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Abstract

Facial expression and action units (AUs) represent two levels of descriptions of
the facial behavior. Due to the underlying facial anatomy and the need to form a
meaningful coherent expression, they are strongly correlated. This paper proposes
to systematically capture their dependencies and incorporate them into a deep
learning framework for joint facial expression recognition and action unit detection.
Specifically, we first propose a constraint optimization method to encode the
generic knowledge on expression-AUs probabilistic dependencies into a Bayesian
Network (BN). The BN is then integrated into a deep learning framework as a
weak supervision for an AU detection model. A data-driven facial expression
recognition(FER) model is then constructed from data. Finally, the FER model
and AU detection model are trained jointly to refine their learning. Evaluations
on benchmark datasets demonstrate the effectiveness of the proposed knowledge
integration in improving the performance of both the FER model and the AU
detection model. The proposed AU detection model is demonstrated to be able
to achieve competitive performance without AU annotations. Furthermore, the
proposed Bayesian Network capturing the generic knowledge is demonstrated to
generalize well to different datasets.

1 Introduction

Facial expression is a key signal of human emotion. From the facial expression analysis perspective,
there are two levels of expression descriptors: the global facial expression and the local Facial Action
Units(AUs). These two descriptors lead to two research topics: Facial Expression Recognition(FER)
and Facial Action Units Detection. AU is defined as facial muscle movements that correspond to a
displayed expression according to Facial Action Coding System(FACS)[7]. AU activation is usually
subtle and hard to annotate, thus the annotated AU data is limited and error prone. In comparison, the
expression is global and easier to label. In addition, for both AU detection and FER problems, the
data-driven models trained within datasets may generalize poorly to other datasets.

To learn a more generalizable model with limited AU annotation data, domain knowledge are
considered. Some work used the manually designed knowledge directly from FACS [7] or muscle
knowledge([23, 54]), whereas others constructed the dependencies among AUs from data ([48, 56,
52]) which are usually represented as a structural model (e.g. tree[14], graph[20], and graphical
model[48, 45]). AU detection is then carried out by label propagation[23] or model training[44]
using the captured knowledge. Though the relationships among AUs are included, the knowledge
is based on local AU labels. Furthermore, the knowledge learned from a specific dataset cannot
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generalize well. Since AUs and expressions are different levels of descriptors, they are closely related.
In other words, they can complement each other and improve each other’s performance through their
interactions. Enlightened by this idea, expressions are employed as supplementary supervision for
AU detection task([25, 26]). Besides expressions, facial landmarks are also considered as global
information for AU detection[2]. On the other hand, AUs are also employed to enhance the FER
tasks. Khorrami et al [16] showed that salient AU features can be obtained from deep neural networks
that are trained for FER tasks. By incorporating AU information as domain knowledge into FER,
performance improvements for FER can be achieved.

In this paper, we propose to perform joint AU detection and FER within a deep learning framework
by leveraging the generic knowledge. Bayesian Network(BN) is employed to capture the generic
knowledge on relationships among AUs and expression. Specifically, we propose to learn a BN purely
from probability constraints derived from the generic knowledge and formulate the BN learning as a
constraint optimization problem. The BN is then embedded into a deep learning framework to weakly
supervise the learning of an AU detector. FER and AU detection modules are further jointly trained
iteratively to improve each other’s learning performance. By simultaneously leveraging both the AU-
expression knowledge and the data, as well as integrating the knowledge via the interactions between
AU detector and FER model, our FER model achieves better performance than a pure data-driven
model, and our AU detector can generalize well to different datasets, and, more importantly, achieve
comparable performance to existing supervised methods without any AU annotations.

2 Related Works

Facial expression recognition: Recent research on facial expression recognition leverages deep
neural networks, such as AlexNet[19] and VGG[41], to obtain powerful representations. Pre-training
is usually applied([33, 21, 4]). Pre-trained models can be constructed from non-facial data([4]) and
other facial datasets[50]. Different approaches for improving FER performance are applied including
data augmentation([1, 28]), network ensemble with diversified input[17] and network structures[38].
In addition, Tian et al [24] proposed to employ AU co-occurrence results for facial expression
recognition. Probabilistic dependencies among expression-related factors are considered in [42, 11]
for facial expression recognition. Attention mechanism has also been introduced to improve FER
performance([32, 49]). Furthermore, different facial analysis tasks are closely related, and multi-task
learning approach has been considered( [15, 39]). Kollias et al [18] proposed a single network for
joint AU detection and expression recognition. These methods are data-driven without considering
domain knowledge and therefore do not generalize well to other datasets/subjects. Chen et al [4]
proposed a facial motion prior network by considering the facial muscle movements corresponding to
expressions. However, their facial muscle motion mask is computed within the dataset instead of
from generic prior knowledge. In this work, we propose to encode the generic prior knowledge on
the probabilistic dependencies among expressions and AUs into a Bayesian Network and integrate
the prior knowledge into a deep neural network for improved FER.

