for this problem is then

(2(m2)= E E [z(z,u)].

r~dru~m ()

Consider now the difference between the stationary loss and the counterfactual loss at any time ¢

(% (2 )~ £2(m,2)[=| E E [2a],w)]- E E [2(z,u)]

7 ~db u~m (2T r~dru~m(x)

0]

r~dt Tody

(ii) _
< zelloo - l1dyy = dee |y
@ gty 31)

where in (i), we use the redefined loss function Z;(z) := E, . (;)2(2,u), (i) follows from an
application of Holder’s inequality, and (iii) follows from Assumption I and the fact the |d; — d || < 2.
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Ergodic stability parameters. For this setup, we will be using a regularized ERM and parameterize
the policy mrerm,+ as a distribution over the deterministic policies present in IIypp. Let us denote
this subset of policies by H‘,f,TtDP. Note that a distribution ¢ in Qﬁ,,eép is randomized policy in the class
IImpp. We will work with the negative entropy function as the regularizer.

d
ITyioe|

t
qrerm,¢ € argmin | E [Z E E [zg(x,u)]]+)\~ > qilng |,

qeQmop \ ™~q [ s=1 x~dru~m(x) i=1

where we denote by Z; = E._.,, zs the expected loss at time s. Now, we can encode the loss at time s

et

° 1s the loss for

. . de .
or every policy 7 € in a vector € woe| where the 7" coordinate ¢4
for every policy 7 € Tt tor (5 € [0, 1]" ;
policy 7. Given this, we can show that the distribution grerm,¢ is given by:

€xXp (%1 Zi:l gge:r)
X exp (3 Zea £55)
Going forward, we drop the RERM term from the distribution grerm,: for ease of readability. In

addition, the boundedness of the loss function |€‘S‘e7tr| < 1 ensures that the RERM solutions satisfy the
following stability property:

(QRERM,t)w =

1
lae = qe1]1 < . (32)

Given the above stability, one can also obtain a bound on the action distribution between the
randomized policy 7; = E;.4, [7] and the corresponding 7ry1:

E[f@)]- E @] =la-gali<y,

T~qt T~qe+1

|7e(z) = mesr(z) |1 =

where the second equality follows from the fact that |7 (z)|; = 1 since they are distributions over the
action space U. Now, following a similar calculation as Lemma 5.2 in [1 1], we can obtain a bound
on the variation in state distributions while playing policies g;.;—1 as compared to the steady state
distribution dg, .

272 —t/r
Hd[ql:t—l] - th Hl < T +2e t/ .

With this bound in place, we can now bound the ergodic stability parameters Sgegy , for the ERM
procedure as

5§ERM¢ = [E[(ms, ze[m1:6-1],2)] - Ef(wt,z)|
=l E  Z(2)- E zZ(z)]

x~d[qrie-1] x~dgy
2 2
< ottt (33)
A
Bound on the value. Having established bounds on the mixing gap and the RERM ergodic stability
paramters, we now proceed to obtain the requisite bound on the value VMDP’T(HM op, Z,®,0).

(ORI, se Z
Vuoe,r(Ivoe, Z,®,0) < > Bagrms + 20859 (47 o Tupp) +sup D |67 (7, 2¢,t) — € (7, 2)| + ASlog A

t=1 mell ¢=1
Eq. 31 I * seq / ;P 1/7
< Z ﬁRERM,t + 2%,1« (Z* o HMDP) +27€ +AS IOgA
t=1
2
Eq. (33) 27

< ST 2RI (0T o TIwpp) + 27 (1 +€™) + ASlog A

i)
Q 9r /TS log A + 2R59(4% o wpp) + 27(1 +€*/7)

where (i) follows since the entropy over the class TIt  is upper bounded by log Tt | and (ii)

follows by setting A = 7, /@. Finally, bounding the sequential Rademacher complexity of the
finite loss class ¢2 o IIypp by 21/ST log(A) completes the proof of the corollary. O
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D.3 Online linear quadratic regulator

The online Linear Quadratic Regulator (LQR) setup studied in this section was first studied in [10].
The setup consists of a LQ system - with linear dynamics and quadratic costs - where the cost
functions can be adversarial in nature. The comparator class II| qr comprises a subset of linear
policies K which satisfy the following strong stability property.

Definition 6 (Strongly Stable Policy). A policy K is (k,)-strongly stable (for k >0 and 0 <y < 1)
if | K| < K, and there exists matrices L and H such that A+ BK = HLH™, with |L|5 <1~y and
[H2| H 2 < k.

The policy class II qr is then defined as I qr = {K | K is (k,7) — strongly stable}. Given this
policy class, the sequential protocol for this game proceeds as follows, starting from state xy = 0
Onroundt=1,...,T,

* the learner selects a policy K; € II| qr and the adversary selects instance z; € Z = (Qy, R:)
such that Q; > 0, R; > 0 and tr(Q;),tr(R;) < C

* the learner receives loss £(m¢, T4, 2¢) = T} Qixe + uf Ryuy

* the state of the system transitions to x;,1 = Az + Buy + w

where we assume that the stochastic noise w; ~ N (0, W) with [W|s < oy, tr(W) < ¥, and
W > 1,1. The transition matrices A and B, as well as the noise covariance matrix W are assumed to
be known to both the learner and the adversary in advance. Given this setup, the stationary loss is
given by
(2(K,2) =(Q+ K RK, Xk) =tr[(Q+ KTRK)Xk] ,
where Xy =(A+BK)Xg(A+BK)" +W .

The following lemma establishes certain structural properties of the stationary loss, namely, bounded-
ness over the policy class II| qr and Lipschitzness with respect to the operator norm.

(34)

Lemma 2. The loss function Ef Il qr x Z = R, described in equation (34) satisfies
(*(K,2) < Bmax forall K elliqr, z€ Z
|02 (K, 2) 02 (Ka,2)| < Liip| K1 — Koz forall Ky, Ky €Tqr, 2 € Z,

where Bmay 1= C(1 + /12)””—7”2 and Ly, :=4C(1 + 52)%.

We defer the proof of the lemma to the end of section and now proceed to obtain an upper bound on
the value V| qr,r for the above problem.

