
Supplementary Material
A Analysis of VPU

A.1 Class prior estimation in uPU and nnPU

The risk estimator in uPU [10, 11] is defined by (1), and nnPU [12] provides a nonnegative estimator

risk(Φ) = πPElabeled data [`+ (Φ(x))]+max {0,Eunlabeled data [`− (Φ(x))]− πPElabeled data [`− (Φ(x))]}
(10)

in order to avoid overfitting, where the classifier Φ is not necessarily an approximate Bayesian
classifier and its range can be R. Both (1) and (10) consistently estimate the misclassification risk

πPEfP [`+ (Φ(x))] + (1− πP )EfN [`− (Φ(x))]

under Assumption 1, where fN denotes negative distribution P(x|y = −1). In usual cases, loss
functions `+ and `− satisfy [12]

1. `+ (Φ(x)) ≥ 0 and `− (Φ(x)) ≥ 0 for all x.

2. `+ (Φ(x)) → 0 as Φ(x) → C for some constant C, where C can be∞. This implies the
loss is zero if Φ classify a positive sample x as positive with a high confidence.

If we minimize the estimated risk by regarding πP as a variable, a trivial minimum of 0 can be
achieved with πP = 1 and Φ(x) ≡ C in the limit of infinite data size, i.e., all data are predicted
as positive. achieves a trivial minimum of 0 with πP = 1 and Φ (x) ≡ C, i.e., unlabeled data are
predicted as positive. This result is obviously uninformative. Moreover, it is also infeasible to select
πP as a hyperparameter by the estimated risk based cross validation, since the minimal estimated risk
on validation set can also be obtained with πP = 1 and Φ (x) ≡ C. Therefore, unless some negative
samples are available as validation data, the class prior estimation is an unavoidable intermediate step
when performing uPU or nnPU.

A.2 Assumption 2 and irreducibility assumption

According to Assumption 1, the unlabeled data distribution can be decomposed as

f = πP · fP + (1− πP ) · fN ,

where fN = P(x|y = −1), and it can be rewritten as

f = π′P · fP + (1− π′P )f ′N

with

π′P = cπP ,

f ′N =
(1− c)πP · fP + (1− πP ) · fN

1− cπP
,

for all c ∈ (0, 1). This implies that fN and πP cannot be uniquely determined from f, fP if fN
is a mixture distribution which contains fP . In order to deal with this problem, most class prior
estimation methods [16–19] assume that fN is irreducible with respect to fP , i.e., if fN is not a
mixture containing fP [33]. One stronger variant of the irreducibility assumption is [34, 35]

min
A⊂Rd,

∫
A fP (x)dx>0

fN (x)

fP (x)
= 0. (11)

We now show that Assumption 2 is equivalent to (11).

Proposition 9. Assumption 2 is satisfied if and only if (11) holds.
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Proof. If (11) holds and A is an optimal solution,

Φ∗(x) =
πP fP (x)

f(x)

=
πP fP (x)

πP fP (x) + (1− πP )fN (x)

=
1

1 + 1−πP

πP

fN (x)
fP (x)

= 1

for all x ∈ A, and therefore Assumption 2 is satisfied by A. If Assumption 2 holds with set A,

fN (x)

fP (x)
=

f(x)− πP fP (x)

(1− πP ) fP (x)

=
f(x)− f(x)Φ∗(x)

(1− πP ) fP (x)

= 0,

for all x ∈ A, which implies that (11) also holds.Proof of Theorem 3

According to (4) and the definition of KL divergence,

KL(fP ||fΦ) = EfP
[
log

fP (x)

fΦ(x)

]
= EfP [log Φ∗(x)] + EfP [log f(x)]− logEf [Φ∗(x)]

− (EfP [log Φ(x)] + EfP [log f(x)]− logEf [Φ(x)])

= −Lvar (Φ∗) + Lvar (Φ) .

A.3 Analysis of minimum points of Lvar

Proposition 10. For any constant c > 0, Lvar (c · Φ) = Lvar (Φ).

