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Supplement for “Assisted Learning: A Framework
for Multi-Organization Learning”

In this supplement, we provide the proof of Theorem 1 and some related discussions. We also provide three
additional experiments.

I. TECHNICAL DETAILS

We will use the following lemma. Let M , N be two closed subspaces in a Hilbert Space H. Their Friedrichs
angle is defined to be the number 0 ≤ θF ≤ π

2 such that

cos θF = sup
x∈M∩(M∩N)⊥,y∈N∩(M∩N)⊥

‖x‖,‖y‖≤1

yTx. (1)

Lemma 1. [1] Let M1,M2,M3, . . . ,Mk be closed subspaces in H with intersection M =
⋂k
i=1Mi. For j =

1, 2, 3 . . . , k, we denote θjF to be the Friedrichs angle between Mj and
⋂k
i=j+1Mi. Then, for any x ∈ H and any

integer n ≥ 1, we have
‖(Pk . . . P2P1)

n x− PMx‖ ≤ cn ‖x− PMx‖ (2)

where c =
(
1−

∏k−1
j=1(1− cos2 θjF )

)1/2
.

Proof of Theorem 1. We prove for the ordinary linear regression of two players (Alice and Bob). The same
technique can be extended to general additive models with multiple players. For any design matrix X ∈ Rn×p, we
define the projection matrix PX = X(XTX)−1XT and its orthogonal P⊥X = In−PX . We let X = [XA, XB], with
XA ∈ Rn×p1 , XB ∈ Rn×p2 (p1 + p2 = p), and y ∈ Rn×1 be the corresponding labels. For simplicity, we use A,
B to denote span(XA), span(XB) respectively. Also, we denote ‖ · ‖ to be the Euclidean norm and ‖ · ‖2 to be
the matrix operator norm.

Denote eorac to be the residual obtained from the linear regression of y on X , i.e., eorac = y− ŷ = y− (XAβ̂a+
XBβ̂b), where [β̂a, β̂b] is the oracle least square estimator from all the data. Suppose that Alice holds data XA and
the label y, and Bob only has data XB . Let ei denote the residual at ith iteration and e0 = y. Since they both use
linear regression models, the residual ek at kth iteration is:

ek = (P⊥B P
⊥
A )ke0,

and we also have the identity
eorac = P⊥A∪Be0 = PA⊥∩B⊥e0.

By Lemma 1, for any integer k ≥ 1, we have

‖ek − eorac‖ =
∥∥∥∥(P⊥B P⊥A )k e0 − PA⊥∩B⊥e0∥∥∥∥ ≤ ck‖e0 − PA⊥∩B⊥e0‖

= ck ‖e0 − eorac‖ = (1− sin2 θF )
k/2 ‖e0 − eorac‖

= (cos θF )
k ‖e0 − eorac‖ , (3)

where cos θF is the Friedrichs angle between A⊥ and B⊥. Since cos θF = cos θ⊥F [2], and cos θF < 1 (as X has
a full column rank), the error term will converge exponentially fast to zero.

In the above arguments, we showed that ek will converge to eorac as k become large. Next, we explicitly show the
aggregated coefficients obtained by Alice and Bob will asymptotically approach the oracle least square estimators
defined above. As a result, Alice will attain near-oracle performance from the assistance of Bob.
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Proposition 1. Let β̂ka , β̂kb be the coefficients obtained at the kth round of communication for Alice and Bob
respectively, and β̂a, β̂b be the oracle coefficients (defined as above). Then we have

lim
k→∞

k∑
i=1

β̂ia = β̂a, lim
k→∞

k∑
i=1

β̂ib = β̂b. (4)

Proof of Proposition 1. We prove for the case of Alice, i.e., limk→∞
∑k

i=1 β̂
i
a = β̂a. The similar technique

can be used to prove Bob’s case. From the procedure of Assisted Learning, the kth coefficient for Alice is
(XT

AXA)
−1XT

A(P
⊥
B P

⊥
A )k−1y, and we know β̂a = (XT

AP
⊥
BXA)

−1XT
AP
⊥
B y by some calculations. Then it suffices to

show

(XT
AP
⊥
BXA)

−1XT
AP
⊥
B = (XT

AXA)
−1XT

A

( ∞∑
k=0

(P⊥B P
⊥
A )k

)
. (5)

By Gelfand’s formula, we have
ρ(P⊥B P

⊥
A ) ≤ ‖P⊥B P⊥A ‖2, (6)

where ρ(·) is the spectral radius (the largest absolute value of eigenvalues). From Spectral Theorem, we know that
for any square matrix A, A is normal if and only if the operator norm equals the spectral radii. Therefore, we
consider the following two cases.
Case 1: If P⊥B P

⊥
A is normal, then

P⊥B P
⊥
A P

⊥
B = P⊥A P

⊥
B P

⊥
A (7)