Corollary 8 (Online Linear Quadratic Regulator). For the online LOR sequential game, the value

VIQRr,T is bounded as
Viqr,r(IlLqr, Z,®,0) <O (\/ Tlog(T)) ,

where the O notation hides the dependence of the bound on problem-specific parameters (see
equation (40) for the exact dependencies).

Proof. As before, our strategy is to establish upper bounds on the mixing gap and the RERM ergodic
stability parameter for the LQR problem, and using these with Corollary 5 to establish an upper
bound on the value V qr, 7.

Existence of stationary loss. Consider any stable policy K € II| qr. Itis well known that a repeated
application of the policy K in the linear dynamics ensures that the state x; converges to a steady-state
distribution, that is, the distribution of z; and (A + BK)x; + wy is the same. Since the noise wy is
assumed to be A/ (0, W), the steady-state distribution will also be a normal distribution with mean 0
and steady-state covariance X - satisfying the following recurrence equation:

Xk =(A+BK)Xg(A+BK) +W orequivalently Xg =Y (A+BK)*W(A+BK)*)",
s=0

and the corresponding steady-state loss is given by:

(2(K,2)=(Q+K"RK, Xg) =tr[(Q + KTRK) X].
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Bound on mixing gap. We now proceed to obtain upper bounds on the mixing gap for this problem
instance. Going forward, we define X i ; to be the state-covariance matrix at time ¢ when policy K
has been used for all preceding timesteps. For the purpose of readability, we will drop the dependence
of the covariance matrix on the underlying policy K when it is clear from the context. We begin by
looking at the convergence of X; to the stationary matrix X:

t—1 oo
[X: = X2 = Z(A +BK)*W(A+BK)*)" - Z(A +BK)*W(A+ BK)*)"

s=0 s=0 2
- IS A+ BEy WA+ BK)*)

s=t 2
O & e 25
<owy k(1-7)

s=t
< 0'111’{2(1 - 'Y)Qt
Y

where (i) follows from the fact that | A+ BK |® < x(1—+)® from the strong-stability of K. The above
analysis shows that the covariance matrix X; converges to its stationary distribution exponentially
fast. One can also obtain a bound similar to above on tr(X — X;) with o, replaced by ¥,,. Having
established this convergence, we establish a bound on the mixing gap as

[E[C® (7, 2,1)] - £ (7, 2)| = (Q + K" RK, X, - X))

< (04 +K2op) - tr(X - Xy)
U, k2 (1—7)%
E—

Since the above bound is independent of the underlying policy K, we have thus established a bound
on the mixing gap for the policy class II| qr.

< (o4 +K%0,) - (35)

Regularized ERMs. We now define the class of RERM’s we use for the function class IIj qr.
Instead of working with a fixed regularization function, we shall look at random perturbations as
regularizations. Such an idea is popular in the study of online learning algorithms and is often termed
as Follow the Perturbed Leader (FTPL); for a detailed study, see [24, 15]. Thus, the regularized ERM
solutions at time ¢ are given by:

Kio= argmin(zt: E [(Qs+K'RK,Xg)|- (U,K)) ,

Kelliqr \s=12s~Ps

where o € R¥*¢ such that each coordinate of & ~ Exp(\), the exponential distribution with parameter
A > 0. It was established by [27] that if each of the loss function above is Lip-Lipschitz, the iterates
produced by the FTPL strategy above satisfy:

E[|Kto - Ki1,0]1] € X Lip(kd)?k 1= A

where the norm above is defined element-wise. In Lemma 2, we establish that the losses given by
¢? (7, z) are indeed Lipschitz over the space of policies IT| qr. With these set of regularized empirical
minimizers, we proceed to now bound the ergodic stability parameters of these regularized ERM’s,
each one of which is strongly-stable.

Sequential strong-stability of solutions. We first establish that the set of RERM solutions pro-
duced by the algorithm satisfy the sequential strong-stability property (see [10] for details) with the
appropriate parameters. Note that since each of the K; (we drop the dependece on the random noise
o) belongs to the class IT qr, we have that | K2 < &.

Let X, := Xk, be the steady-state covariance of the t*" solution and Xt denote the covariance of
the state reached when policies { K7, ..., K;_1} are applied at the first ¢ timesteps. Consider the
following decomposition for A + BK;:

A+BK,=H,L,H;" where L, =X,"*(A+BK,)X,"? H,=x".
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Bound on | H;| and |[H; ! |,. Using the recursive definition of X;, we have:

2
Uw"‘?

2 Y

1 X2 = Z(A+BKt) W((A+BK)")"

s=0

(36)

The above equation allows us to bound | H |2 < kv/0w/y = Bi. Also, by the definition of the matrix
X, we have that X > W and hence |H; || < 1/\/Tw = 1/, Define & = (81, /a, and note that & > k.

Bound on | L;||>. Starting from the recursive definition of X, we have,

I=X,"(A+BK)X,(A+ BK) X;'* + x]'Pwx'/?
> LiL] + 7 X; "

Tw?
> L L] + ——
T o max(k2,1)

Tw?
20, max(k2,1)"

which implies that | L,| < 1 -4 where ¥ =
Bound on | X; — X;,1|. As before, we begin with the recursive definitions of X; and X;,; to get:

Xt+1 — Xt = (A + BKt+1)Xt+1(A + BKH_l)T - (A + BKt)Xt(A + BKt)T
= (A + BKt+1)(Xt+1 — Xt)(A + BKt+1)T + BAtXt(A + BKt+1)T + (A + BKt)(BAt)T

T1 T2
= Z(A + BKt+1)S(T1 + Tg)((A + BKt_,.l)S)T s
s=0
where A; = K1 — K;. Taking norms on both sides, we get:
20pK° T
[ X1 — Xel|2 < 7‘|At”2 (37

Bound on || H; Y H; 2. Recall that H; = th/ ?. In order to bound the required term, we proceed as
follows:

E| X X213 =Bl XXX

t+1 t+1 t+1
—1 2 -1/2 -1/2 -1/2
<E|X X X P o + BI X (X - X)X L2
E| X1 - X¢|2

Tw

<1+

20pK°0
<1+ 3 v Ak
Tw?

