
Appendix: Meta-Consolidation for Continual Learning

In this appendix, we discuss the following details, which could not be included in the main paper
owing to space constraints:

• Derivations of Equation 1 and Equation 2 in the main paper.
• Effect of adding an auxiliary classification loss while training the meta-model.
• A plot on the behavior of VAE training loss.
• Further details of datasets used.
• Task-wise accuracies of the main results presented in Table 1.
• Connections of MERLIN to neuroscience literature.
• Comparison with Bayesian continual learning methods.
• Efficacy of task-specific learned priors.
• Results while using smaller backbones for the baselines.
• 5 class-per-task experiments.
• Our code implementation of our methodology in Section 3.

A Estimating Marginal Likelihood

Let q�(z| , t) be the approximation for the intractable true posterior distribution p✓(z| , t)
as defined in Section 3.1. The KL Divergence between these two distributions,
DKL(q�(z| , t) || p✓(z| , t)) - written below as DKL(q || p) for convenience - can be expressed
as follows:
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Rearranging, we get the marginal likelihood (Equation 1):
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B Alternate form of ELBO

The evidence lower bound (ELBO), L(✓,�| , t) - written below as L for convenience - derived in
the above section, can be rewritten as follows:
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This is the expression of ELBO used in Equation 2.
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C Minimizing ELBO and Classification Loss while Training VAE

The Evidence Lower-Bound (ELBO), defined in Equation 2, is maximized while training the VAE to
learn the parameter distribution p( |t) for all the experiments reported so far. We now introduce
one more loss term to guide the training of VAE and study its usefulness. The weights that are
generated from the decoder  ⇠ p✓( |zt, t), are used to initialize a classifier network. The loss for
this network (computed on a training set of the classification dataset) is computed and also used to
update the VAE.

Datasets ! Split MNIST Permuted MNIST Split CIFAR-10 Split CIFAR-100 Split Mini-ImageNet
Methods # A (") F (#) A (") F (#) A (") F (#) A (") F (#) A (") F (#)
ELBO 90.7 ± 0.8 6.4 ± 1.2 85.5 ± 0.5 0.4 ± 0.4 82.9 ± 1.2 -0.9 ± 1.9 43.5 ± 0.6 2.9 ± 3.7 40.1 ± 0.9 2.8 ± 3.2
ELBO + Clf Loss 91.4 ± 0.2 6.1 ± 0.6 85.7 ± 0.3 0.8 ± 0.1 82.8 ± 1.1 0.2 ± 1.3 42.5 ± 1.2 -1.1 ± 1.7 40.8 ± 2.6 0.9 ± 0.7

Table 7: Average accuracy (A) and average forgetting measure (F) while training MERLIN with and without
an auxiliary classification loss. All results in the main paper were obtained by optimizing only the Evidence
Lower-Bound (ELBO) as defined in Equation 2, to which this classification loss is now added.

We run MERLIN on all datasets after training with this additional loss term, and the results are reported
in Table 7. We see that this adds some improvement on certain datasets, but is in general marginal
(except forgetting measure on CIFAR-100 and Mini-ImageNet, which shows good improvement).
This generally implies that the VAE is able to capture the task solving information implicitly, without
explicit global loss to enforce this. However, in more complex datasets such as ImageNet, adding a
classification loss can further improve performance.

D Loss Plots While Training VAE

We plot the loss curve while training the VAE in Figure 3. We observe that the VAE stabilizes fairly
quickly, viz, within the first 10 epochs - further corroborating the usefulness of the proposed method.
We plot the classification loss for completeness. The curve was plotted while training our method on
the Permuted MNIST dataset.

Figure 3: Figure plots the ELBO, classification loss and the total loss against epochs. We see fair
stability in the VAE training from the plot.