We just need to show that

XT
AP
⊥
B = XT

AP
⊥
BXA(X

T
AXA)

−1XT
A

( ∞∑
k=0

(P⊥B P
⊥
A )k

)
. (8)

Plugging (7) into the right-hand side of (8), we have

XT
AP
⊥
BXA(X

T
AXA)

−1XT
A(

∞∑
k=0

(P⊥B P
⊥
A )k) = XT

AP
⊥
B PA(In + P⊥B P

⊥
A + P⊥A P

⊥
B P

⊥
A + P⊥A P

⊥
B P

⊥
A + P⊥A P

⊥
B P

⊥
A + · · · )

= XT
AP
⊥
B PA +XT

AP
⊥
B PAP

⊥
B P

⊥
A = XT

AP
⊥
B PA +XT

AP
⊥
B (In − P⊥A )P⊥B P

⊥
A

= XT
AP
⊥
B PA +XT

AP
⊥
B P

⊥
A +XT

AP
⊥
B P

⊥
A P

⊥
B P

⊥
A . (9)

Since XT
AP
⊥
B P

⊥
A P

⊥
B P

⊥
A = XT

AP
⊥
A P

⊥
B P

⊥
A = (P⊥AXA)

TP⊥B P
⊥
A = 0, then Eq. (9) reduces to

XT
AP
⊥
B PA +XT

AP
⊥
B P

⊥
A = XT

AP
⊥
B (PA + P⊥A ) = XT

APB.

Therefore, Eq. (8) is correct and Case 1 holds.
Case 2: If P⊥B P

⊥
A is not normal, then the equality in Eq. (6) will not hold. By a simple fact that ‖P⊥B P⊥A ‖2 ≤ 1 ,

we have ρ(P⊥B P
⊥
A ) < 1. By the property of Neumann Series, the following holds:

∞∑
t=0

(P⊥B P
⊥
A )t = (In − P⊥B P⊥A )−1,

and (In − P⊥B P⊥A )−1 exists.
We just need to show

(XT
AXA)

−1XT
A(In − P⊥B P⊥A )−1 = (XT

AP
⊥
BXA)

−1XT
AP
⊥
B . (10)

By multiplying (In − P⊥B P⊥A ) on both sides of (10), it reduces to

(XT
AXA)

−1XT
A = (XT

AP
⊥
BXA)

−1XT
AP
⊥
B − (XT

AP
⊥
BXA)

−1XT
AP
⊥
B P

⊥
A .

Since XA is with full column rank, then XAX
T
A is invertible. Multiplying it on both sides, we have

(XT
AXA)

−1XT
AXAX

T
A = (XT

AP
⊥
BXA)

−1XT
AP
⊥
BXAX

T
A − (XT

AP
⊥
BXA)

−1XT
AP
⊥
B P

⊥
AXAX

T
A ,
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which can be verified to be true. Hence, Case 2 holds and we conclude the proof of Proposition 1. In conclusion, if
Alice and Bob use linear regression models, then for a sufficiently large number of communications k, the oracle
performance will be achieved and the error will decay exponentially.

In fact, the Theorem 1 above concerns a finite-sample result when the data size n remains fixed. The following
result extends Theorem 1 to a probabilistic setting with random observations and varying n. Suppose that the data
generating model is y = βT

axa + βT

b xa + ε, where ε has zero mean and σ2 variance, x = [xa, xb] ∈ Rp follows
from a subGaussian distribution with zero mean and correlation matrix R, and x, ε are independent. Suppose that
n independent observations (yi, xa,i) are available to Alice, and (xb,i) are available to Bob, i = 1, . . . , n. Let
X = [x1, . . . , xn]

T denotes the design matrix centralizing all the data. Recall that Sa,Sb denote the variable indices
of Alice and Bob, respectively.

Corollary 1. Assume that the smallest eigenvalue of XTX/n is almost surely lower bounded by a positive constant.
Also assume that X is sub-Gaussian with a fixed covariance matrix, and Ey2 < ∞. Then the final predictor of
Alice ỹ∗n satisfies E(ỹ∗ − y)2 → σ2 as n→∞, meaning that it is a consist predictor.

Proof of Corollary 1. Let en,k and en,orac denote the residual of Alice at step k of stage I, and the oracle residual
by pulling all the data, respectively, where the subscript n highlights their dependence on the sample size. Suppose
there are k communications in Stage I. In Stage II, suppose that the aggregated linear prediction function of Alice
forms has a coefficient vector β̃n,k; also suppose the oracle least square estimate by pulling the data is β̂n. It suffices
to prove that β̃n,k−β̂n → 0 in probability as n→∞. By the subGaussian assumption, the Friedrichs angle between
XA and XB , cos θF , is bounded away from 1 with probability at most c1p2e−c2nt

2

for some constants c1, c2. Using
Theorem 1 and the assumption on the smallest eigenvalue, there exists a constant c that

‖β̃n,k − β̂n‖2 ≤ cn−1‖Xβ̃n,k −Xβ̂n‖2 = cn−1‖en,k − en,orac‖2,

which goes to zero in probability.
In the above corollary, it is possible that p→∞ and k/p→ 0 as n→∞, maintaining a high privacy for Bob

since only a small fraction of column space is available to Alice.