1+4

where we bound the term | X,1 — X¢||> using Eq. (37) and (i) follows by setting A < i

= cop0w Liipk®(kd)? "

Finally, using the fact that /1 + 2 < 1+ z/2 for x € [0, 1], we have that E| H; !, H; |2 < 1+ 7/2.

Ergodic stability parameters. We now proceed to obtain an upper bound on the ergodic stability
parameters. Before doing so, we obtain some auxiliary results which will be useful in establishing
the final bound.

Bound on | XX, | 2. We will now obtain a bound on the difference between the observed covariance

X when a sequence of ERMs are played and the steady-state covariance matrix X;. Let us set some
notation before we begin with bounding this.

Apyi= HiN (X - X)(HDT and Eo| X, - Xpaalla < A
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We then have the following recursion for the term A, ; with the expectation with respect to the
sampling of the noise variable o

E|Agilz <E|(HZYH L) Ag o (Hyy HiLy) 2 + E|(HEZL) (X = X ) ((HZS) 2

<E|Le31Hi  Hel3] Av ol

+ —
2 a2

(i) a)Q A
<|1-=| E|A, + —
(1-2) mlandde+ 5

_5 A
<e M Ag ]2+ % )

where (i) follows from the bound on || L;| < 1-7 and |H; .} H;|2 < (1+7/2). Substituting the value
for A, . in the above bound, we get that:
E % ﬁle At % 5\
[ X1 = Xevallza < 5 (e "E[ X - Xq | + < ). (38)
aj o

Let us now bound the ergodic stability parameters Sgegpy ¢ as

ﬂEERM,t =

]E]E[E(Wt, It[ﬂ'lzt—l]a Z)] - IE[[E(Wt? Z)]‘

_ ‘IE [tr((Q + K] o RKL ) (Ko - Xm,))]’

<d(og+K°0.)Ee | Xto - Xto|2

Eq. (38) 20 N A
S d(og + K20y) - [i; (e TR X - X0 | + i)
ay o

2 2 6 27.2
_5 2 ’Ll)d k*L i
Sd(Uq"’HQO'r)'ﬂig(e At Owk - COpK O'~ . Lp) ’
@, g Y
where \ > 0 is a free parameter corresponding to the noise in the perturbation o.

(39)

Bound on the value. Having established upper bounds on the mixing gap and the ergodic stability
parameters, we now bound the value V| qr, 7 as

E S kkd
Vigrr(TTiqr, 2, ®,0) < " Bhgrm + 2850 (€F o Tgr) + sup 2. |¢%(m, 2e,t) — €5 (7, 2)| +
=1 melliqr t=1
) U,k?  kkd
s ZﬁESEM,t+2m?q(€fOHLQR)+(gq+K2UT),7 +T
t=1
Eq. (39) 2 ) 2 6 wd2k2L i
qs d(atI*’iQU,-)'ﬁ;l( szfi +)\T~Cab/€ a~ i Lip
G\ Fy
U, k2 kkd
+ 2859 (07 o T qR) + (04 + K%0y) - : +KT (40)
Y

where (i) follows from the fact that E[o;] = 1/A.

To obtain a bound on the sequential Rademacher complexity of the class, observe the the matrices
K e R¥*_ Also, by Lemma 2, we have that the loss ¢? is bounded by B,y and Lipschitz with
respect to policies K with constant L;,. Using a standard covering number argument, one can get an

e-net of the class IT g in the frobenius norm with atmost O(dk(+)%) elements. Given this cover,
one can upper bound the complexity as

R59I(0F 0 TILqR) < cBmaxy/kd - Tlog(kdT Lyip)
for some universal constant ¢ > 0. Setting A = O(1/ VT ) concludes the proof of the corollary.  [J

D.3.1 Proof of Lemma 2

We establish both parts of the claim separately.
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Boundedness of stationary loss. Consider the loss £® given by
(®(K,z) = tr[(Q+ KTRK) X k]
0]
<CO+K)| Xkl
ii 2
QoI
Y

where inequality (i) follows from an applicaion of von Neumann’s trace inequality and the trace
bounds on the matrices @ and R, and step (ii) follows from equation (36).

Lipschitzness of stationary loss. For any two matrices K1, K2 € Il qr and instance z € Z,
consider the difference between the stationary losses
|65 (K1, 2) = 05 (K2, 2)| < [tr[Q(Xk, = Xk, || + [tr[ R(K) X e, KT - Ko X, K3 ||

3
2K° 0y

sc(<1+ﬁ2>|xKl—XK2n2+ |K1—K2|2)
O’blﬁl50'w

@)
< 40(1+ K%)=
¥

1K1 - K2,
where step (i) follows from equation (37). This concludes the proof. [

D.4 Online adversarial tracking

The problem of online tracking of adversarial targets in Linear Quadratic Regulators was first posed
in Abbasi et al. [1]. The problem setup involves a state space given by R? and a action space R*. The
sequential game proceeds as follows starting from state 1 = 0

Onroundt=1,...,T,
¢ the learner selects a policy 7y € Il; ack and adversary selects z; € Z = R< such that |2tz < c.
o the learner receives loss £(7y, 2y, 2t ) = (X — 20) TQ (x4 — 2¢) + we (@) Tme (1)

* the state of the system transitions to x;.1 = Ax; + Buy

where the matrices A, B, () are known in advance to the learner and the adversary. In addition, the
matrix Q is positive definite, the pair (A, B) is assumed to be controllable while the pair (A4, Q'/?)
is assumed to be observable. The comparator policy class Il; ,ck is assumed to be the following
restricted class of linear policies:

irack = {m = (K,n) | |A+ BK |2 < p; [ K2 < e [nl]2 < e}
such that the action is given by u; = K;x; + 1. For this setup, as we establish later, the stationary
loss for any policy 7 = (K, 7) is given by:
(2 (m,2) = (2T - 2)"Q(a™ - 2) + |[KzT + 7|3, where 27 =(I-(A+BK))'Bn
Given these preliminaries, we obtain a bound on the value Vi, 7 through the following corollary.
Corollary 9 (Online Tracking). For the online adversarial tracking sequential game, the value Vi 7

is bounded by:
Vtar,T(Htrack> Z> (I)) <O ( V T IOg(T)) )

where the O notation hides the dependence of the bound on problem-specific parameters (see
equation (45) for the exact dependencies).