Weakly supervised AU detection: AU annotation is challenging. Noise and errors exist in AU
labels. Therefore, instead of solely relying on supervision from the AU annotations, many works seek
supervisory information from other sources. Zhang et al [55] proposed context-aware attention mech-
anism for joint AU intensity estimation. Li et al [22] proposed to capture facial muscle movements
for self-supervised AU detection. As the activation of AUs are produced by muscle contractions,
strong dependencies exist among AUs. Hence, many works tried to encode AU dependencies as prior
knowledge to improve AU detection under limited ground truth AU labels. Different methods are
proposed to capture the relationships among AUs, including the kernel learning [52], LSTM [35] and
graph convolutional network [34]. Moreover, graphical models attract much attention due to their
power of modeling probabilistic dependencies([47, 43, 5]). In particular, Corneanu et al [5] appended
the Conditional Random Field(CRF) to the end of a deep neural network to perform a message passing
algorithm between AUs. There are other works leveraging not only the dependencies among AUs,
but also their relationships to expressions([40, 45, 37, 48, 46]). In addition, Jyoti et al [13] applied
expression features to enhance the AU detection performance. The knowledge mentioned above is
extracted from a specific dataset, which limits their generalization ability to other datasets. Instead,
Zhang et al[54] proposed to encode supervisory information from generic knowledge into loss terms
for AU classifier training. Different from most of the existing works obtaining the knowledge from
specific datasets, we propose to adapt the generic knowledge. Our model hence can generalize to
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different datasets/subjects. We propose to encode the generic knowledge with a BN which is different
from [54]. Furthermore,we propose to embed the BN into a deep learning framework to perform joint
AU detection and expression recognition.

3 Proposed Method

As shown in Figure 1, the proposed framework consists of a knowledge model in the middle
represented by a Bayesian Network(BN) and three neural network based sub-models. The image-
based FER model fψ on the top performs facial expression classification directly from image data.
The AU model gϕ performs AU detection from the images, and the knowledge model K is used to
weakly supervise the learning of the AU detector gϕ without requiring any AU annotations. The
AU-based FER model hφ in the right bottom performs expression recognition from AU detection
results and is introduced mainly to assist the proposed model integration process. The three neural
network models are initially trained independently and they are then refined jointly until convergence.
In the end, we obtain the proposed FER model fψ and AU detection model gϕ. We first introduce
each proposed model separately, and then the proposed model integration for joint training.

Figure 1: Overview of the proposed framework. Dotted lines represent back-propagation steps for each module.
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3.1 Knowledge-supervised AU Detection

We first discuss the generic knowledge extracted from the existing anatomic and psychological studies
on facial expression generation mechanisms. We then show the knowledge encoding with a Bayesian
Network(BN). Thirdly, we show the knowledge-supervised AU detection given the learned BN.

Generic knowledge as probabilities: We adapt the generic knowledge from existing studies that
are applicable to different datasets. Generic knowledge is expressed as probabilities. Expression
is denoted as Xe = {1, 2, ..., E}, where E is the total number of expression categories. AUs are
denoted as {Xau

m }Mm=1 where M is the total number of AUs and Xau
m ∈ {0, 1}. Inspired by [54], the

generic knowledge is categorized into three types: expression-dependent single AU probabilities,
expression-dependent joint AU probabilities, and expression-independent joint AU probabilities.

Table 1: Single AU in expressions from FACS[7] and [6](in parentheses).

AU 1 2 4 6 7 12 15 17
Anger P(≥ 0.7) S(≥ 0.7) S(0.52)
Disgust (0.31) S(≥ 0.7)
Fear P(≥ 0.7) P(0.57) P(≥ 0.7) P
Happy P(0.51) S P(≥ 0.7)
Sad P(0.6) S (≥ 0.7) S(0.5) P P(≥ 0.7) S(0.67)
Surprise P(≥ 0.7) P(≥ 0.7)

1) For expression-dependent sin-
gle AU probabilities, two sources
are considered. According to
FACS, given an expression, AUs
can be grouped into primary(P)
and secondary(S) categories as
shown in Table 1. The primary
AUs are the most expressive AUs
with respective to the expression, and the secondary AUs may co-occur with primary AUs providing
additional supports for the expression. Given a specific expression, the probability for its primary AU
to be present is higher than its absence. For example, AU4(Xau

