A Proofs

A.1 Preliminaries: Online optimization with time-dependent regularization

We give a brief background on Follow the Regularized Leader and Online Mirror Descent algorithmic templates, in the case where the regularization is varying and time-dependent.

The setup is the standard setup of online linear optimization. Let $\mathcal{W} \subseteq \mathbb{R}^d$ be a convex domain. On each prediction round t = 1, ..., T, the learner has to produce a prediction $w_t \in \mathbb{R}^d$ based on $g_1, ..., g_{t-1}$, and subsequently observes a new loss vector g_t and incurs the loss $w_t \cdot g_t$. The goal is to minimize the regret compared to any $w^* \in \mathcal{W}$, given by $\sum_{t=1}^T g_t \cdot (w_t - w^*)$.

Follow the Regularized Leader (FTRL). The FTRL template generates predictions $w_1, \ldots, w_T \in \mathcal{W}$, for $t = 1, \ldots, T$, as follows:

$$w_t = \underset{w \in \mathcal{W}}{\operatorname{argmin}} \left\{ w \cdot \sum_{s=1}^{t-1} g_s + R_t(w) \right\}.$$
 (6)

Here, $R_1, \ldots, R_T : \mathcal{W} \to \mathbb{R}$ is a sequence of twice-differentiable, strictly convex functions.

The derivation and analysis of FTRL-type algorithms is standard; see, e.g., [29, 13, 25]. In our analysis, however, we require a particular regret bound that we could not find stated explicitly in the literature (similar bounds exist, however, and date back at least to [7]). For completeness, we provide the bound here with a proof in the full version of the paper [?].

Theorem 10. Suppose that $R_t = \eta_t^{-1} R$ for all t for some strictly convex R, with $\eta_1 \ge ... \ge \eta_T > 0$. Then there exists a sequence of points $z_t \in [w_t, w_{t+1}]$ such that the following regret bound holds for all $w^* \in W$:

$$\sum_{t=1}^{T} g_t \cdot (w_t - w^{\star}) \le \frac{1}{\eta_1} \left(R(w^{\star}) - R(w_1) \right) + \sum_{t=1}^{T} \left(\frac{1}{\eta_{t+1}} - \frac{1}{\eta_t} \right) \left(R(w^{\star}) - R(w_{t+1}) \right) + \frac{1}{2} \sum_{t=1}^{T} \eta_t \left(\|g_t\|_t^* \right)^2 \left(\frac{1}{\eta_t} - \frac{1}{\eta_t} \right) \left(R(w^{\star}) - R(w_{t+1}) \right) + \frac{1}{2} \sum_{t=1}^{T} \eta_t \left(\|g_t\|_t^* \right)^2 \left(\frac{1}{\eta_t} - \frac{1}{\eta_t} \right) \left(\frac{1}{\eta_t} - \frac{1}{\eta_$$

where $||g||_t^2 = g^T \nabla^2 R(z_t)g$ is the local norm induced by R at an appropriate $z_t \in [w_t, w_{t+1}]$, and $|| \cdot ||_t^*$ is its dual norm.

Online Mirror Descent (OMD). The closely-related OMD framework produces predictions w_1, \ldots, w_T via the following procedure: initialize $w_1 = \operatorname{argmin}_{w \in \mathcal{W}} R_1(w)$, and for $t = 1, \ldots, T$, compute

$$w_{t+1}' = \underset{w}{\operatorname{argmin}} \{g_t \cdot w + D_{R_t}(w, w_t)\} = (\nabla R_t)^{-1} (\nabla R_t(w_t) - g_t);$$

$$w_{t+1} = \underset{w \in \mathcal{W}}{\operatorname{argmin}} D_{R_t}(w, w_{t+1}').$$
(7)

Here, $R_1, \ldots, R_T : \mathcal{W} \to \mathbb{R}$ is a sequence of twice-differentiable, strictly convex functions and $D_R(w', w) = R(w') - R(w) - \nabla R(w) \cdot (w' - w)$ is the Bregman divergence of a convex function R at point $w \in \mathcal{W}$.

The proof of the following regret bound (which is again a somewhat specialized variant of standard bounds for OMD) appears in the full version of the paper [?].

Theorem 11. Suppose that $R_t = \eta_t^{-1} R$ for all t for some strictly convex R, with $\eta_1 \ge ... \ge \eta_T > 0$. Then there exists a sequence of points $z_t \in [w_t, w'_{t+1}]$ such that the following regret bound holds for all $w^* \in W$:

$$\sum_{t=1}^{T} g_t \cdot (w_t - w^{\star}) \le \frac{1}{\eta_1} \left(R(w^{\star}) - R(w_1) \right) + \sum_{t=1}^{T-1} \left(\frac{1}{\eta_{t+1}} - \frac{1}{\eta_t} \right) D_R(w^{\star}, w_{t+1}) + \frac{1}{2} \sum_{t=1}^{T} \eta_t \left(\|g_t\|_t^* \right)^2,$$

where $\|\cdot\|_t$ is the local norm induced by R at an appropriate $z_t \in [w_t, w'_{t+1}]$, and $\|\cdot\|_t^*$ is its dual.