In contrast to the result obtained above, [1] provide an algorithm for which the regret for the

above problem is bounded by (9(log2 T'). Obtaining such fast rates in our general framework is an
interesting open problem.

Proof of Corollary 9. Our general strategy is to obtain bounds on the the mixing gap and the ergodic
stability paramters for certain regularized ERMs. We then use these upper bounds together with
Corollary 5 to establish the required upper bound.
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Bound on mixing gap. Consider any policy 7 = (K, 7). We are interested in obtaining a bound on
the mixability for this function as:

|67 (7, 2,8) = €5 (7, 2)| < B

Let us abbreviate the state x; [w(t‘l)] by z7. If we run any policy with the linear dynamics, a steady
state 27 is reached with

2T = (A+ BK)zT + By and therefore 7 = (I - (A+ BK)) ™' Bn = Mgn.

:=MK

Then, the corresponding loss at this stationary point is given as
02 (m,2) = (a7 - 2)'Q(aT - 2) + | KaT +1|3.

In order to obtain a bound on the mixing gap, we analyse the convergence of the state x7,; to the
stationary state x7.

) t-1
|af = 2llo = | Y2(A- BK)*By- (A~ BK)* By,
s=0 s=0

)
<P Mkl
where (i) follows from the assumption that | A + BK |5 < p.
Next, we consider a bound on the norm of the state =7 that is reached by any policy.

|25 ll2 = [(A+ BE)ai + Bl

. t
QS (A+BK) By

s=1
W |Ble, _
I-p
where (i) follows from recursively applying the definition of the state evolution and the fact that

21 =0, and (ii) follows from the assumption that | A + BK||5 < p. Having established the above, we
now proceed to obtain a bound on the mixing gap as

|[I>(7T,Z,t) —ET(W,2)| = |(av;r -2)'Q(xf —2) + | K=z} +7]H§ — (25 -2)"Q(xf - 2) + | KX +17||§|

® T T T T T 7r T T
<|(af —2D)'Qaf —2)| +|(af — D) Q(al — 2)| + | K (2f —2T)|3

+2(KaT +n, K (2] - aT))

<2[Ql(ce +e2) - |27 —all2+ cic - 2] — T3 + 2ex (cxes +ey) - a7 a2

€T

<P e (20Q) (ca + ) + 2k (cres +cq)) +07TY  Cicke (41)
——
Ctar,1 Ctar,2

where (i) follows from adding and subtracting 27 in both the terms follwed by an application of

triangle inequality. For ease of presentation, let us represent the above using constants Ct,r ; and
C'ar,2 With the knowledge that these depend on the underlying problem parameters but independent
of the underlying policy m, that is,

€% (0, 2,8) = 02 (7, 2)| < p' ™ Crar1 + P 7D Clar 2 (42)

Ergodic stability parameters. For obtaining a bound on the ergodic stability parameters, we
require a few structural results for the loss ¢® defined above. We present these next and defer their
proofs to the end of the section.

Lemma 3 (Equivalence of Tracking Cost). Consider any policy © = (K,n) and another stable
matrix K'. There exists an 1’ such that we have (2 ((K,n),z) = (2 ((K',n'), z) such that

Blle
H77’||2 §2c7,( lex +1).

(1-p)
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Thus going forward, we conside the ERM procedure on the class of functions II7,, , (K), parameter-
ized for a fixed stable policy K, where the bias

B - B
n< c% 1= max (207, (' lex + 1) ,cnic ||2QH 18] ) ,
L-p oqop(1-p)
with o x denotes the smallest non-zero singular value of X. Note that the conclusions of Corollary 5
are still valid with the mixability parameters ﬂn( (Kt The next lemma establishes the stability of
the ERM solutions obtained in consecutive rounds.

Lemma 4. Fix any p-stable policy K. The ERM solutions mgrm,; = (K,m,) and
merM,t+1 = (K, Mi11) satisfy the following stability bound:
2Cz Ie Q B w
e = na || < GQUIBI Yy

t+1 ogod(1-p) t+1

Having established the stability bound above, one can proceed in a manner similar to [, Lemma 8],
one can establish that for ¢ > plog(T)/(1 - p)

”xt[WERMJ;pl] g TERM, ”2 <

|Blvy  2logt .| Ble,

. 43
1-p t-logt 1-p 43)

Ya,t

Having established the above, we can now obtain a bound on the ergodic stability parameters for the
ERM procedure for the online tracking problem. The calculation is similar to the one done for the
mixing gap (see Eq. (41)).
|5(7TERM,t, xt[ﬂ'ERM,l:t—l]v Zt) - ff(WERM,t, Zt)| < QHQH (C;c + Cz) : HJJt[WERM,u—ﬂ - x:ERM’t ||2
+ i - e lmerm, -] - 2753
+2ck (cxca + ) - |me[mERM,10-1] — 20T 2

<r(2]Q (ex + ¢2) + 2k (crey + c;)) + 1/}§7t6§(
where we have substituted the bound for ||z, [7grm, 1:4-1] — 1" || from Eq. (43). Thus, we that the
ERM ergodic stability parameters are

Berm = Vot - (2]QU(ca +c2) + 2ex (creea +cq)) + 7 ¢k - (44)

Bound on the value. We now proceed to obtain a bound on the value Viar 7, beginning from the
statement of Corollary 5.

T T
Vear, 7 (Htrack, Z, @, 0) < z BtEaFQM}t + Qi)fizfq(ff olIl], . (K))+ sup Z |€‘I>(7r7 2¢,t) — Ef(w, z)|
=1

melligr t=1

Eq. 42) L o o
TS B 2R o T () + T
t=1
Eq. 44) plog T o
P B QU (e e2) + (eres +¢4)) 4 2RFIEL o Iy () + —222 4
= -

21lo¢’ T| B Bjc!
+( og” T Hwn+ | Bllc,

1-p (1_p)2)'(2|Q”(CI+Cz)+4CK(CKCI+Cn)),

(45)
where in the last inequality, we have upper buonded the lower order term 1/)32” by ¥z 1.