4 ) is a primary AU given the Anger
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expression, and we have
p(Xau

4 = 1|Xe = Anger) > p(Xau
4 = 0|Xe = Anger) (1)

AU that is neither primary nor secondary has higher chance for absence than occurrence. Besides, Du
et al [6] quantitatively analyzed the relationships among expression and AUs based on their studies on
different subjects and reported the probabilities for variant AUs under each expression. We include
the reported probabilities under 6 basic expressions as another source of the generic knowledge as
summarized in Table 1(Detailed probability formulations are in Appx.A);

Table 2: AU combinations from EMFACS[9]

Expression AU
Anger 4+5, 4+7, 4+5+7, 17+24
Fear 1+2+4

Happy 6+12, 7+12
Sad 1+4, 6+15, 11+15, 11+17

Surprise 1+2+5, 1+2+26, 1+2+5+26

2) For expression-dependent joint AU probabilities, we
consider two sources. According to FACS, given an expres-
sion, its primary AUs are more likely to be present than sec-
ondary AUs, and its secondary AUs have larger chance to
appear than its other AUs. Secondly, the Emotional Facial
Action Coding System(EMFACS) proposed by Wallace
et al [9] studied the dependencies between combinations
of AUs and expressions. We collect the AU combinations
under basic expressions from EMFACS(Table 2)1. AUs
within the same combination are likely to present together and are positively correlated. We formulate
the probabilities by considering the pairwise positive correlation for each pair of AUs (Xau

i , Xau
j )

within a AU combination(See Appx.A for details). For example, AU6 and AU12(Xau
6 , Xau

12 ) are
positively correlated given the Happy expression, i.e.,

p(Xau
6 = 1|Xau

12 = 1, Xe = Happy) > p(Xau
6 = 0|Xau

12 = 1, Xe = Happy)
p(Xau

6 = 1|Xau
12 = 1, Xe = Happy) > p(Xau

6 = 1|Xau
12 = 0, Xe = Happy)

(2)

Table 3: AU correlations from anatomy

AU correlation AUs

positive
(1,2), (4,7), (4,9)

(6,12), (9, 17), (15,17), (15,24)
(17,24), (23,24)

negative (2,6), (2,7), (12,15), (12,17)

3) For expression-independent joint AU probabil-
ities, we consider the dependencies among AUs
caused by underlying facial muscle mechanism. For
example, AU12(lip corner puller) and AU15(lip cor-
ner depressor) cannot show up together as their cor-
responding muscle groups(Zgomaticus major and
Depressor anguli oris respectively) are unlikely to
be activated simultaneously. The dependencies are
further divided into positive correlations and nega-
tive correlations as summarized in Table 3. We formulate the pairwise dependencies for positively
correlated AU pairs (Xau

i , Xau
j ) as,

p(Xau
i = 1|Xau

j = 1) > p(Xau
i = 0|Xau

j = 1); p(Xau
i = 1|Xau

j = 1) > p(Xau
i = 1|Xau

j = 0) (3)
Similarly, we have the pairwise dependencies for negatively correlated AU pairs. The detailed
formulations of probabilities based on the generic knowledge can be found in Appx.A.

BN learning with probability constraints: A BN is a direct acyclic graph (DAG) G = (V, E),
where V and E denote nodes and edges respectively. BN can efficiently and accurately encode
the joint distribution of AUs and expression. Instead of learning the BN from a specific dataset,
we propose to learn a BN with probability constraints derived from the generic knowledge and
formulate the BN learning as a constraint optimization problem. We employ the regression Bayesian
Network(rBN). Consider a rBN with N nodes {Xi}Ni=1 and the conditional probability of node Xi is
defined as,

p(Xi = k|π(Xi)) = σM (
∑J
j=1 wijkπj(Xi) + bik) (4)

where Xi = {k}Kk=1 and πj(Xi) is the value of the jth parent of the node Xi. wijk is the weight of
jth parent for node Xi = k, and bik is the bias for node Xi = k. σM (x) is the softmax function.
Specifically, {Xi}Ni=1 = {Xe, Xau

1 , ..., Xau
M }. With weights w = {wijk}, the structure of rBN

is parameterized as a weighted adjacency matrix 2 A ∈ RN×N with Aij =
∑K
k=1 ||wijk||22([58]).