A.2 Upper bounds for FTRL

Proof of Lemma 6. We observe that Eq. (4) is an instantiation of FTRL with $R_t(p) = \eta_t^{-1}R(p)$ as regularizations, where $R(p) = -H(p) = \sum_{i=1}^{N} p_i \log p_i$ is the negative entropy. Hence, we can invoke

Theorem 10 to bound the regret compared to any probability distribution p^* . It suffices to bound the regret for p^* that minimizes $\sum_{t=1}^{T} p \cdot \ell_t$, which is always a point-mass on a single expert i^* , for which $R(p^*) = 0$. Therefore, Theorem 10 in our case reads

$$\sum_{t=1}^{T} \sum_{i=1}^{N} p_{t,i} \big(g_{t,i} - g_{t,i^{\star}} \big) \le -\frac{1}{\eta_1} R(p_1) - \sum_{t=1}^{T} \Big(\frac{1}{\eta_{t+1}} - \frac{1}{\eta_t} \Big) R(p_{t+1}) + \frac{1}{2} \sum_{t=1}^{T} \eta_t \big(\|g_t\|_t^* \big)^2.$$

Now set $\eta_t = \sqrt{\log(N)/t}$. For the first two terms in the bound, observe that $R(p_1) = -\log N$, and further, that

$$\frac{1}{\eta_{t+1}} - \frac{1}{\eta_t} = \frac{1}{\sqrt{\log N}} \frac{1}{\sqrt{t} + \sqrt{t+1}} \le \frac{1}{2\sqrt{t\log N}} = \frac{\eta_t}{2\log N}.$$
(8)

For the final sum, we have to evaluate the Hessian $\nabla^2 R(p'_t)$ at a point $p'_t \in [p_t, p_{t+1}]$. A straightforward differentiation shows that this matrix is diagonal, with diagonal elements $\nabla^2 R(p'_t)_{ii} = 1/p'_{t,i}$. Thus,

$$\left(\|g_t\|_t^*\right)^2 = g_t^{\mathsf{T}} \left(\nabla^2 R(p_t')\right)^{-1} g_t = p_t' \cdot g_t^2.$$
(9)

The final sum can be divided and bounded as follows

$$\sum_{t=1}^{T} \eta_t \left(p'_t \cdot g_t^2 \right) = \sum_{t=1}^{4 \log N} \eta_t \left(p'_t \cdot g_t^2 \right) + \sum_{t=1+4 \log N}^{T} \eta_t \left(p'_t \cdot g_t^2 \right)$$
$$\leq 4 \log N + \sum_{t=1+\log N}^{T} \eta_t \left(p'_t \cdot g_t^2 \right).$$

Where we used the fact that $\sum_{s=1}^{t} \eta_s = \sum_{s=1}^{t} \sqrt{\log(N)/s} \le 2\sqrt{t \log N}$. To conclude the proof it suffices to show that $p'_{t,i} \le 9p_{t,i}$ for $t \ge 4 \log N$. To see this, denote $G_t = \sum_{s=1}^{t-1} g_s$ and write

$$\frac{e^{-\eta_{t+1}G_{t+1,i}}}{e^{-\eta_t G_{t,i}}} = e^{-\eta_{t+1}g_{t,i}} e^{(\eta_t - \eta_{t+1})G_{t,i}}.$$

For $t \ge 4 \log N$, the following relations hold:

$$\begin{aligned} 0 < \eta_{t+1} |g_{t,i}| &\leq \eta_{t+1} \leq \frac{1}{2}; \\ 0 < (\eta_t - \eta_{t+1}) |G_{t,i}| &\leq \sqrt{\log N} \frac{\sqrt{t+1} - \sqrt{t}}{\sqrt{t(t+1)}} t \leq \frac{\sqrt{\log N}}{\sqrt{t} + \sqrt{t+1}} \leq \eta_t \leq \frac{1}{2}. \end{aligned}$$

Hence, for $t \ge 4 \log N$ we have

$$\frac{1}{3} \leq \frac{e^{-\eta_{t+1}G_{t+1,i}}}{e^{-\eta_t G_{t,i}}} \leq 3$$

and consequently

$$p_{t+1,i} = \frac{e^{-\eta_{t+1}G_{t+1,i}}}{\sum_{j=1}^{N} e^{-\eta_{t+1}G_{t+1,j}}} \le 9 \frac{e^{-\eta_{t}G_{t,i}}}{\sum_{j=1}^{N} e^{-\eta_{t}G_{t,j}}} = 9p_{t,i}.$$

Since $p'_t \in [p_t, p_{t+1}]$, the same inequality holds for p'_t ; that is, $p'_{t,i} \leq 9p_{t,i}$ for all *i*, and the proof is complete.