II. EXPERIMENTAL STUDY

In this section, we give three additional examples to demonstrate the performance of Assisted Learning.

A. Synthetic data

We first consider the case where the true data generating function is linear. Let xT

i = [xi1, xi2, . . . , xi6], where
xij ∼ N (0, 1), for j = 1, 2, . . . , 6. The data generating model is yi = xT

i β + ε, where β ∼ N (0, I6), and
ε ∼ N (0, 1). Learner A holds features XA = [x1, x2, x3] and learner B holds features XB = [x4, x5, x6]. The
experiments are independently replicated 20 times. Each time a training size of 500 and a testing size of 5000
are used. In Fig. 1(a), with kernel ridge regression method, the error terms quickly converge to the oracle. In Fig.
1(b), we observe that the testing errors first decrease to the oracle scores and then begin to increase. In Fig. 1(c),
with 2-layer neural network models, the error term of Assisted Learning converges slightly slower compared to the
oracle, but there is negligible difference regarding the optimal prediction accuracy.

Further discussions on pathetic scenarios. In practice, Bob may not provide utility because his data is adversarial,
irrelevant, or mis-aligned. We discussed adversarial scenarios in Subsection 4.4 of the main paper. We experimented
cases where Bob’s data is not relevant (e.g., pure noise or a subset of Alice’s data). In those cases, Alice will observe
unimproved or even degraded performance in the learning and prediction stages. Also, our experiments assumed
that participants can correctly collate their data according to a data identifier. It would be interesting future work
to study the robustness against a small portion of misalignment. Overall, a practical guide for Alice to prevent
pathetic scenarios is to reserve a small portion of data for continuous validation of the utility offered by others.

B. Real data: Superconductor

We demonstrate our approach using the Superconductor Data [3] that consists of 21263 entries and 81 features.
The learning task is to use chemical characteristics to predict the superconducting critical temperatures. The features
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(a) Model: Kernel ridge
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(b) Model: Gradient boosting
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(c) Model: Two-layer Neural Network

Fig. 1: Prediction performance for Module A (as measured by RMSE) on linear data with three learning algorithms.
Each line is the mean from independent replications, and the shaded regions represent +1/-1 standard errors.

are partitioned into two sets, 40 features held by module A and the other 41 features held by B. We consider two
settings where one module uses gradient boosting and the other one uses linear regression.

The results as depicted in Fig. 2(a), 2(b) and 2(c) show that module A can achieve the oracle with negligible
differences. The prediction performance for gradient boosting is much better than linear regression. In terms of
convergence rate, gradient boosting converges faster than linear regression. In Fig. 2(b), we again observe the
‘over-fitting’ as the round of assistance increases.
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(a) Model: Linear regression
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(b) Model: Gradient boosting
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(c) Model: Two-layer Neural Network

Fig. 2: Prediction performance for Module A (as measured by RMSE) on Superconductor Data with three learning
algorithms. Each line is the mean from independent replications and the shaded regions describe +1/-1 standard
errors.

C. Model Diversity to enhance Assisted Learning

The purpose of this experiment is to demonstrate that Assisted Learning can flexibly allow each organiza-
tion/learner to bring its unique modeling algorithm to enhance the learning experience. In other words, the assistance
is achieved not only by complementary data information but also diverse model advantages.

Suppose that 200 samples are generated from yi = XT

i β + ε, with ε ∼ Cauchy(0,1), β = [β1, β2, ..., β50], with
βk ∼ N (0, 1) for k = 1, 2, ..., 12 and βk = 0 for k = 13, ..., 50, XT

i = [xi1, xi2, xi3, xi4, xi5, ..., xi50], xij ∼ N (0, 1)
for j = 1, 2, 3, ..., 50. Module A holds the first 6 features [x1, x2, ..., x6], and module B holds the remaining features.
Suppose that B assists A where each of them uses a linear model. Because of the high dimensionality in B and
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Fig. 3: Out-sample prediction performance of Module A under three scenarios of Assisted Learning, showing the
potential advantages brought by diverse modeling algorithms.

many potential outliers in A and B (due to heavy-tailed noises), the ultimate out-sample performance of A can be
unsatisfactory even under assistance. This is shown by the blue line in Figure 3. If module B employs a penalized
regression method, e.g., Lasso [4], then the prediction performance will be improved as shown by the green line.
Moreover, if module A employs robust techniques such as Huber Regression (HR) [5], then the performance will
be further improved shown by the red line.
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