The structure is acyclic if and only if tr(eA(w)◦A(w)) − N = 0([57]). Learning a rBN is to learn
w = {wijk} and b = {bik}. Instead of learning a rBN with training data, we consider learning a rBN
with probability constraints. We categorize probability constraints into three groups for calculation:
strictly inequality constraints {gi(w, b) < 0}Gi=1, inequality constraints {lj(w, b) ≤ 0}Lj=1 and

1Disgust expression doesn’t have the corresponding most likely AU combinations and thus is not included.
2Aij = 0 indicates that there is no link pointing from node Xj to node Xi
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equality constraints {hk(w, b) = 0}Hk=1. We follow Eq.1-3 to derive probability constraints given the
generic knowledge. Most of the constraints belong to strictly inequality constraints(See Appx.B for
details). Additional variables sj are introduced to handle strictly inequality constraints. In particular,
we apply the exponential function to define positive margins given variables si, and each of the
strictly inequality constraints becomes gi(w, b) + esi = 0. Each constraint imposes a non-linear
constraint on the joint probability distribution of the expression and AUs. We employ the penalty
method [51] and treat each probability constraint derived from the generic knowledge as a soft
constraint. A penalty function f(w, b; s) is then defined measuring the violation of constraints given
current margins defined by es, i.e.,
f(w, b; s) = 1

G

∑G
i=1 log((gi(w, b) + esi)2 + 1) + 1

L

∑L
j=1 log((l

+
j (w, b))

2 + 1) + 1
K

∑K
k=1 log((hi(w, b))

2 + 1) (5)

where l+j (w, b) = max{0, lj(w, b)}. f(w, b; s) = 0 if and only if all the constraints are satisfied
given current margin es, and f(w, b; s) > 0 otherwise. Learning a rBN with probability constraints
is then formulated as a constraint optimization problem,

w∗, b∗, s∗ = arg min
w,b,s

f(w, b; s) + γ||w||1 − µ||s||22

s.t. tr(eA(w)◦A(w)) = 0
(6)

where ||w||1 is the L1-norm of w penalizing the density of the structure and ||s||22 is the squared
L2-norm of s encouraging the bigger positive margins. µ is set to be 1

G . w, b and s are updated
iteratively until convergence. The learned rBN with w∗ and b∗ is denoted as the knowledge model
K. The visualization of the structure and empirical analysis on the learned BN are in Appx.C. Our
work differs from [54] in terms of the approach for knowledge encoding. In [54], each constraint
is encoded as a loss term independently. In contrast, we apply the BN so that not only individual
constraints but also the underlying structured dependencies among AUs and expression are captured
comprehensively and systematically.

AU detection model: The AU detection model gϕ(in the middle of the Fig. 1) takes a facial image
xn, n = 1, 2, ..., N as input and outputs the probability for AUs, i.e. p(zn|xn), where zn represents
the AU configuration. For each configuration zn, we compute a cross-entropy loss l(zn, gφ(xn)),
and we consider the expected cross-entropy over p(zn|yGTn ,K) to obtain the model parameters ϕ,

ϕ∗ = argminϕ
∑N
n=1Ep(zn|yGTn ,K)l(zn, gϕ(xn)) (7)

where p(zn|yGTn ,K) is computed from the BN model given the facial expression label yGTn .

3.2 Facial Expression Recognition Models

Image-based FER model: The image-based FER model fψ (the top component in Fig.1) takes a
facial image as input and outputs the probabilities for facial expression classes, pψ(yn|xn). The
training consists of the input images xn, n = 1, 2, ..., N , and their expression labels yGTn . Cross-
entropy loss (denoted as l) is used to train the deep model to obtain the model parameters ψ :

ψ∗ = argminψ
1
N

∑N
n=1 l(y

GT
n , fψ(xn)) (8)

AU-based FER model: The AU-based FER model performs expression recognition using the
AU detection results and can indirectly capture the AU-expression relationships in the knowledge
model. Such a model is practically useful in assisting the model integration as it produces better
FER performance than directly using the knowledge model K(Detailed analysis are in Appx.D).
Specifically, the AU-based FER model hφ takes the output of the AU detector gϕ(xn) as its input and
generates the probability for each facial expression class pφ(yn|gϕ(xn),K). Standard cross-entropy
loss function(denoted as l) is used to obtain its parameters φ as follows:

φ∗ = argminφ
1
N

∑N
n=1 l(y

GT
n , hφ(gϕ(xn))) (9)