Lemma 12. For the adaptive MW algorithm in Eq. (4) with loss vectors $g_t = \tilde{\ell}_{t,i}$, we have

$$\sum_{t=1}^{T} \eta_t \sum_{i=1}^{N} p_{t,i} \left(\tilde{\ell}_{t,i} - \tilde{\ell}_{t,i^\star} \right)^2 \le \frac{16 \log N}{\Delta} + \frac{1}{8} \overline{\mathcal{R}}_T.$$

Proof. By setting $t_0 = 64\Delta^{-2} \log N$ and $\eta_t = \sqrt{\log(N)/t}$ we obtain

$$\begin{split} \sum_{t=1}^{T} \eta_t \sum_{i=1}^{N} p_{t,i} (\tilde{\ell}_{t,i} - \tilde{\ell}_{t,i^{\star}})^2 &\leq \sum_{t=1}^{t_0} \eta_t + \sum_{t=t_0+1}^{T} \eta_{t_0} \sum_{i=1}^{N} p_{t,i} (\tilde{\ell}_{t,i} - \tilde{\ell}_{t,i^{\star}})^2 \\ &\leq 2\sqrt{\log(N)} \sqrt{t_0} + \frac{\Delta}{8} \sum_{t=t_0+1}^{T} \sum_{i=1}^{N} p_{t,i} (\tilde{\ell}_{t,i} - \tilde{\ell}_{t,i^{\star}})^2 \\ &\leq \frac{16 \log N}{\Delta} + \frac{1}{8} \sum_{t=t_0+1}^{T} \sum_{i=1}^{N} p_{t,i} (\mu_i - \mu_{i^{\star}}), \end{split}$$

where in the final inequality we used observation 3. To conclude we note that $p_{t,i}(\mu_i - \mu_{i^*}) \ge 0$, thus we can modify the last summation to range over t = 1, ..., T. **Lemma 13.** For the adaptive MW algorithm in Eq. (4), we have

$$\frac{1}{\log N} \sum_{t=1}^{T} \eta_t H(p_{t+1}) \leq \frac{50 \log N}{\Delta} + \frac{5}{8} \overline{\mathcal{R}}_T.$$

Proof. First we split the sum as follows,

$$\frac{1}{\log N} \sum_{t=1}^{T} \eta_t H(p_{t+1}) = \frac{1}{\log N} \sum_{t=1}^{t_0} \eta_t H(p_{t+1}) + \frac{1}{\log N} \sum_{t=t_0+1}^{T} \eta_t H(p_{t+1})$$

where $t_0 = 64\Delta^{-2} \log N$. For the summation of $t = \{t_0 + 1, \dots, T\}$ we use Lemma 7 with $\tau = t \log N \ge t_0 \log N = 64\Delta^{-2} \log^2 N$ to obtain

$$\begin{split} \frac{1}{\log N} \sum_{t=t_0+1}^T \eta_t H(p_{t+1}) &= \sum_{t=t_0+1}^T \frac{1}{\sqrt{t \log N}} \sum_{i=1}^N p_{t+1,i} \log \frac{1}{p_{t+1,i}} \\ &\leq \frac{5}{8} \sum_{t=t_0+1}^T \sum_{i\neq i^\star} p_{t+1,i} \Delta + 2 \sum_{t=t_0+1}^T \frac{1}{\sqrt{t \log N}} e^{-\frac{1}{8}\Delta \sqrt{t \log N}} \\ &\leq \frac{5}{8} \sum_{t=t_0+1}^T \sum_{i=1}^N p_{t,i} (\mu_i - \mu_{i^\star}) + \Delta + 2 \sum_{t=t_0+1}^T \frac{1}{\sqrt{t \log N}} e^{-\frac{1}{8}\Delta \sqrt{t \log N}}, \end{split}$$

where the last inequality follows for reordering terms in the summation and that $\Delta \le \mu_i - \mu_{i^*}$ for $i \ne i^*$. Using the fact that $p_{t,i}(\mu_i - \mu_{i^*}) \ge 0$ we get

$$\frac{1}{\log N} \sum_{t=t_0+1}^{T} \eta_t H(p_{t+1}) \le \frac{5}{8} \sum_{t=1}^{T} \sum_{i=1}^{N} p_{t,i} (\mu_i - \mu_{i^\star}) + \Delta + 2 \sum_{t=t_0+1}^{T} \frac{1}{\sqrt{t \log N}} e^{-\frac{1}{8}\Delta \sqrt{t \log N}}.$$
 (10)