Proof. From the definition of Lvar, we get

Lvar (c · Φ) = logEf [c · Φ(x)]− EfP [log (c · Φ(x))]

= log

∫
cf(x)Φ(x)dx−

∫
fP (x) log (c · Φ(x)) dx

= log c+ log

∫
f(x)Φ(x)dx

− (log c) ·
∫
fP (x)dx−

∫
fP (x) log Φ(x)dx

= log

∫
f(x)Φ(x)dx−

∫
fP (x) log Φ(x)dx

= Lvar (Φ)

for any c > 0.

It can be seen from the above proposition that Φ∗ is not the unique minimum point of Lvar. For all
c ∈ (0, 1

supx Φ∗(x) ], Φ = c · Φ∗ satisfies

0 < Φ(x) ≤ Φ∗(x)

supx Φ∗(x)
≤ 1

and is also a minimum point. In fact, we can show that all minimum points of Lvar are in the form of
Φ = c · Φ∗.
Proposition 11. A function Φ : Rd 7→ [0, 1] satisfies Lvar(Φ) = Lvar(Φ

∗) iff Φ = c · Φ∗and
c ∈ (0, 1

supx Φ∗(x) ].
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Proof. The sufficiency is trivial, and so we only give the proof of the necessity. Suppose that Φ is a
minimum point of Lvar, then

∂

∂ε
Lvar(Φ + εh)

∣∣∣∣
ε=0

=
∂

∂ε
log

∫
f(x) (Φ(x) + εh(x)) dx

− ∂

∂ε

∫
fP (x) log (Φ(x) + εh(x)) dx

=

∫
f(x)h(x)

Ef [Φ]
− fP (x)h(x)

Φ(x)
dx

must be zero for an arbitrary function h(x). Hence,

f(x)

Ef [Φ]
− fP (x)

Φ(x)
≡ 0

⇒ Φ(x) ≡ Ef [Φ]
fP (x)

f(x)

By combining the above equation and the Bayes rule, we have

Φ(x) = Ef [Φ]
fP (x)

f(x)

=
Ef [Φ]

πP
· Φ∗(x).

It is obvious that c =
Ef [Φ]
πP

> 0. In addition, we can conclude from supx Φ(x) ≤ 1 that

sup
x
c · Φ∗(x) ≤ 1⇒ c ≤ 1

supx Φ∗(x)
.

Based on the above analysis, we can conclude that Φ∗ can be uniquely determined for given f and
fP under Assumption 2.

Proposition 12. If Assumption 2 is satisfied and supx Φ(x) = 1 for a function Φ : Rd 7→ [0, 1],
Lvar(Φ) = Lvar(Φ

∗) iff Φ = Φ∗.

Proof. This is a trivial corollary of Proposition 11.

Furthermore, the following proposition provides the optimal solutions in the case where only estimated
f, fP are available.

Proposition 13. All solutions to minΦ L̂var(Φ) with L̂var(Φ) = logEf̂ [Φ(x)] − Ef̂P [log (Φ(x))]
satisfy

Φ(x) ∝ f̂P (x)/f̂(x).

Proof. Omitted as it is similar to that of Proposition 11.

Analysis of Regularization

For given P and U , the empirical estimate of Lvar(Φ) is

L̂var(Φ) = log
1

N

∑
x∈U

Φ(x)− 1

M

∑
x∈P

log Φ(x).

Therefore, if the capacity of the model Φ is extremely high, simply minimizing L̂var(Φ) yields

Φ(x) =

{
1, x ∈ P,
0, otherwise. (12)
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This overfitting issue can be partly alleviated by early stopping, i.e., stopping the training when
Lvar(Φ) estimated on the validation set starts to increase. But according to our numerical experience,
it can be more effectively overcome by the MixUp based regularization described in Section 3.2.