E Dataset Description

As shown in Section 4 of the main paper, we evaluate MERLIN against multiple baselines on
Split MNIST [13], Permuted MNIST [88], Split CIFAR-10 [88], Split CIFAR-100 [63] and Split
Mini-ImageNet [15] datasets. Table 8 provides a summary of these benchmark datasets and the
corresponding tasks involved, as used commonly in continual learning literature [15, 88, 63, 13] and
in our work. The table enumerates different classes that form each task for class-incremental datasets.
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Dataset # of images per task Tasks

Split MNIST [13] 1000

⌧1 = { 0, 1}
⌧2 = { 2, 3}
⌧3 = { 4, 5}
⌧4 = { 6, 7}
⌧5 = { 8, 9}

Permuted MNIST [88] 1000 10 different spatial permutations, each corresponding to a task.

Split CIFAR-10 [88] 2500

⌧1 = {airplane, automobile}
⌧2 = {bird, cat}
⌧3 = {deer, dog}
⌧4 = {frog, horse}
⌧5 = {ship, truck}

Split CIFAR-100 [63] 2500

⌧1 = {beaver, dolphin, otter, seal, whale, aquarium fish, flatfish, ray, shark, trout}
⌧2 = {orchids, poppies, roses, sunflowers, tulips, bottles, bowls, cans, cups, plates}
⌧3 = {apples, mushrooms, oranges, pears, sweet peppers, clock, computer keyboard, lamp, telephone, television}
⌧4 = {bed, chair, couch, table, wardrobe, bee, beetle, butterfly, caterpillar, cockroach}
⌧5 = {bear, leopard, lion, tiger, wolf, bridge, castle, house, road, skyscraper}
⌧6 = {cloud, forest, mountain, plain, sea, camel, cattle, chimpanzee, elephant, kangaroo}
⌧7 = {fox, porcupine, possum, raccoon, skunk, crab, lobster, snail, spider, worm}
⌧8 = {baby, boy, girl, man, woman, crocodile, dinosaur, lizard, snake, turtle}
⌧9 = {hamster, mouse, rabbit, shrew, squirrel, maple, oak, palm, pine, willow}
⌧10 = {bicycle, bus, motorcycle, pickup truck, train, lawn-mower, rocket, streetcar, tank, tractor}

Split Mini-ImageNet [15] 2500

⌧1 = {goose, Ibizan hound, white wolf, mierkat, rhinoceros, beetle, cannon, carton, catamaran, combination lock, dustcart}
⌧2 = {high bar, iPod, miniskirt, missile, poncho, coral reef, house finch, american robin, triceratops, green mamba}
⌧3 = {daddy longlegs, toucan, jellyfish, dugong, walker hound, gazelle hound, gordon setter, komondor, boxer, tibetan mastiff}
⌧4 = {french bulldog, newfoundland dog, miniature poodle, white fox, ladybug, three-toed sloth, rock beauty, aircraft carrier, ashcan, barrel}
⌧5 = {beer bottle, carousel, chime, clog, cocktail shaker, dishrag, dome, file cabinet, fireguard, skillet}
⌧6 = {hair slide, holster, lipstick, hautboy, pipe organ, parallel bars, pencil box, photocopier, prayer mat, reel}
⌧7 = {slot, snorkel, solar dish, spider web, stage, tank, tile roof, tobacco shop, unicycle, upright piano}
⌧8 = {wok, worm fence, yawl, street sign, consomme, hotdog, orange, cliff, mushroom, capitulum}
⌧9 = {nematode, king crab, golden retriever, malamute, dalmatian, hyena dog, lion, ant, ferret, bookshop}
⌧10 = {crate, cuirass, electric guitar, hourglass, mixing bowl, school bus, scoreboard, theater curtain, vase, trifle}

Table 8: Summary of benchmark datasets used in continual learning literature [15, 88, 63, 13] and this work.
The number of images that form a task and the classes in each task for the class-incremental setting are shown.