Moreover, we have

$$\sum_{t=t_0+1}^{T} \frac{1}{\sqrt{t \log N}} e^{-\frac{1}{8}\Delta\sqrt{\log N}\sqrt{t}} \leq \frac{1}{\sqrt{\log N}} \int_{t_0}^{T} \frac{1}{\sqrt{t}} e^{-\frac{1}{8}\Delta\sqrt{\log N}\sqrt{t}} dt$$
$$= \frac{1}{\sqrt{\log N}} \cdot \frac{16}{\Delta\sqrt{\log N}} e^{-\frac{1}{8}\Delta\sqrt{\log N}\sqrt{t}} \Big|_{T}^{t_0}$$
$$\leq \frac{16}{\Delta \log N}$$
$$\leq \frac{16}{\Delta}.$$
(11)

Lastly, for the summation of $t = \{1, ..., t_0\}$ we get

$$\frac{1}{\log N} \sum_{t=1}^{t_0} \eta_t H(p_{t+1}) \le 2\sqrt{t_0 \log N} = \frac{16 \log N}{\Delta}$$
(12)

which follows from $H(p) \le \log N$ and $\sum_{t=1}^{t_0} 1/\sqrt{t} \le 2\sqrt{t_0}$. Combining Eqs. (10) to (12), the proof is concluded.

A.3 Lower bound for OMD

Proof of Theorem 9. Let q_t denote the probability that MW-OMD chooses the best expert (i.e., expert #1) on round *t*. For $t \le C$, the best expert suffers higher losses than the other expert, thus $\mathbf{E}[q_t] \le 1/2$. For t > C, it holds that

$$q_t = \frac{e^{-\sum_{s=1}^{t-1} \eta_s(\tilde{\ell}_{s,1} - \tilde{\ell}_{s,2})}}{1 + e^{-\sum_{s=1}^{t-1} \eta_s(\tilde{\ell}_{s,1} - \tilde{\ell}_{s,2})}} \le e^{-\sum_{s=1}^{t-1} \eta_s(\tilde{\ell}_{s,1} - \tilde{\ell}_{s,2})} = e^{-\sum_{s=1}^{C} \eta_s} \exp\left(\sum_{s=C+1}^{t-1} \eta_s(\ell_{s,2} - \ell_{s,1})\right).$$

Now, observe that

$$\sum_{s=1}^C \eta_s \ge C\eta_C = \alpha \sqrt{C}.$$

Also, by a standard application of Hoeffding's lemma (e.g., Appendix A of [3]),

$$\mathbf{E} \exp\left(\sum_{s=C+1}^{t-1} \eta_s (\ell_{s,2} - \ell_{s,1})\right) = \prod_{s=C+1}^{t-1} \mathbf{E} e^{\eta_s (\ell_{s,2} - \ell_{s,1})}$$
$$\leq \prod_{s=C+1}^{t-1} e^{\eta_s \Delta + \eta_s^2/8}$$
$$\leq \exp\left(\Delta \sum_{s=1}^{t-1} \eta_s\right) \exp\left(\frac{1}{8} \sum_{s=1}^{t-1} \eta_s^2\right)$$
$$\leq \exp\left(2\alpha \Delta \sqrt{t} + \alpha^2 \log t\right).$$

Overall, we have shown that for t > C,

$$\mathbf{E}[q_t] \le \exp(-\alpha\sqrt{C} + 2\alpha\Delta\sqrt{t} + \alpha^2\log t).$$

Whenever $t \le t_1 := \min\{2^{-6}C/\Delta^2, \exp(\frac{1}{4}\sqrt{C}/\alpha)\}$, the right hand side is $\le \exp(-\frac{1}{2}\alpha\sqrt{C}) \le \frac{1}{2}$ for $\alpha \ge 1/\sqrt{C}$. Hence, in that case,

$$\mathcal{R}_T \ge \sum_{s=1}^{t_1} \Delta \mathbf{E}[1-q_s] \ge \sum_{s=1}^{t_1} \frac{1}{2} \Delta \ge \frac{1}{2} \Delta t_1.$$