For two randomly selected x′ ∈ P and x′′ ∈ U , if Φ∗(x̃) is extremely underestimated with Φ(x̃)→ 0
for the virtual sample x̃ (see (9)), we can conclude that the regularization w.r.t. x̃(

log Φ̃− log Φ(x̃)
)2

≥ (log γ − log Φ(x̃))
2

= O
(

(log Φ(x̃))
2
)
→∞

as Φ(x̃)→ 0. Thus, with the regularization (8), the resulting Φ(x) decay smoothly outside of P and
the trivial solution (12) is excluded.

Another possible choice is the mean square error based regularization EΦ̃,x̃

[(
Φ̃− Φ(x̃)

)2
]

, but this

regularization term is bounded and penalizes less for overfitting.

We can also define the regularization by using the standard cross-entropy loss, which yields the
regularization loss

−Φ̃ log Φ(x̃)−
(

1− Φ̃
)

log (1− Φ(x̃)) = O (− log Φ(x̃))

for each x̃. It can be seen that the proposed mean squared logarithmic error based regularization
penalizes more heavily the underestimation of Φ(x̃).

Another possible choice is the mean square error based regularization EΦ̃,x̃

[(
Φ̃− Φ(x̃)

)2
]

, but this

regularization term is bounded and penalizes less for overfitting has less penalization.

As for the MixUp strategy, the MixUp between P and U ensures that Φ̃ ≈ 1 for γ ≈ 1 and
Φ̃ > Φ(x′′) (see (9)), so it can solve the overfitting problem by penalizing the underestimation of
Φ(x) heavily for unlabeled data. As a comparison, MixUp inside P or U cannot effectively penalize
the underestimation of Φ(x) outside of P . So we implement MixUp between P and U as in (9), and
can lead to more accurate and robust classifier according to our numerical experience than MixUp on
P ∪ U (i.e., x′ and x′′ are both randomly drawn from P ∪ U ) according to our numerical experience.

The advantage of (8) is demonstrated in Section 5.4.

A.4 Proof of Theorem 6

Notice that the variational loss estimated from data

L̂var(Φ(·, θ)) = log

∑
x∈U Φ(x, θ)

N
−
∑
x∈P log Φ(x, θ)

M
p→ Lvar (Φ(·, θ))

for a given θ as M,N →∞. According to Theorem 2.1 in [36] and Proposition 12, we can conclude
that the optimal solution Φ(x, θ) to (7) converges to Φ(x, θ∗) when M,N →∞ and λ→ 0.

A.5 Proof of Theorem 8

By considering condition (ii) in Assumption 7 and the fact that Φ∗(x) can be written as

Φ∗(x) = Z−1fP (x)/f(x),

we have

max
x

Φ∗(x) = Z−1 max
x

fP (x)/f(x) ∈ [1− ε, 1]

⇒ Z ∈
[
max
x

fP (x)/f(x),
maxx fP (x)/f(x)

1− ε

]
.
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It can then be known from Proposition 13 that the optimal solution Φ to

minL′var(Φ) = logEf [Φ(x)]− Ef ′P [log Φ(x)]

under constraint maxx Φ(x) = 1 is given by

Φ(x) =
f ′P (x)/f(x)

maxx f ′P (x)/f(x)
.

We can obtain from condition (i) in Assumption 7 that

Φ(x) ≥ c1fP (x)/f(x)

c2 max fP (x)/f(x)

≥ c1fP (x)/f(x)

c2Z

=
c1
c2

Φ∗(x)

and

Φ(x) ≤ c2fP (x)/f(x)

c1 max fP (x)/f(x)

≤ c2fP (x)/f(x)

c1(1− ε)Z

=
c2

c1(1− ε)
Φ∗(x)

For convenience of analysis, we denote the misclassification probability of Φ for a given sample x by

Rx(Φ) =

{
P (y = +1|x) , if Φ(x) < 0.5
P (y = −1|x) , if Φ(x) ≥ 0.5

.