F Task-wise Accuracy

Tasks ! ⌧ 1 ⌧ 2 ⌧ 3 ⌧ 4 ⌧ 5

Single 99.9 ± 0.1 47.9 ± 0.8 32.9 ± 0.2 24.8 ± 0 19 ± 0.3
EWC 99.9 ± 0.1 48.2 ± 0.3 32.8 ± 0.2 24.8 ± 0 19.3 ± 0.1
GEM 99.8 ± 0.1 92.1 ± 0.8 85.1 ± 3.1 82 ± 2.5 75.2 ± 1.4
iCaRL 99.7 ± 0.1 96.3 ± 1.0 94.9 ± 1.1 83.1 ± 1.0 75.6 ± 1.4
GSS 99.9 ± 0.1 96.2 ± 0.3 90.9 ± 0.9 84.6 ± 0.9 70.4 ± 1.9
MERLIN 99.2 ± 0.1 93.3 ± 0.7 88.7 ± 0.3 88.6 ± 1.6 83.4 ± 1.2

Table 9: Task wise accuracy on Split MNIST dataset.

Tasks ! ⌧ 1 ⌧ 2 ⌧ 3 ⌧ 4 ⌧ 5

Single 86.9 ± 0.6 73.5 ± 3.4 68 ± 4.6 68 ± 3.6 69.9 ± 3.2
EWC 85.8 ± 1.7 73.9 ± 1.3 71.7 ± 3.5 70.3 ± 1.4 69.7 ± 3
GEM 84.4 ± 1.2 78.3 ± 1.6 76.6 ± 2.9 78.6 ± 0.7 77.8 ± 2
iCaRL 87.2 ± 0.9 73.7 ± 2.1 69.5 ± 0.4 65.3 ± 2.1 67.7 ± 1.1
GSS 90 ± 0.3 66.3 ± 4.8 51.8 ± 1.7 45 ± 2.5 36.5 ± 4
MERLIN 87.6 ± 0.7 80.2 ± 1.2 80.5 ± 1.4 81.8 ± 1 84.6 ± 1.5

Table 10: Task wise acc on Split CIFAR-10 dataset.

Tasks ! ⌧ 1 ⌧ 2 ⌧ 3 ⌧ 4 ⌧ 5 ⌧ 6 ⌧ 7 ⌧ 8 ⌧ 9 ⌧ 10

Single 79.2 ± 4.3 79 ± 1.2 77.9 ± 2.9 74 ± 1.8 76.7 ± 1.1 72.9 ± 2.6 69 ± 1 68.5 ± 3.4 68.4 ± 3.1 65.7 ± 1.4
EWC 79.1 ± 5.3 78.8 ± 1.5 78.4 ± 2.5 75.2 ± 1.4 77.7 ± 0.5 75.4 ± 1.4 72.7 ± 2.6 71.9 ± 2.1 71.5 ± 0.8 69 ± 2.3
GEM 77.7 ± 14.2 81.5 ± 13.3 82.3 ± 1.8 80 ± 11.9 82.9 ± 1.5 83.6 ± 0.1 82.8 ± 5.8 83.4 ± 0.1 83.2 ± 0.4 83.2 ± 0.4
GSS 86 ± 1.2 84.9 ± 1.2 83.9 ± 1.5 83.3 ± 1.2 82.5 ± 1.2 81.7 ± 0.5 79 ± 1.7 79 ± 1.7 78 ± 0.9 75.9 ± 1.6
MERLIN 85.8 ± 0.4 85.3 ± 0.6 85 ± 0.6 85.7 ± 0.7 85.5 ± 0.4 85.3 ± 0.7 85.8 ± 0.4 85.5 ± 0.4 85.6 ± 0.5 85.8 ± 0.2

Table 11: Task wise accuracy on Permuted MNIST dataset.