The combined FER model: The image-based and AU-based FER models produce independent
facial expression recognition results, i.e., pψ(yn|xn) and pφ(yn|gϕ(xn),K) respectively. Their
results are then combined to produce the expression probability p(yn|xn,K), i.e.,

p(yn|xn,K) = w1pψ(yn|xn) + w2pφ(yn|gϕ(xn),K) (10)
wherew1 andw2 are the weights. Entropy is applied to quantify the weights, i.e.,w1 = σM (−h1) and
w2 = σM (−h2) where h1 = Hpψ(yn|xn)(yn|xn) and h2 = Hpφ(yn|gϕ(xn),K)(yn|xn). σM (xi) =
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exi∑2
i=1 e

xi
is the softmax function. The lower the entropy is, the higher the weight is. The combined

expression distribution is then consistent with both data information and the underlying knowledge.

3.3 AU and Expression Models Integration

We have introduced the AU detection model and the FER model thus far. They are learnt independently.
Since the expression and AUs are highly correlated, it makes sense to perform their joint recognition by
exploiting their dependencies. To this end, we propose to augment the loss functions for AU detection
model(Eq. 7) and image-based FER model(Eq. 8) via the combined expression distribution(Eq. 10)
to perform the joint expression recognition and AU detection.

Expression-augmented AU detection model: We incorporate the combined expression probability
p(yn|xn,K) into AU detection model. In particular, we introduce a regularization term to the AU
loss function (Eq. 7) by considering the expected loss over p(yn|xn,K) as

ϕ∗ = argminϕ
∑N
n=1Ep(zn|yGTn ,K)l(zn, gϕ(xn)) + λ1Ep(yn|xn,K)Ep(zn|yn,K)l(zn, gϕ(xn)) (11)

where λ1 is a hyper-parameter to be tuned. Through the regularization term, the expression recognition
results are integrated into the AU detection model.

Knowledge-augmented image-based FER model: The interactions between AUs and facial ex-
pression are both way. Given the combined distribution p(yn|xn,K), we introduce a regularization
term by considering the expected loss over p(yn|xn,K) to the loss function(Eq. 8) to augment FER,

ψ∗ = argminψ
1
N

∑N
n=1 l(y

GT
n , fψ(xn)) + λ2Ep(yn|xn,K)l(yn, fψ(xn)) (12)

λ2 is a hyper-parameter to be tuned. Through the regularization term, the AU detection results and
the AU-expression relationships encoded in the knowledge model are integrated into the FER model.

Algorithm 1 Iterative model training

Input:
Training Data D = {xn,yGTn }Nn=1
Knowledge model K
Hyper-parameters λ1, λ2

Output:
Image-based expression model fψ
AU detection model gϕ

1: Initialize fψ via pre-train with Eq. 8
2: Initialize gϕ via pre-train with Eq. 7
3: Initialize hφ via pre-train with Eq. 9
4: while Not Converging do
5: Apply fψ to predict pψ(yn|xn)
6: Apply gϕ to predict pϕ(zn|xn)
7: Apply hφ to predict pφ(yn|gϕ(xn),K)
8: Combine probability with Eq. 10
9: Update fψ with Eq. 12

10: Update gϕ with Eq. 11
11: Update hφ with Eq. 9
12: end while

Through Eq. 11 and Eq. 12, we can systemati-
cally combine the AU detection model and the FER
model. These models interact with each other dur-
ing training to improve each other’s performance.
Furthermore, we apply an iterative updating proce-
dure that can continuously update each model until
convergence: given an updated combined distribu-
tion, update the image-based FER model and the
AU model. The AU-based FER model is updated
accordingly given the updated AU model. The
pseudo-code for the proposed model integration for
joint training is summarized in Algorithm 1.