Finally, one can obtain a bound on the sequential complexity by noting that the loss ¢? is bounded
since the state |z7 |2 < ¢, and is Lipschitz in the bias parameter 1 with respect to the ells norm.
Using an argument similar to that from the proof of Corollary 8, we have

RE(UF 0 TMfyey (K)) < O (VdT -log(dT) ).

Substituting this bound in equation (45) establishes the corollary. O
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D.4.1 Proof of Lemma 3

Let Vi .(x,u) represent the value function for state-action pair (x,u) with respect to policy 7 and
loss function z. Following Lemma 12 from [ 1] we have that:

ET(W,7Z) —Kf(w,z) = VW’,z(xzvu‘/r’) - Vﬂ',z(xzzuw)~

The action taken by policy 7 is given by u, = KxT + ), while that taken by 7’ is given by K'zT + '
If we set the value of " as:

n'=(K-K)al+n = (2(n',2)=05(r2).

Also, note that one can obtain an upper bound on the norm of 7 as |||z < 2¢,cx + ¢, using the
bounds on the state x7. O

D.4.2 Proof of Lemma 4

We begin by characterizing the ERM solution 7, as follows:

T
nt:argmin(z E [(a::—zt)TQ(xf—zt)+ |K$f+n||g])

n t=12t~Pt

= argmln (Z E [(zf)T[Q + K'KlaT -22,QxT +n'n+n" Kl + (K:E’I)Tn])

t=1%t~pPt

T
—argml Z UT(MIT((Q-FKTK)MK+I+KMK+MIT<KT)17—22’;QMK7]

w

( Z E Zs )QMK>
s=1%2s"Ps

where the last equality follows by minimizing the quadratic and the existence of the inverse because
W > BTQB. and the fact that n) does not lie in the null space of B (it is always beeter to set it to zero

in that case). This ensures that |7 ]2 < cn% and hence the policy 7, = (K,n;) € II} ... We
B

trac
can now obtain the stability bounds as:

t+1
‘W(ZEZS— ZEZS)QMK
s=12%2s~Ps s=1Z%s~Ps
20 alQllBl
Tt+1 ogo%(l-p)’
where the final inequality follows from using the bound on | Mk || as well as the fact that | z||2 < ¢,.
This concludes the proof of the lemma. O

[ P

2

D.5 Online non-linear control

In this section, we look at a non-linear control problem: one formed by extending the LQR problem
above to have non-linear deterministic dynamics. We parameterize the dynmaics using a non-linear
function oy : R? — X as follows:

Tys1 = onNL[ Az + Buy]

We assume that the function oy is 1-Lipschitz and oy, (z)]|| < ¢, for some ¢, > 0. This is done to
ensure that the dynamics satisfy the ergodicity assumption. We now proceed to define the associated
policy class Iy as

Iy = {mo |0 € RY. [0]2 < cg, | [Az + Bmg(2)] - [Az’ + Bro(a")][2 < (1 -7) |z ~2'[l2} .

where the last condition on the function class establishes a stability condition. In addition, we assume
that the function class Ily satisfies a Lipschitz property:

|mo(x) = mgr(x)]2 < L |0 —0"|2 forall xelX.
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The above basically means that if two parameters 6, 6’ are close in the parameter space, then the
policies parameterized by them are uniformly close for all states. Note that the class of linear
policies Il; ack (without the bias term) defined for the adversarial tracking problem satisfies the above
properties. We next outline the learning protocol, with the game starting with z; = 0.

Onroundt=1,...,T,
¢ the learner selects policy 7, € Iy, and the adversary selects z; € Z.
o the learner receives loss £(my, x4, 2¢) € [0,1]

* the state of the system transitions to xy,1 = on. [ Az + Buy]

For the above setup, we shortly establish that the stationary loss for any policy 7 is given by
(*(m,2) = (m,2T,z) where 27 =on[AzT + Br(zT)], (46)

where the existence of the fixed point is guaranteed by the stability assumption on the function class
in conjunction with the Brouwer fixed-point theorem. In the following lemma, we show that the loss
function £ above is Lipschitz with respect to the parameter 6.

Lemma 5. The loss function (2 given in equation (46) satisfies

|B|2L7r)
Y

|€f(7r91 ,2) = E?(W@z,zﬂ < (Llyg +L, |61 =62l forall mp, , 7o, €N, z€Z.

Lyip
We prove the lemma at the end of the section. Taking this as given, we now establish the learnability

of the function class IIy in the following corollary.

Corollary 10 (Online Non-Linear Control). Consider any value of A > 0 and loss function { which
is L 5-Lipschitz in the state space and Ly g-Lipschitz in the parameter space with respect to the {5
norm. For the online non-linear control problem described above, we have that the value

V(T 2, @) < O (/Tlog(T))

where the O notation hides the dependence of the bound on problem-specific parameters (see
equation (52) for the exact dependencies).

Notice that the above corollary establishes an upper bound of 0] (\/T ) for the value Vi 7. Thus,
despite the fact that the setup does not have the nice structure of the LQR problem, we are able to
establish the learnability of the class Iy in the online learning with dynamics framework.

Proof of Corollary 10. We begin by establishing a bound on the mixing gap for the class Iy, as
well as the ERM ergodic stability parameters. Throughout this section, we would often drop the
dependence of the function 7y on the underlying parameter § when it is clear from the context.

Bound on mixing gap. Consider any policy 7 € Il and the associated stationary loss
(®(m,2) =(m,27,z) where 27 =on[AzT + Br(zT)],
where the non-linearity oy is applied element-wise to its arguments. Consider now the difference
between the stationary and the counterfactual loss as
D ™ ® T T
|£ (7T7 th) - K(’/T’ Ly Z)| < Ll@ th Ty ”2
< Liglon[Aziy + Br(2i_,)] - ond [AzT + Br(27))]]2

(i) i i
< Lia(1-7) ey — 272

(i)
< 2L per (1), 47)

where (i) follows from the L; ,-Lipschitzness of the loss function, (ii) follows from the fact that
7 € Iy, and (iii) follows from the boundedness of the states.
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Regularized ERM. Similar to the proof for Corollary 8, we consider the following FTPL based
ERM

t

0,0 = argmin (Z E [E‘f(m, z)] - (0,9)) ,
HeOnL s=]12s~Ps

where o € R% such that each coordinate of o ~ Exp(\), the exponential distribution with parameter

A > 0. We establish in Lemma 5 that the loss functions defined by ¢% (-, z) are Ly -Lipschitz in the
parameter € and hence the iterates satisfy

E (0,0 = Ors1,0[1] < X+ L (dg)’k = Ag
where the norm above is defined element-wise.