B Analysis of OMD in the Purely Stochastic Case

Proof of Theorem 8. Applying Theorem 11 for the experts setting we get

$$\mathcal{R}_T \leq \frac{1}{\eta_1} (H(p_1) - H(p^*)) + \sum_{t=1}^{T-1} \left(\frac{1}{\eta_{t+1}} - \frac{1}{\eta_t} \right) \sum_{i=1}^N p_i^* \log \frac{p_i^*}{p_{t+1,i}} + \frac{1}{2} \sum_{t=1}^T \eta_t (\|\ell_t\|_t^*)^2,$$

where we used the fact that the Bregman divergence of the negative entropy is the KL divergence. In addition, using similar observations as in the proof of Lemma 6 (e.g., Eqs. (8) and (9)) and setting $\eta_t = c/\sqrt{t}$ we obtain

$$\mathcal{R}_T \leq \frac{\log N}{c} + \frac{1}{2c^2} \sum_{t=1}^{T-1} \eta_t \log \frac{1}{p_{t+1,i^\star}} + \frac{1}{2} \sum_{t=1}^T \sum_{i=1}^N \eta_t p_{t,i} \ell_{t,i}^2.$$

Applying additive translation we get,

$$\Re_T \le \frac{\log N}{c} + \frac{1}{2c^2} \sum_{t=1}^{T-1} \eta_t \log \frac{1}{p_{t+1,i^\star}} + \frac{1}{2} \sum_{t=1}^T \eta_t \sum_{i=1}^N p_{t,i} (\ell_{t,i} - \ell_{t,i^\star})^2.$$
(13)

Similarly to Lemma 12 we can bound the third term by

$$\frac{1}{2}\sum_{t=1}^{T}\eta_t\sum_{i=1}^{N}p_{t,i}(\ell_{t,i}-\ell_{t,i^\star})^2 \le \frac{c^2}{\Delta} + \frac{1}{2}\overline{\mathcal{R}}_T = \frac{\log N}{\Delta} + \frac{1}{2}\overline{\mathcal{R}}_T.$$
(14)

We now examine the second term. Using the MW algorithm defined in Eq. (5) we have,

$$\log \frac{1}{p_{t+1,i^{\star}}} = \log \frac{\sum_{i=1}^{N} e^{-\sum_{s=1}^{t-1} \eta_s \ell_{t,i}}}{e^{-\sum_{s=1}^{t-1} \eta_s \ell_{s,i^{\star}}}} = \log \left(1 + \sum_{i \neq i^{\star}} e^{-\sum_{s=1}^{t-1} \eta_s (\ell_{s,i} - \ell_{s,i^{\star}})}\right)$$

Plugging it back to the original term we get

$$\frac{1}{2c^2} \sum_{t=1}^{T-1} \eta_t \log \frac{1}{p_{t+1,i^\star}} = \frac{1}{2c} \sum_{t=1}^{T-1} \frac{1}{\sqrt{t}} \log \Big(1 + \sum_{i \neq i^\star} e^{-\sum_{s=1}^{t-1} \eta_s(\ell_{s,i} - \ell_{s,i^\star})} \Big).$$

By taking the expectation and using its linearity property we obtain

$$\begin{aligned} \frac{1}{2c} \sum_{t=1}^{T-1} \frac{1}{\sqrt{t}} \mathbf{E} \Big[\log \Big(1 + \sum_{i \neq i^{\star}} e^{-\sum_{s=1}^{t-1} \eta_s(\ell_{t,i} - \ell_{t,i^{\star}})} \Big) \Big] &\leq \frac{1}{2c} \sum_{t=1}^{T-1} \frac{1}{\sqrt{t}} \log \Big(1 + \sum_{i \neq i^{\star}} \mathbf{E} \Big[e^{-\sum_{s=1}^{t-1} \eta_s(\ell_{s,i} - \ell_{s,i^{\star}})} \Big] \Big) \\ &\leq \frac{1}{2c} \sum_{t=1}^{T-1} \frac{1}{\sqrt{t}} \log \Big(1 + \sum_{i \neq i^{\star}} \prod_{s=1}^{t-1} \mathbf{E} \Big[e^{-\eta_s(\ell_{s,i} - \ell_{s,i^{\star}})} \Big] \Big), \end{aligned}$$

where we used Jensen inequality for concave functions for the first inequality and the fact that $x_t := \ell_{t,i} - \ell_{t,i^*}$ are i.i.d. for the second inequality. Applying Hoeffding's Lemma yields,

$$\frac{1}{2c} \sum_{t=1}^{T-1} \frac{1}{\sqrt{t}} \log \left(1 + \sum_{i \neq i^{\star}} \prod_{s=1}^{t-1} \mathbf{E} \left[e^{-\eta_s (\ell_{s,i} - \ell_{s,i^{\star}})} \right] \right) \le \frac{1}{2c} \sum_{t=1}^{T-1} \frac{1}{\sqrt{t}} \log \left(1 + N \exp \left(\sum_{s=1}^{t-1} \left(\frac{1}{2} \eta_s^2 - \eta_s \Delta \right) \right) \right)$$