4 Experiments

Databases: We consider four benchmark datasets:
BP4D-Spontaneous database[53], Extended
CohnKanande(CK+) database[29], M&M Initia-
tive(MMI) database[36] and EmotioNet[31]. The
BP4D [53] is a spontaneous database containing
328 sequences from 41 subjects. Each sequence
is labelled with one expression category and many
frames along the sequence contain neutral status
without expression. As our method requires the
presence of expression, we collect 803 apex frames
in total. The CK+ [29] is a posed expression database that contains 309 sequences from 109 subjects.
For each sequence, expression starts from neutral intensity to the strongest intensity for a specific
expression category. Typically, the last frame of each sequence is extracted. In total, 309 frames are
collected. MMI [36] is a posed expression database. 238 clips of 28 subjects are collected from
Part II of MMI. Typically, three frames around the center of each sequence are selected. In total,
504 frames are collected from labelled sequences with frontal face. For BP4D, CK+, and MMI,
annotations for both AUs and 6 basic expressions are collected. The EmotioNet[31] is collected
in the wild. Annotations in EmotioNet are noisy as they are automatically generated by existing
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algorithms. All 24,556 images are collected and around 2,000 images have annotations for both
AUs and expressions, including compound expressions. Due to occlusion, AU annotations are
incomplete, and thus we only consider expressions. In total, 537 images with 6 basic expressions are
collected(Appx.E for statistical information of datasets). We employ 5-fold subject-independent
cross-validation experiments.
Models and hyperparameters: Three-layer CNN is applied for the AU detection model. The
kernel size of each layer is 5x5, 4x4, 3x3 respectively. Three fully connected layers are adopted for
the AU-based FER model. VGG-19[41] is applied for image-based FER model and is pre-trained
with FER2013[10](Appx.F for analysis on the effects of pre-training). AdamOptimizer is applied
with learning rate 0.0005. γ = 0.001(Eq.9). λ1 = 0.005(Eq.11), and λ2=0.001 (Eq.12). Values of λ1
and λ2 are selected based on grid search from the range {0.0005, 0.001, 0.005, 0.01, 0.5, 1}(Appx.G
for analysis on effects of λ1 and λ2).

4.1 Action Units Detection

We evaluate the performance of the proposed AU detection model. We denote the initial AU detection
model as AUD-BN(Eq.7) learned with the generic BN and the expression-augmented AU detection
model as AUD-EA(Eq.11). We firstly evaluate the AUD-BN to demonstrate the effectiveness of
the generic knowledge. For comparison, we train the AU detection model with GT AU annotations
provided by the dataset(denoted as AUD-GT). We then compare the performance of the AUD-BN
and AUD-EA to demonstrate the effectiveness of the model integration. Finally, we compare the
proposed AU detection model to the state-of-the-art models. F1-score is applied as the evaluation
metric. We report the F1-score for each AU and the averaged F1-score over AUs.

4.1.1 AU Detection Evaluation

Effectiveness of the generic BN: To evaluate the effectiveness of the proposed generic BN(gBN),
we consider the performance of AU detection with the gBN and a subset of GT AU annotations. For
the training samples without GT AU annotations, we apply Eq.7. For the rest with GT AU annotations,
an additional regularization term is introduced to Eq.7 calculating the cross-entropy loss between
GT AU annotations and predicted AU labels. The coefficient of the regularization term is set to be 1.
We consider BP4D and CK+ for evaluation. Results are shown in Table 4. For CK+, gBN with 80%
GT AU annotations achieves average F1-score 0.79, better than AUD-GT(0.78). Furthermore, gBN
with 100% AU annotations achieves 0.83, the best performance. For BP4D, with gBN and only 60%
GT AU annotations, it achieves the same performance as the performance using all GT annotations.
These results demonstrate that gBN can capture additional knowledge beyond the labels and they can
apply to different datasets. And by leveraging the gBN, the AU detection model has less dependency
on GT annotations, and thus is more data efficient.

Table 4: Evaluation of generic BN(gBN) with a subset of GT AU annotations
Database BP4D CK+

AU 1 2 4 6 7 12 15 17 Avg 1 2 4 6 7 12 15 17 Avg
gBN + 0%GT .54 .44 .54 .60 .80 .55 .42 .62 .56 .79 .78 .72 .69 .44 .90 .47 .75 .69
gBN + 20%GT .54 .36 .53 .64 .81 .65 .38 .62 .57 .83 .88 .71 .64 .49 .85 .53 .74 .71
gBN + 40%GT .46 .35 .52 .74 .81 .76 .42 .65 .59 .85 .84 .75 .77 .52 .90 .49 .75 .73
gBN + 60%GT .48 .38 .51 .78 .82 .79 .50 .71 .62 .90 .88 .78 .75 .59 .92 .51 .84 .77
gBN + 80%GT .64 .36 .61 .79 .84 .84 .38 .70 .64 .89 .93 .79 .78 .56 .92 .62 .79 .79

gBN + 100%GT .54 .44 .58 .77 .82 .84 .51 .74 .65 .93 .93 .81 .78 .63 .92 .74 .86 .83
AUD-GT .49 .36 .56 .78 .85 .83 .36 .70 .62 .87 .90 .85 .74 .53 .91 .60 .84 .78