Tasks ! ⌧ 1 ⌧ 2 ⌧ 3 ⌧ 4 ⌧ 5 ⌧ 6 ⌧ 7 ⌧ 8 ⌧ 9 ⌧ 10

Single 40 ± 5.7 32.2 ± 3.9 29 ± 8.1 31.1 ± 2.9 29.8 ± 2 30.1 ± 1.2 29.8 ± 4.1 28.9 ± 3.3 29.3 ± 2.5 28 ± 2.1
EWC 37.1 ± 3.5 32.6 ± 2.3 25 ± 9.4 30.4 ± 2 30.2 ± 2.2 28.8 ± 4.4 26.7 ± 4 28.4 ± 1.5 28 ± 1.5 25.1 ± 3
GEM 30.9 ± 3 32.9 ± 1.1 35.5 ± 2.8 39.3 ± 2.1 40.8 ± 2.1 41.8 ± 2.3 44.8 ± 1.7 46.2 ± 1.3 46.6 ± 0.8 47.6 ± 2.4
iCaRL 22.7 ± 1.3 20.8 ± 4 22.2 ± 2.7 24.5 ± 4.2 26.4 ± 3.5 27.2 ± 3.4 30.3 ± 3.1 31.5 ± 2.8 31.9 ± 2.2 33.9 ± 2.6
GSS 51 ± 1.9 31.8 ± 1.8 25.7 ± 0.5 17.8 ± 0.6 15.2 ± 0.4 12.5 ± 0.6 11.2 ± 0.3 9.6 ± 0.3 8.6 ± 0.4 8.3 ± 0.2
MERLIN 47.6 ± 2.1 37.6 ± 2.1 38.7 ± 1.1 40.1 ± 2.5 44.7 ± 0.9 43.1 ± 2.1 44.8 ± 2.8 47.2 ± 2.6 45.5 ± 2.5 46.1 ± 3.7

Table 12: Task wise accuracy on Split CIFAR-100 dataset.

Tasks ! ⌧ 1 ⌧ 2 ⌧ 3 ⌧ 4 ⌧ 5 ⌧ 6 ⌧ 7 ⌧ 8 ⌧ 9 ⌧ 10

Single 40.8 ± 2.5 30.8 ± 1.4 29.5 ± 1.5 26.4 ± 4.3 26.9 ± 3.5 24.8 ± 2.3 25.8 ± 2.3 24 ± 3.4 23.2 ± 3.3 23.5 ± 1.8
EWC 41.8 ± 2.4 30.8 ± 3.1 29.1 ± 3.3 28.4 ± 1.5 27.3 ± 2.2 24.7 ± 2.8 26.1 ± 1.9 25.1 ± 1.1 23.5 ± 3.3 23.2 ± 4.3
GEM 39.2 ± 3 38.1 ± 2.2 38.1 ± 2.3 39.9 ± 2.3 39.8 ± 1 39.1 ± 1.2 38.3 ± 1.5 38.5 ± 1.6 38.9 ± 1 38.8 ± 0.4
iCaRL 41.8 ± 1 30.4 ± 2 33.9 ± 0.4 33.2 ± 0.9 34.8 ± 1.7 33.1 ± 0.7 34.8 ± 1.4 32.5 ± 1.3 32 ± 1.7 35.2 ± 1.1
GSS 44.6 ± 2.1 26.1 ± 2.4 17.5 ± 1.3 15 ± 1.3 11.1 ± 0.8 8.5 ± 0.7 7.9 ± 0.5 6.5 ± 0.6 5.6 ± 0.6 5.3 ± 0.7
MERLIN 46.5 ± 1.9 38 ± 1.9 36.5 ± 0.3 34.7 ± 1.7 40.5 ± 3.7 37.6 ± 4.7 41 ± 3.9 42.1 ± 4.6 41.8 ± 3.6 41.7 ± 3

Table 13: Task wise accuracy on Split Mini-ImageNet dataset.

Tables 9 through Table 13 above show task-wise accuracy on the various continual learning datasets
used in this work. The average of these accuracy values is presented in Table 1 of the main paper.

The tasks defined on continual versions of CIFAR and ImageNet datasets have implicit semantic
meaning. On Split CIFAR-100, there is a significant semantic shift when adding ⌧5, which includes
animals (bear, leopard, lion, tiger, wolf) and man-made structures (bridge, castle, house,
road, skyscraper). So far the model has been trained on fishes, flowers, fruits and insects. In this
challenging setting, MERLIN achieves an improvement of 4.61% in accuracy. Accuracy of GSS and
EWC falls while iCaRL and GEM has minor improvement of 1.83% and 1.51%.

