
Thanks to all the reviewers for their constructive feedback, we respond to the major points below (other comments and1

suggestions will be applied to the final version of the paper).2

• Lower bounds for the regret and CT . To the best of our knowledge, There are no existing minimax optimal bounds3

(simultaneously optimal for both the regret and CT ) available even for the convex case (the bounds for the algorithms in4

prior works are not proven to be minimax optimal either). For the static regret, the O(
√
T ) lower bound on the regret5

from the Online Convex Optimization (OCO) literature applies here as well. However, for CT , due to the trade-off6

between the regret and CT , it is impossible to obtain lower bounds because obtaining better CT bounds is always7

possible through incurring higher regret. For instance, one can always choose the action 0 which leads to CT < 0. In8

the adversarial setting with W = 1, O(
√
T ) bounds for R(A,S)

1,T and CT is the best so far in prior works in the convex9

setting and Algorithm 1 achieves the same bounds in the (non-convex) submodular framework.10

• Issues with the plots. We will increase the font size of the plots, and give names to the algorithms in the final version11

of the paper. The decline in the plot for Algorithm 1 is due to the fact that once the dual variables get large enough12

(Θ(V )), V∇ft−1(x
(k)
t−1) and λ(k)t ∇gt−1(v

(k)
t−1) in the update rule of v(k)t are of the same order, the algorithm becomes13

less aggressive in terms of utility maximization and it tries to balance its budget consumption and overall utility. This14

decline verifies our improved theoretical guarantee for CT (compared to [16] and [17]) as well.15

• Compare the algorithms with Meta-Frank-Wolfe. The primal update of the OSPHG and OLFW algorithms is the16

Meta-Frank-Wolfe algorithm for submodular maximization applied to the Lagrangian function and these two algorithms17

take into account the budget consumption as well. So, Meta-Frank-Wolfe algorithm can be viewed as a special case of18

these two algorithms with dual variable being set to zero, and it obtains a higher overall utility at the expense of further19

violating the budget constraint.20

• Obstacles/challenges of applying prior works to our framework and the novelties/ideas in this work.21

Limitations of the OSPHG algorithm. For the adversarial setting, the OSPHG algorithm obtains a R(A,S)
W,T bound of22

O(
√
WT ) and a CT bound of O(W 1/4T 3/4) that could be adapted to obtain expected O(

√
T ) and O(T 3/4) bounds23

for R(S,S)
T and CT respectively in the stochastic setting. However, in order to obtain better CT bounds in both settings24

and obtain any high probability bounds in the stochastic setting, a different approach is needed.25

Limitations of the OLFW algorithm. For the OLFW algorithm, the expected regret bound is sub-optimal (In our26

paper, our dual update is such that λ(k)t is Ft−1-measurable and gt−1(x∗) is independent of Ft−1, where Ft = {gτ}t−1τ=0,27

which makes it possible to conclude E[λ
(k)
t gt−1(x∗)] = E

[
λ
(k)
t E[gt−1(x∗)]

]
≤ 0, whereas this term is the dominating28

O(T 3/4) term in the regret analysis of the OLFW algorithm). Moreover, there are no performance guarantees in the29

adversarial setting. In fact, the update rule for the dual variable in the OLFW algorithm is only reasonable when a good30

estimate of the constraint functions are available which is not the case in the adversarial setting.31

How to deal with convex constraints? Neither of OSPHG and OLFW algorithms are able to deal with online convex32

constraints. Both these algorithms apply the Meta-Frank-Wolfe algorithm to the Lagrangian as the update rule for the33

primal variable. Although this approach makes it possible to get sub-linear (1− 1
e )-regret bounds, it is not the ideal34

way to treat the constraints and that is why they need to further restrict the constraint functions to be linear (i.e., ∇gt35

being fixed) to obtain performance bounds. In order to remedy this issue, we treat the utility and the constraint in the36

Lagrangian function differently and we use v(k)t−1 (as opposed to x(k)t−1) as the argument for ∇gt−1 in the update rule37

v
(k)
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v
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2α
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(k)
t−1)−λ(k)t ∇gt−1(v
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t−1)

))
which makes it possible to deal with convex constraints.38

K dual variables needed. Using a single dual variable (which is done in [15], [16], [17] and [23]) is not enough to39

obtain the O(
√
T ) bounds for CT simultaneously in both adversarial and stochastic settings and we instead maintain K40

dual variables which further complicates the analysis.41

Comparison with [15] and [23]. Compared to [15], they only obtain regret and CT bounds in the adversarial setting42

for the convex problem (no stochastic analysis). Also, compared to [23], their adversarial analysis for the convex43

problem is only done for the special case with window length W = 1 and in the stochastic setting, they only obtain44

bounds in expectation and they do not provide high probability performance guarantees (while Theorem 5 in our work45

provides high probability bounds). In summary, through our proposed algorithms and their analysis, we manage to46

address all the limitations of each of the prior works while maintaining their strengths and we provide a unified approach47

for all online submodular maximization problems with online convex constraints.48

• Define x∗t in line 172. x∗t is any arbitrary action in the domain which satisfies the corresponding constraint gt(x∗t ) ≤ 049

and it does not need to be the instantaneous maximizer at round t. We will make this point clearer.50

•Mention that T is known in advance. We are assuming that the horizon T is known in advance and the parameters51

of the proposed algorithms are in terms of T . However, had we not known T in advance, we could have used the52

well-known doubling trick to obtain the same regret and CT bounds with slightly worse constants. We will specify this53

point in the final version of the paper.54

• Explanations for the choice of DR-submodular functions as the objectives in the experiments. More explanations and55

motivations for the choice of functions are provided in Appendix B (and will be added to the final version of the paper).56