Ergodic stability parameters. With these set of regularized ERMs, we proceed to now bound the
stability parameters of these solutions. Consider again the difference between the stationary and the
instantaneous loss:

E[f(ﬁuxt[ﬁlth]), ] [fq)(ﬂth)]
where the above inequality follows from the L; , L1pschitz property of the loss function in the state
space. We have dropped the dependence of 7 on the noise perturbation o, underlying parameter 6 as
well as the fact that these are RERM solutions. In order to obtain the stability parameters, we proceed
to obtain a bound on the terms on the right.

< LigE elmiea] —af 2+ 23t —ai (2], 48)

Bound on |z]* — z7*||2. The upper bound on this difference is similar to the one we obtained while
bounding the mixing gap, the only difference being we have to handle the expectation with respect to
the random perturbation o. Consider,

e [HO’NL[A:ET”+B7T15(J} O] - on[Axty + Br(a)]|2]
<(1 V)E[me—w 2]

<(1-v)""2¢,, (49)
where the sequence of inequalities follows since we have 7y ; , € IIy_ for any sampling of the
perturabtion variables o.

Bound on ||z;[71:4-1] — 27*|2. Consider a parameter 7 > 1 to be specified later. We can then
decompose the desired difference as follows:

th[ﬂlt 1 H2 Z(th Ty 77Tt—ia7rt>~~;7rt:|_xt[ﬂlan~a7rt—i—1aKta~~'77Tt]H2)
+th[wla"'aﬂ-t—‘r—laﬁta"'aﬂ-t]_'rt[ﬂ-tw"aﬂ-t]HQ
-
SZ(th[m,...,Wt,iﬂrt,...,m]—xt[m,...,Wt,i,l,ﬁt,...,m]HQ)+20w(1—7)7_1,

where the last inequality follows from a similar calculation as in equation (49). We now focus
on the terms in the summation above, focussing on a general term ¢. Let us redefine the state to

be xf = x4_;[m1,...,T—i-1]. Now, denote by &; = 41 j[m—i, 7, .. ., 7] to be the state reached
when we select 7,_; at the (t — i)*" time instance, followed by my for j — 1 steps. Similarly,
T = Tp—jej [7e, 7, ..., 7] is the state reached when one begins from x) and selects 7 for the next j

time steps. Bounding the sum above is equivalent to bounding the difference z; — Z;.
|%; = Zill2 = [lonL[ATio1 + Bme(25-1)] = onL[AZi-1 + By (2i-1) ]| 2
<(1=9)" a1 -2
= (1) Mowc[Axh + Bryi(2})] - o [Azh + Bry(ap)] ]
<(L=7)"" B2 [mimi(ah) - me(2)]
2 (-2 Bl Laluni - 6]
<i(1-7)"" - |Bla- Les
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where (i) follows from the Lipschitz assumption on the function class in the parameter space. Setting
7 =t and summing up the above inequalities, we get,

| B2 Lx Ao
2

[EARSEAY R P +2e, (1) (50)

Finally, substituting the bounds obtained in eq. (49) and eq. (50) in eq. (48), we get that:

E [l(7y, x¢[m1:4-1]), 2] — IE [éf(ﬂ't, z)]

g

Bla- LA - *
<Ly (||2729+40w(1—7)t 1):=5RERM¢ (51

Bound on the value. Having established the mixing gap and the RERM stability paramters, we
now upper bound the value Vi 7 (Inc, Z, @, )

QR T i

WLz (e, 2,@,6) < 37 Breru s + 29877 (67 0 i) + sup S |eF (2, t) - €3 (0, 2)| +%
t=1 melln t=1
Eq. 47) L 9L d
< > Brerms + 2059 (02 0TIy ) + S | CL)\G
t=1
Eq. 51) L; L, |B 6Ly o d
q§ LiQHHZ.)\eT_‘_Q%S;qu OHNL) n 1,zC + 6979 (52)

v v A
where (i) follows from the fact that E[o;] = 1/A.

Following the proof technique of Corollary 8, it suffices to establish the stationary loss is bounded (by
definition) and is Lipszhitz with respect to the underlying parameter (Lemma 5). Combining this with
the fact that the parameter # € R%, we have that the sequential Rademacher complexity is bounded as

N7 0 iqr) < ey/d-Tlog(dT Lusp),

for some universal constant ¢ > 0. Setting a value of A = 1/ /T then conlcudes the proof of the
corollary. O

D.5.1 Proof of Lemma 5

For any policies 7; : = mg, € Il qr and 75 : = my, € II| qr, and instance z € Z, consider the difference
in the stationary loss

|A€f(7T17Z) - E(f(ﬂ—%z)l < |‘€(7Tl7x:172) - é(ﬂlaﬂf?vzﬂ + |£(7T17x:27z) - E(W2,$22,2)|
(é) Lio
(ii)
<

|91 -0 H2 + L, ||957>;rl -x}? H2

BzLﬂ)
g

(Ll,e + L, 161 = 622,

where inequality (i) follows from the Lipschitz property of the loss function with respect to the
policy and state space while inequality (ii) follows from the Lipszhitz property of the policy. This
establishes the deisred claim. O

D.6 Online LQR with adversarial disturbances

In this section, we consider the example of an online learning with dynamics problem where the
adversary is allowed to perturb the dynamics in addition to the adversarial losses at each time step.
We will focus on the Linear-Quadratic setup where the dynamics function is linear and the costs
quadratic in the state z; and action u;. Agarwal et al. [2] studied a general version of this problem
where they considered the convex cost functions with linear dynamics.