Thus,

Rx(Φ)−Rx(Φ∗) = Φ∗(x) · 1Φ(x)<0.5 + (1− Φ∗(x)) 1Φ(x)≥0.5

−Φ∗(x) · 1Φ∗(x)<0.5 − (1− Φ∗(x)) 1Φ∗(x)≥0.5

= (2Φ∗(x)− 1) · 1Φ(x)<0.5 · 1Φ∗(x)≥0.5

+ (1− 2Φ∗(x)) · 1Φ(x)≥0.5 · 1Φ∗(x)<0.5

≤
(

Φ∗(x)

Φ(x)
− 1

)
· 1Φ(x)<0.5 · 1Φ∗(x)≥0.5

+

(
1− Φ∗(x)

Φ(x)

)
· 1Φ(x)<0.5 · 1Φ∗(x)≥0.5

≤
(
c2
c1
− 1

)
· 1Φ(x)<0.5 · 1Φ∗(x)≥0.5

+

(
1− c1(1− ε)

c2

)
· 1Φ(x)<0.5 · 1Φ∗(x)≥0.5

and

R(Φ)−R(Φ∗) = E [Rx(Φ)−Rx(Φ∗)]

≤ max

{
c2
c1
− 1, 1− c1(1− ε)

c2

}
.

B Experiment details

The data sets are divided into training and test sets. For VPU, a cross-validation criterion is provided,
so we further proportionally divide the training set into training and validation sets.
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Table 5: Description of UCI datasets used in experiments.

Dataset N size of test set d

Page Blocks 3284 2189 10

Grid Stability 6000 4000 14

Avila 10430 10437 10

Table 6: Experimental settings for UCI datasets. NP ,M,Mv denote respectively the number of
positive samples in the training set, number of labeled positive samples in the training set, number
of labeled positive samples in the validation set. The size of validation unlabeled samples can be
calculated via Nv = N ×Mv/M , where N is the size of training unlabeled samples.

Experiment setting Data amount Validation size πP Hyperparameter

Page Blocks1 ’2,3,4,5’ vs ’1’ NP =342M=100 Mv=16 0.104 λ = 0.0003, α = 0.3

Page Blocks2 ’1’ vs ’2,3,4,5’ NP =2942M=100 Mv=16 0.896 λ = 0.0001, α = 0.3

Grid Stability1 ’stable’ vs ’unstable’ NP =2187M=1000 Mv=167 0.365 λ = 0.1, α = 0.3

Grid Stability2 ’unstable’ vs ’stable’ NP =3813M=1000 Mv=167 0.635 λ = 0.1, α = 0.3

Avila1 ’A’ vs The rest NP =4286M=2000 Mv=192 0.411 λ = 0.1, α = 0.3

Avila2 ’A,F’ vs The rest NP =6247M=2000 Mv=192 0.599 λ = 0.03, α = 0.3

For each experiment, 10 repeated runs are done, and mean and standard variance of test accuracy
are calculated. By default, for each run the neural network is trained for 50 epochs, and results are
reported at the epoch with lowest Kullback-Leibler divergence on the validation set. We fix α to 0.3
and use the Kullback-Leibler divergence on the validation set as the criterion for tuning λ, selected in
{1e− 4, 3e− 4, 1e− 3, · · · , 1, 3}.

Moreover, we denote P(y = +1), P(y = −1) by πP and πN .

B.1 UCI datasets

We first clarify the UCI datasets used in our experiments in Table 5. Then, we give the detailed
experimental settings of each experiment in Table 6. The datasets do not go through any preprocessing.

B.2 FashionMNIST, CIFAR-10 and STL-10

Labels of ten classes of each image datasets are reported in Table. 7, which are denoted by numbers 0
to 9 in Section 5.3. The details of the experiments are shown in Table 8. All datasets conduct data
preprocessing: normalization with mean and standard deviation both as 0.5 at all dimensions.

B.3 Choice of hyperparameters of GenPU

GenPU contains four hyperparameters: πPλp, πPλu, πNλn, πNλu. Although the parame-
ters are coupled for given πP in [14], our experience shows that the better performance can
be achieved by selecting the four parameters independently. Table 9 shows the best hyperpa-
rameters which lead to the largest classification accuracies on test sets. They are selected in
{0.01, 0.05, 0.1, 0.5, . . . , 1000, 5000} by greedy grid search.