16



In Split CIFAR-10, while adding deer and dog class (⌧3) to the model that is already trained on bird
and cat, the accuracy of all the methods fall, while MERLIN improves the accuracy by 0.25%. We
observe an improvement of 2.80% when we add ship and truck as part of ⌧5. The performance of
GSS and GEM decreases, while iCaRL, which does well even in Table 1 in the main paper, improves
(2.38%) similar to MERLIN. This setting is challenging because the previous three tasks were only
animal classes, and there is a semantic shift at ⌧5. The grouping of classes in Split Mini-ImageNet is
more or less random. Here, we note that in four out of ten tasks (⌧5, ⌧7, ⌧8, ⌧9), MERLIN achieves
better improvement in accuracy when compared to the other methods. On Split CIFAR-100 and Split
Mini-ImageNet, GSS degenerates (even after carefully choosing the hyper-parameters) as the number
of tasks increase. We note that GSS was not evaluated on these datasets in the original paper.

G Connections to Neuroscience Literature

Wilson and McNaughton, in their seminal paper [85] made the following observation: “...initial
storage of event memory occurs through rapid synaptic modification, primarily within the hippocam-
pus. During subsequent slow-wave sleep, synaptic modification within the hippocampus itself is
suppressed and the neuronal states encoded within the hippocampus are “played back" as part of a
consolidation process by which hippocampal information is gradually transferred to, the neocortex."
Further, other work [33, 86, 5, 76] extended the connection between memory consolidation and
improved continual learning capabilities. One can view the phases in our method mirroring the
above observation. The base network training (Figure 1, left) is similar to the learning that happens
in the hippocampus. After learning a new task, we have a period of inactivity (similar to sleep),
where the model weights are encoded, the parameter distribution is re-learned and consolidated by
“playing back" model parameters from all learned tasks (Figure 1, middle). Interestingly, many years
ago, [65] used auto-associative neural networks [40] to study connections between sleep-induced
consolidation and reduction in catastrophic forgetting. Recently, [26] studied the same on a custom
build biophysically-realistic thalamocortical network model. The encouraging results from such
studies adds further motivation to our proposed methodology.

H Comparison with Bayesian Continual Learning Methods

Methods Split MNIST Permuted MNIST Split CIFAR10 Split CIFAR100 Mini-ImageNet

Single 44.89 ± 0.30 73.13 ± 2.27 73.24 ± 3.08 30.81 ± 3.57 27.57 ± 2.64
EWC 45.01 ± 0.14 74.98 ± 2.04 74.28 ± 2.2 29.23 ± 3.38 28 ± 2.59
GEM 86.79 ± 1.56 82.05 ± 4.95 79.13 ± 1.68 40.65 ± 1.95 34.17 ± 1.23
iCaRL 89.91 ± 0.92 NA 72.65 ± 1.33 27.13 ± 2.99 38.86 ± 1.63
GSS 88.39 ± 0.81 81.44 ± 1.27 57.9 ± 2.65 19.19 ± 0.7 14.81 ± 0.98

MERLIN 90.67 ± 0.80 85.54 ± 0.5 82.93 ± 1.16 43.55 ± 0.61 40.05 ± 2.94
CN-DPM [44] 92.12 ± 0.14 - 46.01 ± 1.23 14.29 ± 0.14 -
MERLIN - SN Prior 23.34 ± 0.24 32.51 ± 1.57 28.23 ± 2.21 12.32 ± 1.45 14.76 ± 0.23

Table 14: Comparison with CN-DPM & MERLIN using Standard
Normal (SN) Prior.

We compare with a recent
bayesian continual learing
method, CN-DPM [44], for
completeness of our work. We
report the results in Tab 14. As
shown in the table, CN-DPM
performs better than MERLIN on
Split-MNIST, but drastically fails
on harder datasets. We note that
the baseline methods considered
in this work also perform better than CN-DPM on non-MNIST datasets.