Next, we bound the argument of the exponent

$$\sum_{s=1}^{t-1} \left(\frac{1}{2} \eta_s^2 - \eta_s \Delta \right) \le \frac{c^2}{2} \sum_{s=1}^{t-1} \frac{1}{s} - c\Delta \sum_{s=1}^{t-1} \frac{1}{\sqrt{s}}$$
$$\le \frac{c^2}{2} (1 + \log t) - c\Delta \sqrt{t}$$
$$\le c^2 \log t - c\Delta \sqrt{t},$$

where we bounded the summations by their integrals. Therefore we have

$$\frac{1}{2c} \sum_{t=1}^{T-1} \frac{1}{\sqrt{t}} \log \left(1 + Ne^{\sum_{s=1}^{t-1} \left(\frac{\eta_s^2}{2} - \eta_s \Delta \right)} \right) \le \frac{1}{2c} \sum_{t=1}^{T-1} \frac{1}{\sqrt{t}} \log \left(1 + Ne^{c^2 \log t - c\Delta\sqrt{t}} \right).$$

First we examine the sum from t_1 onward, while we require that for $t \ge t_1$ it holds

$$c^2 \log t \le \frac{1}{2} c \Delta \sqrt{t}. \tag{15}$$

To satisfy Eq. (15) it suffices to take

$$t_1 = \left(\frac{8c}{\Delta}\right)^2 \log^2 \frac{8c}{\Delta}.$$

Therefore,

$$\begin{aligned} \frac{1}{2c} \sum_{t=t_1+1}^{T-1} \frac{1}{\sqrt{t}} \log \left(1 + Ne^{c^2 \log t - 2c\Delta\sqrt{t}}\right) &\leq \frac{1}{2c} \sum_{t=t_1+1}^{T-1} \frac{1}{\sqrt{t}} \log \left(1 + Ne^{-\frac{1}{2}c\Delta\sqrt{t}}\right) \\ &\leq \frac{N}{2c} \sum_{t=t_1+1}^{T-1} \frac{1}{\sqrt{t}} e^{-\frac{1}{2}c\Delta\sqrt{t}} \qquad (\log(1+x) \leq x) \\ &\leq \frac{N}{2c} \int_{t_1}^{T-1} \frac{1}{\sqrt{t}} e^{-\frac{1}{2}c\Delta\sqrt{t}} dt \\ &\leq \frac{N}{c^2\Delta} e^{-\frac{1}{2}c\Delta\sqrt{t_1}} dt \\ &\leq \frac{2N}{c^2\Delta} e^{-c^2 \log t_1} \qquad (c^2 \log t_1 \leq \frac{1}{2}c\Delta\sqrt{t_1}) \\ &\leq \frac{2}{\Delta \log N}. \qquad (t_1 > 1 \text{ and } c = \sqrt{\log N}) \end{aligned}$$

To conclude we examine the bound up to t_1 ,

$$\begin{aligned} \frac{1}{2c} \sum_{t=1}^{t_1} \frac{1}{\sqrt{t}} \log \left(1 + Ne^{c^2 \log t - 2c\Delta\sqrt{t}} \right) &\leq \frac{1}{2c} \sum_{t=1}^{t_1} \frac{1}{\sqrt{t}} \log \left(2Ne^{c^2 \log t - 2c\Delta\sqrt{t}} \right) \\ &\leq \frac{1}{2c} \sum_{t=1}^{t_1} \frac{1}{\sqrt{t}} \left(\log 2N + c^2 \log t \right) \\ &\leq \frac{\log 2N + c^2 \log t_1}{2c} \sum_{t=1}^{t_1} \frac{1}{\sqrt{t}} \qquad (\log t \leq \log t_1) \\ &\leq \frac{\log 2N + c^2 \log t_1}{c} \sqrt{t_1}. \end{aligned}$$

Since $c = \sqrt{\log N}$, for $t_1 \ge \lfloor e^2 \rfloor$ we have $c^2 \log t_1 = \log N \log t_1 \ge \log 2N$, and also Eq. (15) still holds. This implies

$$\frac{\log 2N + c^2 \log t_1}{c} \sqrt{t_1} \le 2c \log t_1 \sqrt{t_1} \\ \le 2\Delta t_1 \\ \le 128 \frac{\log N}{\Delta} \log^2 \left(\frac{8\sqrt{\log N}}{\Delta}\right)$$

when we used the fact that $c \log t_1 \le \Delta \sqrt{t_1}$ for the last inequality. Adding both results(up to t_1 and from t_1 onward) we obtain,

$$\frac{1}{2c^2} \sum_{t=1}^{T-1} \eta_t \log \frac{1}{p_{t+1,i^\star}} \le 128 \frac{\log N}{\Delta} \log^2 \left(\frac{8\sqrt{\log N}}{\Delta}\right) + \frac{2}{\Delta \log N}$$
(16)