FashionMNIST t-shirt, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, ankle boot

CIFAR-10 airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck

STL-10 airplane, bird, car, cat, deer, dog, horse, monkey, ship, truck

Table 7: Class labels of image datasets, which are denoted by numbers 0, 1, . . . 9 in Section 5.3.
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Table 8: Experimental settings for FashionMNIST, CIFAR-10 and STL-10. NP ,M,Mv denote
respectively the number of positive samples in the training set, number of labeled positive samples
in the training set, number of labeled positive samples in the validation set. The size of validation
unlabeled samples can be calculated via Nv = N ×Mv/M , where N is the size of training unlabeled
samples.

Experiment Setting Data amount Validation size πP Hyperparameter

FashionMNIST1 ’1,4,7’ vs ’0,2,3,5,6,8,9’ NP =15000M=3000 Mv=500 0.300 λ = 0.3, α = 0.3

FashionMNIST2 ’0,2,3,5,6,8,9’ vs ’1,4,7’ NP =39000M=3000 Mv=500 0.700 λ = 3, α = 0.3

CIFAR-101 ’0,1,8,9’ vs ’2,3,4,5,6,7’ NP =17000M=3000 Mv=500 0.400 λ = 0.03, α = 0.3

CIFAR-102 ’2,3,4,5,6,7’ vs ’0,1,8,9’ NP =27000M=3000 Mv=500 0.600 λ = 0.01, α = 0.3

STL-101 ’0,2,3,8,9’ vs ’1,4,5,6,7’ NP =100000M=2500 Mv=250 unknown λ = 0.3, α = 0.3

STL-102 ’1,4,5,6,7’ vs ’0,2,3,8,9’ NP =100000M=2500 Mv=250 unknown λ = 0.1, α = 0.3

Table 9: Choice of hyperparameters for GenPU.

Dataset πPλp πPλu πNλn πNλu

FashionMNIST 0.01 1 100 1
0.01 1 1000 50

CIFAR-10 0.01 1 100 1
0.01 1 100 1

Page Blocks 0.01 1 1000 1
0.01 1 200 1

Grid Stability 0.01 1 1000 500
0.01 1 1000 500

Avila 0.01 1 100 1
0.001 1 1000 500

B.4 Comparison with known πP

In Table 10, we compare the classification accuracies of VPU, nnPU and uPU on UCI and image
datasets. All the settings are the same as in the main body of the paper, except that the true value
of πP is assumed to be known for nnPU and uPU. Notice that the experiment on STL-10 is not
performed because the exact πP is unavailable.

Table 10: Classification accuracies (%) of compared methods, where ∗ means that the algorithm is
performed with the true value of πP .

Dataset Page Blocks1 Page Blocks2 Grid Stability1 Grid Stability2 Avila1 Avila2

VPU 93.6 ± 0.4 93.5 ± 0.7 92.6 ± 0.3 89.5± 0.5 82.0 ± 0.9 87.2 ± 0.5

nnPU∗ 92.3± 1.2 91.7± 0.6 91.5± 1.7 90.5 ± 0.3 75.9± 2.2 84.8± 0.5

uPU∗ 93.0± 1.2 90.0± 2.8 92.2± 0.1 87.9± 0.9 76.5± 1.0 84.0± 1.0

Dataset F-MNIST1 F-MNIST2 CIFAR-101 CIFAR-102

VPU 92.7 ± 0.3 90.8 ± 0.6 89.5 ± 0.1 88.8 ± 0.8

nnPU∗ 92.1± 0.3 90.7± 1.4 87.2± 0.7 86.5± 1.7

uPU∗ 90.4± 1.4 74.1± 1.9 79.1± 2.4 68.7± 0.4
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Figure 4: Positive (a) and negative (b) samples generated by GenPU on FashionMNIST with ’1, 4, 7’
as positive labels