Not all VAE-based continual learning methods learn a posterior over model parameters, or operate in
an online continual learning setting. For eg., VCL [56] learns a posterior over the data distribution
(also not an online continual learning method), and not model parameter distribution. This is a subtle
difference to be noted. MERLIN performs variational continual learning in the model parameter
space, can be adapted easily to class and domain incremental setting, and work in task-aware or
task-agnostic settings.

I Efficacy of Task-specific Learned Priors

The learned task-specific priors are necessary to generate task-specific weights and consolidate
meta-model on previous task parameters, as well as to sample models for ensembling at inference.
We ran a study where we replaced the task-specific learned prior with a standard Normal prior and
finetuned the corresponding generated model on task-specific exemplars. We showcase the results in
Tab 14, where we see that MERLIN fails drastically, validating the usefulness of task-specific learned
priors.
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J Results on Additional Datasets Methods HAT[72] AudioMNIST[7]

Single 47.79 ± 0.94 76.37 ± 2.25
EWC 47.19 ± 2.58 79.89 ±16.14
GEM 67.23 ± 0.97 89.45 ± 1.14
iCaRL 62.34 ± 2.45 84.73 ± 2.22
GSS 69.79 ± 1.51 92.81 ± 0.19
MERLIN 73.54 ± 1.71 96.47 ± 1.79

Table 15: Results on heteroge-
neous dataset from HAT[72] and
AudioMNIST[7].

Along with the standard continual learning benchmarks that are
reported in the main paper, we additionally compare with Heteroge-
neous dataset introduced by Serra et al. [72]. We also explore contin-
ually learning in the audio modality with Audio MNIST dataset [7].
We comfortably outperform baselines on both these datasets too.

K Using Smaller Backbones for the Baselines

Methods Split CIFAR10 Split CIFAR100 Mini-ImageNet

Single 69.65 ± 0.79 18.8 ± 2.21 18.57 ± 2.31
EWC 67.98 ± 2.96 16.89 ± 3.95 19.29 ± 3.58
GEM 72.23 ± 1.56 26.71 ± 1.75 27.71 ± 2.56
iCaRL 69.23 ± 2.24 24.81 ± 2.88 23.84 ± 1.95
GSS 49.82 ± 2.01 13.99 ± 0.56 12.92 ± 0.17
MERLIN 82.93 ± 1.16 43.55 ± 0.61 40.05 ± 2.94

Table 16: Comparison with baselines with smaller
ResNet backbone

MERLIN uses smaller backbones for the non-
MNIST experiments. For the results in the main
paper, we use larger backbones for the baseline,
which is unfair for MERLIN, which still outper-
forms them. We re-ran all baselines with the
same smaller ResNet used in MERLIN, and re-
port the results in Tab 16. We see that MERLIN
outperform all baselines here again; the perfor-
mance of the baseline model drops significantly,
possibly due to the smaller capacity.

L 5 class-per-task Experiments Methods Split CIFAR100 Mini-ImageNet

Single 36.44 ± 3.44 35.85 ± 2.08
EWC 37.03 ± 2.51 35.36 ± 2.07
GEM 57.02 ± 1.41 52.28 ± 1.53
iCaRL 50.23 ± 1.37 53.22 ± 1.56
GSS 18.74 ± 0.82 16.34 ± 0.12
MERLIN 64.83 ± 1.78 57.35 ± 1.92

Table 17: Accuracy values when MER-
LIN incrementally learn 20 tasks on Split
CIFAR-100 and Mini-Imagenet Datasets.

Experiments on CIFAR-100 and Mini-ImageNet datasets in
the main paper uses 10 class-per-task. Here we run the in-
cremental experiments with 5 class-per-task. The results are
reported in Tab 17. We perform better than baselines even in
this setting.

M Code

We share the code for MERLIN here: https://github.com/JosephKJ/merlin
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