As in the Online LQR example in Section D.3, we consider the class of linear policies II; qgr which
are (k,y)-strongly stable. Given this policy class, the online learning with dynamics game proceeds
as follows, starting from state xg = 0

Onroundt=1,...,T,

35



* the learner selects a policy K; € II| qr and the adversary selects instance z; = (Q¢, Ry) such
that Q; > 0, R; > 0 and tr(Q;), tr(R;) < C and (; such that ||(;]2 < W

* the learner receives loss ¢(m;, x4, 2 ) = x] Q¢ + uf Ryuy where action uy = Kyxy

* the state of the system transitions to x;.1 = Ax; + Bus + &
where we assume that the transition matrices A and B are known to both the learner and adversary
in advance. Observe that in this case, a stationary loss 2 does not exist because of the adversarial
perturbations (; in the dynamic; indeed, if a learner repeatedly plays the same policy K € II| gr,
the state of the system is not guaranteed to converge to a unique stationary state. We now proceed
to obtain an upper bound on the value V,q, 7 in the following corollary, by directly controlling

the dynamic stability parameters { BRERM,t} for this policy class II| qr with a similar FTPL based
regularized ERM as used in the proof of Corollary 8.

Corollary 11 (LQR with adversarial disturbances). For the online LOR with adversarial disturbances
problem, the value V,q, T is bounded as

Vadv, 1 < O(\/T'log(T)),

where the O notation hides the dependence on problem-specific parameters.

Proof. As we discussed above, the stationary losses /& do not exist for this setup. Instead, we
will work directly with the counterfactual losses ¢® for this setup. Recall from Definition 2, the
counterfactual loss at time ¢ for some linear policy K ¢ II| qr is defined as

f?(Kta Ciets Zt) = K(Kt, xt[Kt(t_l)a Cl:t—l]a Zt)~

To instantiate the above counterfactual for the LQR problem, we will define some notation. Let us
denote by xy = x4[ K141, (1:4-1 ] the state at time reached by playing the sequence of policies K.;—1

and by z; = xt[Kt(t_l), C1:4—1] the state when the learner plays polices K for the first ¢ — 1 time steps.
Further, let us denote by X, = z;2;{ the rank 1 covariance matrix at time ¢ for state =, and similarly
X = &, for state Z;. With this notation, we have the losses

C(Kp, @[ K11, Ciieer ], 26) = tr((Qe + K{ Re K ) Xy)  and 07 (K, Crieo1, 2¢) = tr((Qs + K| Ri K1) Xy).
(53)

We now proceed to define the regularized ERM that we shall use and derive an upper bound on the
dynamic stability parameters.

Regularized ERM. As in the proof of Corollary 8, we will consider the class of dual regularized
ERM derived by the FTPL strategy

i
Ktygzargmin(z E [(Qs-i—KTRK,Xs)]—(U,K)) 54)
KEHLQR s=1%s~Ps

where o € R¥* such that each coordinate of o is sampled i.i.d. from the exponential distribution
with parameter A > 0. Following a similar argument as the one in the proof of Corollary 8, we have

E[| Kt - Kie1.0]1] < A~ Liip(kd)?k := Axc, (55)
where the constant Ly, represents the Lipschitz constant of the function 2% (see Lemma 6).

Dynamic stability parameters. For any time ¢ > 0 and the policies { K;} given by equation (54)
(we drop the dependence on the noise o) and any sequence of adversarial instances ((y:¢, 21:¢), We
have

108 (K, Gty 20) = bo( Ky 0, 21)| = Qo + KT Ry Ky, Xy — X )|
<tr(Q+ K] R K,) - | Xy - Xio. (56)

Thus, in order to obtain a bound on the dynamic stability parameters, we need to obtain a bound on
the spectral norm of the difference X; — X;. To do so, we begin by bounding the distance between
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the states x; and T; as

Tt — i‘t = (A + BKt—l)xt—l + Ct—l - (A + BKt).f?t_l - Ct—l
= (A + BKt)(th_l - i‘t—l) + B(Kt_l - Kt)xt_l

t—1
=(A+BEK,)" " (x1-%1) + Y. (A+ BK;) *B(K, - K;)z , (57)
5=2

where the final inequality follows by unrolling the recursion. Observe that the first term in the above
equality is O since both x; = £ = (3. Taking the 5 norm on both sides, we get,

) = s
|2y = T2 € CooprAk 2(1_7)t (t-s)
s=2
© Caosmie _ o (58)
v

where inequality (i) follows by using the fact that K is (k,v)-strongly stable and the bound on the
norm of the state |zs|2 < % := C,, and (ii) follows by summing up the series. With this bound, we
obtain an expression for the difference between the covariances at time ¢ + 1 as

Xie1 = Xea1 = (G((A+ BKy1)E) " + (A+ BEKy) (] + (A+ BKy1)Xi(A+ BK;1)")
~(G((A+ BEKy)xy)" + (A+ BKy)x (] + (A+ BK;) X (A+ BK,;)")
= (T —2¢)"(A+ BKy1)" + (A+ BKy1) (2 — 24) ¢,
Af
+ Gl (K1 — K)"BT + B(Kyo1 — Ky )z

Ag
+ B(Kt+1 - Kt)Xt(A + BKt)T + (A + BKt+1)Xt(B(Kt+1 - Kt))T

Ag

+(A+BK,1)(X, - X;)(A+BEK,,)".

Let us denote by At)}“l =X ++1 — Xy+1 the difference between the covariance at time ¢ + 1 and by
K1 := A+ BK;,1. With this notation, we can rewrite the above as

3
AY = (Kp) A (Kpr)" + Y A
i=1
=0 1,72 = 2 15 u
= Kt+1At); (Ki)" + Ko ZA? K+ Z A§
i=1 =1

~ ~ 3 t ~ ~
= K AN (KL )T+ 2 Y K A (KT, (59)

i=1s5=2

where in the last equality observe that A% = 0. In order to bound the deviation | A% [, we will now
bound each of three terms in the above equation separately.