Table 11: The class prior estimated by KM2 under selection bias with the true class prior πP = 0.3

n1/n4 1 2 3 4 5 6 7 8 9 10

estimated πP 0.267 0.249 0.206 0.188 0.164 0.170 0.151 0.157 0.150 0.144

B.5 Mode collapse of GenPU

The failure of GenPU in the experiments is caused by mode collapse. This is demonstrated in Fig. 4,
which shows the positive (a) and negative (b) images generated by GenPU. Positive labels (’Positive’
vs ’Negative’) are given by ’1,4,7’ (Trouser, Coat, Sneaker) vs ’0,2,3,5,6,8,9’ (T-shirt/Top, Pullover,
Dress, Sandal, Skirt, Bag, Ankle boot). We observe that, in spite of the good quality of the generated
images, some modes are neglected be the generators.

B.6 KM2, nnPU and uPU under selection bias

Table 11 shows that the class prior estimation method KM2 significantly affected by the selection
bias, which also yields poor performance of nnPU. As can be observed in Fig. 5, nnPU is even more
robust to selection bias if the accurate πP is known a priori.

B.7 Alternative regularization terms

Mixup is a powerful regularization technique, but it might not be applicable to domains other than
image. Besides, its data-augmentation nature undermines credibility of VPU’s superiority shown
in the experiments. In fact, some other forms of regularization also work well, such as adversarial
training [37] and virtual adversarial training [38]. Here we introduce a large-margin regularization
term, proposed in [39], as an alternative for the Mixup-based regularization. It penalizes the positive
instances that are misclassified by Φ or have small margins between log Φ (x) and log (1− Φ (x)).
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Figure 5: Comparison of PU methods under selection bias of P , with accurate class prior πP known
for uPU and nnPU

Table 12: Classification accuracies (%) on image and UCI datasets of experiments with the same
setting as in Section 5.2 and 5.3. VPU w/ Mixup is the VPU we develop in main body of this paper,
while VPU w/ margin replaces the regularization with the large-margin loss (13).

Dataset Page Blocks1 Page Blocks2 Grid Stability1 Grid Stability2 Avila1 Avila2

VPU w/ Mixup 93.6± 0.4 93.5± 0.7 92.6 ± 0.3 89.5± 0.5 82.0 ± 0.9 87.2 ± 0.5

VPU w/ margin 95.6 ± 1.3 94.0 ± 0.6 92.6 ± 0.3 90.5 ± 0.5 81.4± 0.3 86.8± 0.5

nnPU 93.4± 1.1 90.2± 2.6 80.8± 2.5 84.1± 1.8 73.3± 2.0 83.1± 2.1

Dataset F-MNIST1 F-MNIST2 CIFAR-101 CIFAR-102 STL-101 STL-102

VPU w/ Mixup 92.7 ± 0.3 90.8± 0.6 89.5 ± 0.1 88.8± 0.8 79.7 ± 1.5 83.7 ± 0.1

VPU w/ margin 92.6± 0.4 91.1 ± 0.2 89.2± 0.2 88.9 ± 0.3 74.5± 0.9 82.6± 1.5

nnPU 90.8± 0.6 90.5± 0.4 85.6± 2.3 85.5± 2.0 78.3± 1.2 82.2± 0.5

It is a smooth version of max {0, log (1− Φ (x)) + logα− log Φ (x)} and formulates as

Lreg−margin (Φ) = softplus (log (1− Φ (x)) + logα− log Φ (x))

= log

(
1 + α

1− Φ (x)

Φ (x)

)
. (13)

Table 12 reports the results of experiments with the same setting as in Section 5.2 and 5.3. Though not
as good as the Mixup-based regularization, the large-margin regularization significantly outperforms
nnPU in most experiments.

B.8 Other metric for comparison

Accuracy might not be the best metric, especially when data sets are imbalanced. Therefore, except
accuracy shown in the main body, we here also report in Table 13 the area under curve (AUC) values
of experiments on image datasets

B.9 nnPU with Mixup

To further demonstrate the advantage of VPU over nnPU, we also conduct experiments on nnPU on
FashionMNIST with unlabeled data augmented by MixUp. The classification accuraries are reportd
in Table 14, which shows that nnPU does not significantly benefit from Mixup.
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Table 13: AUC values of compared methods on FashionMNIST (abbreviated as “F-MNIST”),
CIFAR-10 and STL-10 datasets. Experiment settings are the same as in Section 5.3.