Finally, plugging Eqs. (14) and (16) into Eq. (13), taking the expectation and rearranging terms we get

$$\mathbf{E}\left[\overline{\mathcal{R}}_{T}\right] \leq \frac{256\log N}{\Delta}\log^{2}\left(\frac{8\log N}{\Delta}\right) + \frac{8\log N}{\Delta}.$$

C Analysis of Time-varying Regularization Algorithms

In this section, we assume the setup of online (linear) optimization, with the notation established in Section 4.1. For the proofs below, we recall the notion of a Bregman divergence. For a continuously differentiable and strictly convex function $F : \mathcal{W} \to \mathbb{R}$ defined on a closed convex set \mathcal{W} , the Bregman divergence associated with F at a point $w \in \mathcal{W}$ is defined by

$$\forall w' \in \mathcal{W}, \qquad D_F(w', w) = F(w') - F(w) - \nabla F(w) \cdot (w' - w).$$

C.1 Follow the Regularized Leader

First, we present a general analysis for Follow the Regularized Leader, described in Eq. (6), and later establish Theorem 10.

Theorem 14. There exists a sequence of points $z_t \in [w_t, w_{t+1}]$ such that, for all $w^* \in W$,

$$\sum_{t=1}^{T} g_t \cdot (w_t - w^{\star}) \le R_{T+1}(w^{\star}) - R_1(w_1) + \sum_{t=1}^{T} \left(R_t(w_{t+1}) - R_{t+1}(w_{t+1}) \right) + \frac{1}{2} \sum_{t=1}^{T} \left(\|g_t\|_t^* \right)^2.$$

Here $||w||_t = \sqrt{w^T \nabla^2 R_t(z_t) w}$ is the local norm induced by R_t at z_t , and $||\cdot||_t^*$ is its dual.

Proof. Denote $\Phi_t(w) = w \cdot \sum_{s=1}^{t-1} g_s + R_t(w)$, so that $w_t = \operatorname{argmin}_{w \in \mathcal{W}} \Phi_t(w)$. We first write

$$\sum_{t=1}^{T} g_t \cdot w_{t+1} = \sum_{t=1}^{T} \left(\Phi_{t+1}(w_{t+1}) - \Phi_t(w_{t+1}) \right) + \sum_{t=1}^{T} \left(R_t(w_{t+1}) - R_{t+1}(w_{t+1}) \right)$$
$$= \Phi_{T+1}(w_{T+1}) - \Phi_1(w_1) + \sum_{t=1}^{T} \left(\Phi_t(w_t) - \Phi_t(w_{t+1}) \right) + \sum_{t=1}^{T} \left(R_t(w_{t+1}) - R_{t+1}(w_{t+1}) \right).$$

Since w_t is the minimizer of Φ_t over \mathcal{W} , first-order optimality conditions imply

 $\Phi_t(w_t) - \Phi_t(w_{t+1}) = -\nabla \Phi_t(w_t) \cdot (w_{t+1} - w_t) - D_{\Phi_t}(w_{t+1}, w_t) \le -D_{\Phi_t}(w_{t+1}, w_t) = -D_{R_t}(w_{t+1}, w_t),$ where we have used the fact that the Bregman divergence is invariant to linear terms. On the other hand, since w_{T+1} is the minimizer of Φ_{T+1} , we have that

$$\sum_{t=1}^{T} g_t \cdot w^{\star} = \Phi_{T+1}(w^{\star}) - R_{T+1}(w^{\star}) \ge \Phi_{T+1}(w_{T+1}) - R_{T+1}(w^{\star}).$$

Combining inequalities and observing that $\Phi_1(w_1) = R_1(w_1)$, we obtain

$$\sum_{t=1}^{T} g_t \cdot (w_{t+1} - w^{\star}) \le R_{T+1}(w^{\star}) - R_1(w_1) + \sum_{t=1}^{T} \left(R_t(w_{t+1}) - R_{t+1}(w_{t+1}) \right) - \sum_{t=1}^{T} D_{R_t}(w_{t+1}, w_t).$$

On the other hand, a Taylor expansion of $R_t(\cdot)$ around w_t with an explicit second-order remainder term implies that, for some intermediate point $z_t \in [w_t, w_{t+1}]$, it holds that

$$D_{R_t}(w_{t+1}, w_t) = \frac{1}{2}(w_{t+1} - w_t)^{\mathsf{T}} \nabla^2 R_t(z_t) (w_{t+1} - w_t) = \frac{1}{2} ||w_{t+1} - w_t||_t^2$$