Effectiveness of model integration: The results of AU detection with AUD-BN and AUD-EA are
summarized in Table 5. For all three datasets, the AUD-EA achieves better performance compared to
AUD-BN with the generic BN. In particular, the F1-score that AUD-EA achieves averaged over 8 AUs
is 5% higher than AUD-BN for CK+ and 11% higher for MMI. In addition, the proposed AUD-EA
with the generic BN achieves comparable performance with AUD-GT for BP4D and CK+. For
MMI, we obtain the F1-score 54% with AUD-GT, and with AUD-EA, we achieve 58%, better than
AUD-GT. The reason is that AU annotations in MMI are very unbalanced, in particular for AU6 and
AU15 and thus AUD-GT fails to produce good performance. On the other hand, applying the generic
knowledge through the model integration without AU annotations, our proposed AUD-EA produces
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the best performance. These results demonstrate that the proposed model integration is effective in
improving the AU detection performance. In addition, the generic BN is further demonstrated to
represent well the underlying generic knowledge on the expression-AUs relationships. The generic
BN can supervise the training of the AU detector effectively and generalizes well to different datasets.

Table 5: Evaluation of AU detection models: AUD-BN and AUD-EA
AUD-BN AUD-EA AUD-GT

AU 1 2 4 6 7 12 15 17 Avg 1 2 4 6 7 12 15 17 Avg 1 2 4 6 7 12 15 17 Avg
BP4D .54 .44 .54 .60 .80 .55 .42 .62 .56 .53 .36 .55 .68 .83 .57 .39 .65 .57 .49 .36 .56 .78 .85 .83 .36 .70 .62
CK+ .79 .78 .72 .69 .44 .90 .47 .75 .69 .90 .82 .67 .70 .46 .94 .68 .75 .74 .87 .90 .85 .74 .53 .91 .60 .84 .78
MMI .59 .50 .59 .39 .40 .58 .27 .42 .47 .67 .66 .70 .40 .43 .87 .45 .44 .58 .58 .78 .74 .07 .52 .83 .31 .52 .54

4.1.2 Comparison to the state-of-the-art Methods

We compare the proposed expression-augmented AUD model(AUD-EA) with generic BN(gBN)
to the state-of-the-art AU detection methods. To be clear, we focus our comparison on only AU
detection and exclude the work on AU intensity estimation. We consider the state-of-the-art methods
HTL [40], LP-SM [54] and TCAE [22] which apply AU-expression relationships as weak super-
visions and don’t require AU annotations. In addition, we compare to SoA supervised learning
methods as JPML [56], HRBM [47], MC-LVM [8] and AU R-CNN [30]. We report the aver-
aged F1-score over 8 AUs and the results are shown in Table 6. (∗) indicates the reported results.

Table 6: Comparison to the SoAs on AU detection.

Supervision Method BP4D CK+ MMI

Supervised

HRBM[47] .67 .79 .56
MC-LVM[8] - .80∗ -

JPML[56] .68∗ .78∗ -
AU R-CNN[30] .63∗ - -

HTL[40] .50 .66 .42

Weakly-supervised LP-SM[54] .55 .72∗ .50
TCAE[22] .56∗ - -

AUD-BN(baseline) .56 .69 .47
AUD-EA(gBN) .57 .74 .58

As shown in Table 6, our proposed
method outperforms all the other
weakly supervised methods. For ex-
ample, our proposed AUD-EA with
generic BN produces 74% for CK+,
which is 2% better than LP-SM and
7% better than HTL. In particular,
TCAE is a sequence-based method
leveraging temporal information for
weak supervision, and our proposed
approach achieves better performance
compared to TCAE. Compared to the
supervised learning methods, because
our method doesn’t require any annotation, our performance is not that competitive. For MMI,
HRBM fails to perform well due to the unbalanced labels. On the other hand, by leveraging the
generic knowledge and model integration, our AUD-EA achieves the best performance.

4.2 Facial Expression Recognition

We evaluate the performance of the proposed FER models. We denote the initial image-based FER
model trained with GT expression annotations(Eq. 8) as FER-I, and the knowledge-augmented
image-based FER model(Eq. 12) as FER-IK. We firstly evaluate the effectiveness of the proposed
joint training by comparing the performance of FER-I and FER-IK. We then compare the proposed
FER-IK to the state-of-the-art FER models. We apply classification accuracy as the evaluation metric.