Dataset F-MNIST1 F-MNIST2 CIFAR-101 CIFAR-102 STL-101 STL-102

VPU 0.973 ± 0.002 0.957 ± 0.005 0.956 ± 0.001 0.953 ± 0.003 0.976 ± 0.002 0.963 ± 0.003

nnPU 0.961± 0.004 0.945± 0.005 0.954± 0.003 0.953± 0.002 0.850± 0.007 0.898± 0.004

uPU 0.955± 0.006 0.918± 0.008 0.952± 0.003 0.949± 0.004 0.823± 0.013 0.862± 0.014

Genpu 0.673± 0.018 0.868± 0.007 0.790± 0.012 0.811± 0.014 0.789± 0.004 0.793± 0.011

RP 0.973 ± 0.001 0.954± 0.002 0.953± 0.002 0.951± 0.003 0.829± 0.019 0.851± 0.015

Table 14: Classification accuracies (%) of nnPU with Mixup on FashionMNIST. Experiment settings
are the same as in Section 5.3. The * mark indicates accurate class prior known.

VPU nnPU nnPU+MixUp nnPU∗ nnPU∗+MixUp

F-MNIST1
92.7 ± 0.3 90.8± 0.6 91.0± 0.6 92.1± 0.3 92.4± 0.5

F-MNIST2
90.8 ± 0.6 90.5± 0.4 89.9± 0.3 90.7± 1.4 90.7± 0.4

C Extension

One alternative to the variational loss is

LJS(Φ) = max
D:Rd 7→[0,1]

EfP [logD(x)] + EfΦ [log (1−D(x))] ,

= max
D:Rd 7→[0,1]

∫
fP (x) logD(x) + fΦ(x) log (1−D(x)) dx.

Here D can be interpreted as a discriminator as in GAN, which intends to separate the samples drawn
from fP and those obtained by sampling from fΦ. By setting

∂ (fP (x) logD(x) + fΦ(x) log (1−D(x)))

∂D(x)
= 0,

we can obtain that the optimal D is

D(x) =
fP (x)

fP (x) + fΦ(x)
,

and

LJS(Φ) =

∫
fP (x) log

fP (x)
1
2 (fP (x) + fΦ(x))

dx+ log
1

2

+

∫
fΦ(x) log

fΦ(x)
1
2 (fP (x) + fΦ(x))

dx+ log
1

2

= 2JS (fP ||fΦ)− log 4,

where JS (fP ||fΦ) denotes the Jensen-Shannon divergence between fP and fΦ. Thus, LJS(Φ) −
LJS(Φ∗) ≥ 0 for all Φ since fP = fΦ∗ . In practice, we can approximate D by another neural
network, and minimize LJS by adversarial learning.
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Another choice of variational loss can be derived from a weighted L2 distance between fΦ and fP as∫
f(x)−1 (fΦ(x)− fP (x))

2
dx =

∫
f(x)Φ(x)2dx

Ef [Φ(x)]2
− 2

∫
fP (x)Φ(x)dx

Ef [Φ(x)]

+

∫
f(x)−1fP (x)2dx,

=
Ef [Φ(x)2]

Ef [Φ(x)]2
− 2

EfP [Φ(x)]

Ef [Φ(x)]

+

∫
f(x)−1fP (x)2dx,

= L2(Φ) +

∫
f(x)−1fP (x)2dx,

where

L2(Φ) ,
Ef [Φ(x)2]

Ef [Φ(x)]2
− 2

EfP [Φ(x)]

Ef [Φ(x)]

and
∫
f(x)−1fP (x)2dx is a constant independent of Φ. It can be seen from the above that the loss

L2 satisfies

L2(Φ)− L2(Φ∗) =

∫
f(x)−1 (fΦ(x)− fP (x))

2
dx

≥ 0.
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