An application of Holder's inequality then gives

 $g_t \cdot (w_t - w_{t+1}) \le \|g_t\|_t^* \|w_t - w_{t+1}\|_t \le \frac{1}{2} (\|g_t\|_t^*)^2 + \frac{1}{2} \|w_t - w_{t+1}\|_t^2 = \frac{1}{2} (\|g_t\|_t^*)^2 + D_{R_t}(w_{t+1}, w_t).$ The proof is finalized by summing over t = 1, ..., T and adding to the inequality above. **Proof of Theorem 10.** Fix any $w^* \in \mathcal{W}$. Observe that FTRL with regularizations $R_t(w) = \eta_t^{-1}R(w)$ is equivalent to FTRL with $R_t(w) = \eta_t^{-1}(R(w) - R(w^*))$. Applying Theorem 14 for the latter and rearranging, we obtain the claimed bound.

C.2 Online Mirror Descent

We next consider Online Mirror Descent (see Eq. (7)), and prove the following general bound from which Theorem 11 directly follows.

Lemma 15. There exist points $z_t \in [w_t, w'_{t+1}]$ such that for all $w^* \in W$,

$$\sum_{t=1}^{T} g_t \cdot (w_t - w^{\star}) \le R_1(w^{\star}) - R_1(w_1) + \sum_{t=1}^{T-1} \left(D_{R_{t+1}}(w^{\star}, w_{t+1}) - D_{R_t}(w^{\star}, w_{t+1}) \right) + \frac{1}{2} \sum_{t=1}^{T} \left(\|g_t\|_t^* \right)^2.$$

Here $||w||_t = \sqrt{w^T \nabla^2 R_t(z_t)} w$ is the local norm induced by R_t at z_t , and $||\cdot||_t^*$ is its dual. **Proof.** Fix any $w^* \in W$. We will bound each of the terms $g_t \cdot (w_t - w^*)$. First, from the update rule of Mirror Descent and the three-point property of the Bregman divergence, we have

$$g_t \cdot (w'_{t+1} - w^*) = (\nabla R(w_t) - \nabla R(w'_{t+1})) \cdot (w'_{t+1} - w^*)$$

= $D_{R_t}(w^*, w_t) - D_{R_t}(w^*, w'_{t+1}) - D_{R_t}(w'_{t+1}, w_t).$

Now, a Taylor expansion of R_t at x_t (with an explicit Lagrange remainder term) shows that there exists $z_t \in [w_t, w_{t+1}]$ for which

$$D_{R_t}(w_{t+1}', w_t) = \frac{1}{2}(w_{t+1}' - w_t)^{\mathsf{T}} \nabla^2 R_t(z_t) (w_{t+1}' - w_t) = \frac{1}{2} ||w_{t+1}' - w_t||_t^2.$$

Also, since w_{t+1} is the projection (with respect to the Bregman divergence R_t) of the point w'_{t+1} onto the set W that contains w^* , it holds that $D_{R_t}(w^*, w_{t+1}) \leq D_{R_t}(x^*, w'_{t+1})$. Putting things together, we obtain

$$g_t \cdot (w'_{t+1} - w^*) \le D_{R_t}(w^*, w_t) - D_{R_t}(w^*, w_{t+1}) - \frac{1}{2} \|w'_{t+1} - w_t\|_{z_t}^2.$$
(17)

On the other hand, Hölder's inequality and the fact that $ab \leq \frac{1}{2}(a^2 + b^2)$ yield

$$g_t \cdot (w_t - w'_{t+1}) \le \|g_t\|_t^* \cdot \|w_t - w'_{t+1}\|_t \le \frac{1}{2} (\|g_t\|_t^*)^2 + \frac{1}{2} \|w_t - w'_{t+1}\|_t^2.$$
(18)

Summing Eqs. (17) and (18) together over t = 1, ..., T gives the regret bound

$$\sum_{t=1}^{T} g_t \cdot (w_t - w^{\star}) \le \sum_{t=1}^{T} \left(D_{R_t}(w^{\star}, w_t) - D_{R_t}(w^{\star}, w_{t+1}) \right) + \frac{1}{2} \sum_{t=1}^{T} \left(\|g_t\|_t^* \right)^2.$$

Rearranging the first summation and using the facts that $D_{R_T}(w^*, w_{T+1}) \ge 0$ and $D_{R_1}(w^*, w_1) \le R_1(w^*) - R_1(w_1)$ (the latter follows since w_1 is the minimizer of R_1 , and so $\nabla R_1(w_1) \cdot (w^* - w_1) \ge 0$) gives the stated regret bound.