Bound for A;. To obtain a bound on the term with the error A4, recall from equation (58) that we
have ||z, — Z||2 < Cy 2. With this, we have,

t ~ t
> K AT (KT <2W Caan® - 3 (1= 7))
5=2 s=2

oW K3
Y

<

Chs. (60)
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Bound for A,. For the error term corresponding to Ao, recall that we have |Kq — Kq|2 <
(t+1-5s)- Ak. Substituting this in the error term, we have,

t t
> KL ASKLTT) T <20W AR Y (1-9)? 7 D (t -5+ 1)
s=2 s=2
20pWC, K>
< ‘7372” Ak . ©61)
gl
Bound for Aj. Finally, for the error term Ags, observe that the spectral norm of the covariance
| X¢]2 < C2, and substituting this in the sum, we have
t t
Y KA KT <2C0pr Ak 3 (1-7)* D (8- s + 1)
s=2 =2
C2 3
Lf” A (62)
Y
Substituting the bounds obtained in equations (60), (61) and (62) in the upper bound on the stability
parameters in equation (56), we have that the dynamic stability parameters Srerm ¢ = cg Ak, where
the constant cg depends on problem dependent parameters and can be obtained from the above
equations. Having established a bound on the dynamic stability, we now upper bound the value for
this problem.

Bound on the value. The value of the online LQR with adversarial disturbance problem is

QI s rkd
Vaav, T(HLgr, Z,®,0) < > Brerm,e + 28577 (07 o T qr) + ~
t=1
(ii) kd
< cphpe - T+ 2059(0% o T qr) + HT : (63)
where (i) follows from the fact that E[o;] = 1/ and (ii) follows from noting that each of the dynamic
stability parameters is upper bounded by cgAg.

To obtain a bound on the sequential Rademacher complexity of the class, observe that by Lemma 6,
we have that the loss ¢® is bounded by By, and Lipschitz with respect to policies K with constant
Li;p. Using a standard covering number argument, one can get an e-net of the class II qr in the
frobenius norm with atmost O(dk(%)dk) elements. Given this cover, one can upper bound the
complexity as

R59I(0F 0TI qR) < €Bmax\/kd - Tlog(kdT Lyip)
for some universal constant ¢ > 0. Setting A = O(1/ VT ) concludes the proof of the corollary.  [J

Lemma 6. For the counterfactual loss (¥ (K, (141, %) defined in equation (53) and policy class
Il qr, we have

2
a (F is bounded by [(® (K, (14-1.2,)| < C(1 +K?) - (%) = Bmax-

b (? is Lipschitz with respect to K with

264C, oW K3C?
|€f(K1)—€?(K2)|SC(QC§K+(52+1)( LA z03))~||K1—K22.

2
Proof. We will establish both the parts separately.

Proof for part (a). Consider the counterfactual loss Zf at time ¢
|07 (K, Cu-1, 20)| = (Qr + KT Ry K, T4y )
< Qi+ KTRK |2 - |25
W 2
g0(1+,§2)-(“—) , (64)
Y
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where the last inequality follows by using the fact that the policy K is (x,)-strongly stable and that
|zl < C 2=

7’}/ .

Proof for part (b). Consider any two linear policies K, Ko € Il qr. The difference in the
counterfactual losses is given by

|67 (K1, Cre-1, 2) = 0 (K2, Cre-1, 20) = (@ + K] RK1, X1) - (Q + K] RK», X5
<C(K2+1)| X1~ X, “Ck|K1 - Ka|2, (65)

where we have used the notation X, = Z,Z; to denote the covariance at time ¢ and the final inequality
follows by noting that tr(Q), tr R < C and || K;||2 < k for ¢ = {1,2}. Let us denote by K = A+ BK

the effective state traEsisiotn matrix. We now focus on the term corresponding to the difference of the
covariances X ; — Xo .
Xi-Xoyt= (f(li’l,t—lcgq + Ct—lflt_lfq + f(l)?l,t—lfq) - (K2552,t—1CtT_1 + Ct—ligt_lf(; + f(2)~(2,t—1f(;)
= (K, - K2)&141¢, + (t—li’h_l(f(l ~ Ko)" + Ko(#1,0-1 — F2,0-1)Cq + Coo1 (F1,0-1 — F2,0-1) T Kg
At As i1
+ (f(l - f(z))?uqfq + K2)~(1,t—1(R1 - [(Z)T +I~(2(X1,t—1 - XQ,t—l)f(zT

Az -1
t—

3
ZZ t 1+SA15 Ké 1+s) (66)
i=1s=2

=

In order to show establish the Lipschitzness of the loss function £%, we will obtain a bound on each
of the three error terms comprising A; separately now.

Bound on A;. For the term corresponding to A1, observe that both the state Z and the disturbance ¢
are bounded vectors. Using the (x,)-strong stability of the policy K, we have

t-1 2
~ i 1es i les k“CpopW
|30 K5 AL (B5) T € = | Ky = Ko, 67)
s=2
Bound on A,. For the second term, observe that
- . kogC
|21t — Totf2 < pe K - Kao.

With this, we can bound the second term in equation (66) as

ot i 1vs K1CropW
|3 K5 A (K1) Tl < =257 -

s=2

| K71 — Ka2. (68)

Bound on Aj. For the final term, note that | X[, < C2. With this, we can bound the term corre-
sponding to As as
t-1 3012
~ . ~ lts k°CZo
| K55 D (K5 T19) T < =22
s=2

Ky - Kao. (69)

Combining the bounds obtained in equations (67), (68) and (69), with the upper bound in equation (66)
establishes the desired claim. O]

39



	Introduction
	Online learning with dynamics
	Problem setup
	Minimax Policy Regret

	Upper bounds on value of the game
	Lower bounds on value of the game
	Examples
	Proof of Proposition 1
	Proofs of upper bounds
	Proof of Theorem 1
	Proof of Proposition 2

	Proofs of lower bounds
	Proof of Theorem 2
	Proof of Proposition 3
	Proof of part (a)
	Proof of part (b)


	Details of examples
	Online Isotron with dynamics
	Online Markov decision processes
	Online linear quadratic regulator
	Proof of Lemma 2

	Online adversarial tracking
	Proof of Lemma 3
	Proof of Lemma 4

	Online non-linear control
	Proof of Lemma 5

	Online LQR with adversarial disturbances