Table 7: Evaluation of the FER model

Model BP4D CK+ MMI EmNet
FER-I 61.68 94.29 67.35 80.85

FER-IK 83.82 97.59 84.90 95.55

Image-based FER evaluation: We compare
the performance of FER-I and FER-IK to
demonstrate the effectiveness of the model in-
tegration. Besides BP4D, CK+ and MMI, we
also consider the EmotioNet(EmNet) to further
demonstrate the effectiveness of the proposed
model integration with the generic BN on noisy
and challenging dataset. We report the expression accuracy for both FER-I and FER-IK with the
generic BN as shown in Table 7. It is clear from the table that for all datasets, FER-IK signifi-
cantly outperforms FER-I. In particular, the FER-IK achieves 22.14% accuracy improvements for
BP4D. These results show that by integrating the generic knowledge through the joint training, the
FER performance can be significantly improved. The proposed generic BN can apply to different
datasets. In addition, for EmtioNet, FER-IK achieves significant improvement which demonstrate the
effectiveness of our proposed approach on noisy and challenging datasets, such as EmotioNet.
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Comparison to the state-of-the-art methods: We compare the performance of proposed knowledge-
augmented image-based FER model(FER-IK) with generic BN(gBN) to the state-of-the-art meth-
ods. Results are shown in Table 8. (∗) indicates reported results. For FMPN-FER[4]3 and
DeepEmotion[32]4, we perform experiments with default hyperparameters suggested in the papers.

Table 8: Comparison with SoA FER methods

Methods BP4D CK+ MMI EmotioNet
STM-Explet[27] - 94.19∗ 75.12∗ -

DTAGN(Joint)[12] - 97.25∗ 70.24∗ -
DeRL[50] - 97.30∗ 73.23∗ -
ILCNN[3] - 94.35∗ 70.67∗ -

DAM-CNN[49] - 95.88∗ - -
FMPN-FER[4] 60.16 96.53 82.74∗ 84.88

DeepEmotion[32] 79.54 95.23 72.66 81.51
FER-I(baseline) 61.68 94.29 67.35 80.85
FER-IK(gBN) 83.82 97.59 84.90 95.55

Our proposed method outperforms
all the other SoA FER methods. In
particular, for BP4D and EmotioNet,
we achieve significant improvement.
BP4D is a spontaneous dataset, and
we achieve 4.28% accuracy improve-
ment compared to the DeepEmotion.
EmotioNet is more challenging as
its annotations are very noisy. And
both the FMPN-FER and the Deep-
Emotion don’t produce competitive
performance for the EmotioNet. On
the other hand, by incorporating the
generic knowledge through model in-
tegration to compensate label errors, our model produces the outstanding performance. In addition,
for FMPN-FER, we follow the procedure suggested by the paper and apply the prior facial motion
mask obtained from CK+ to BP4D and EmotioNet. Its poor performance for BP4D and EmotioNet
indicates that the prior mask obtained from a specific dataset can not generalize well to other datasets.

5 Conclusion

This paper proposes a knowledge augmented deep learning framework for joint AU detection and
facial expression recognition. We first propose a constraint optimization method to encode the
generic knowledge on expression-AUs dependencies into a Bayesian Network (BN). We then embed
the BN model into a deep learning framework to perform weakly supervised AU detection. We
further introduce a joint training procedure to exploit the interactions between AU detection and
FER for improved performance on both tasks. Experiments on benchmark datasets show that the
proposed method achieves improved performance for both FER and AU detection. Specifically,
for facial expression, the proposed knowledge-augmented FER model outperforms the SoA FER
models. For AUs, the proposed AU detection model, trained with a generic BN without any GT AU
annotations, significantly outperforms the SoA weakly-supervised methods and achieves comparable
results to SoA supervised methods. Experiments also show that with the incorporation of the generic
knowledge, our model generalizes well to different datasets, even perform well on the MMI dataset
with unbalanced AU annotations and the challenging EmotioNet with noisy expression labels.
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Broader Impact

This work is focused on two computer vision tasks: facial expression recognition and facial action
units detection. The potential broader impacts of this work are listed as follows:

Benefits: Facial expression recognition can benefit many applications, including HCI, social robotics,
medical diagnosis, games animation, etc. By leveraging the domain knowledge, our proposed models
have less dependence on training data and thus the data efficiency is improved. In other words, it
may release domain experts from the heavy workload on labeling data. Furthermore, as the domain

3https://github.com/donydchen/FMPN-FER
4https://github.com/omarsayed7/Deep-Emotion
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knowledge is generic, our propose model can generalize well to different datasets. Hence, given new
datasets, additional training process is promised to be no longer necessary.

Risks: Facial expression recognition has some privacy concerns. For example, through facial
expression recognition systems, individuals’ emotional reactions to certain messages, news or figures
can be tracked. Also individuals’ emotional reactions to events can be monitored in the public places
with facial expression recognition systems.
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