
A Proofs

A.1 Preliminaries: Online optimization with time-dependent regularization

We give a brief background on Follow the Regularized Leader and Online Mirror Descent algorithmic
templates, in the case where the regularization is varying and time-dependent.
The setup is the standard setup of online linear optimization. Let W ⊆ ℝ3 be a convex domain.
On each prediction round C = 1, . . . , ) , the learner has to produce a prediction FC ∈ ℝ3 based on
61, . . . , 6C−1, and subsequently observes a new loss vector 6C and incurs the loss FC · 6C . The goal is
to minimize the regret compared to any F★ ∈W, given by

∑)
C=1 6C · (FC − F★).

Follow the Regularized Leader (FTRL). The FTRL template generates predictions F1, . . . , F) ∈
W, for C = 1, . . . , ) , as follows:

FC = argmin
F ∈W

{
F ·

C−1∑
B=1

6B + 'C (F)
}
. (6)

Here, '1, . . . , ') : W→ ℝ is a sequence of twice-differentiable, strictly convex functions.
The derivation and analysis of FTRL-type algorithms is standard; see, e.g., [29, 13, 25]. In our
analysis, however, we require a particular regret bound that we could not find stated explicitly in the
literature (similar bounds exist, however, and date back at least to [7]). For completeness, we provide
the bound here with a proof in the full version of the paper [? ].
Theorem 10. Suppose that 'C = η−1

C ' for all C for some strictly convex ', with η1 ≥ . . . ≥ η) > 0.
Then there exists a sequence of points IC ∈ [FC , FC+1] such that the following regret bound holds for
all F★ ∈W:
)∑
C=1

6C · (FC − F★) ≤
1
η1

(
'(F★) − '(F1)

)
+

)∑
C=1

( 1
ηC+1
− 1
ηC

) (
'(F★) − '(FC+1)

)
+ 1

2

)∑
C=1

ηC
(
‖6C ‖∗C

)2
,

where ‖6‖2C = 6T∇2'(IC )6 is the local norm induced by ' at an appropriate IC ∈ [FC , FC+1], and
‖ · ‖∗C is its dual norm.

Online Mirror Descent (OMD). The closely-related OMD framework produces predictions
F1, . . . , F) via the following procedure: initialize F1 = argminF ∈W '1 (F), and for C = 1, . . . , ) ,
compute

F′C+1 = argmin
F

{
6C · F + �'C (F, FC )

}
= (∇'C )−1 (∇'C (FC ) − 6C );

FC+1 = argmin
F ∈W

�'C (F, F′C+1).
(7)

Here, '1, . . . , ') : W → ℝ is a sequence of twice-differentiable, strictly convex functions and
�' (F′, F) = '(F′) − '(F) − ∇'(F) · (F′ − F) is the Bregman divergence of a convex function '
at point F ∈W.
The proof of the following regret bound (which is again a somewhat specialized variant of standard
bounds for OMD) appears in the full version of the paper [? ].
Theorem 11. Suppose that 'C = η−1

C ' for all C for some strictly convex ', with η1 ≥ . . . ≥ η) > 0.
Then there exists a sequence of points IC ∈ [FC , F′C+1] such that the following regret bound holds for
all F★ ∈W:
)∑
C=1

6C · (FC − F★) ≤
1
η1

(
'(F★) − '(F1)

)
+
) −1∑
C=1

( 1
ηC+1
− 1
ηC

)
�' (F★, FC+1) +

1
2

)∑
C=1

ηC
(
‖6C ‖∗C

)2
,

where ‖ · ‖C is the local norm induced by ' at an appropriate IC ∈ [FC , F′C+1], and ‖ · ‖∗C is its dual.

A.2 Upper bounds for FTRL

Proof of Lemma 6. We observe that Eq. (4) is an instantiation of FTRL with 'C (?) = η−1
C '(?) as

regularizations, where '(?) = −� (?) =
∑#
8=1 ?8 log ?8 is the negative entropy. Hence, we can invoke
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Theorem 10 to bound the regret compared to any probability distribution ?★. It suffices to bound
the regret for ?★ that minimizes

∑)
C=1 ? · `C , which is always a point-mass on a single expert 8★, for

which '(?★) = 0. Therefore, Theorem 10 in our case reads

)∑
C=1

#∑
8=1

?C ,8
(
6C ,8 − 6C ,8★

)
≤ − 1

η1
'(?1) −

)∑
C=1

( 1
ηC+1
− 1
ηC

)
'(?C+1) +

1
2

)∑
C=1

ηC
(
‖6C ‖∗C

)2
.

Now set ηC =
√

log(#)/C. For the first two terms in the bound, observe that '(?1) = − log # , and
further, that

1
ηC+1
− 1
ηC

=
1√

log #
1

√
C +
√
C + 1

≤ 1
2
√
C log #

=
ηC

2 log #
. (8)

For the final sum, we have to evaluate theHessian∇2'(?′C ) at a point ?′C ∈ [?C , ?C+1]. A straightforward
differentiation shows that this matrix is diagonal, with diagonal elements ∇2'(?′C )88 = 1/?′

C ,8
. Thus,(

‖6C ‖∗C
)2

= 6T
C

(
∇2'(?′C )

)−1
6C = ?

′
C · 62

C . (9)

The final sum can be divided and bounded as follows

)∑
C=1

ηC
(
?′C · 62

C

)
=

4 log #∑
C=1

ηC
(
?′C · 62

C

)
+

)∑
C=1+4 log #

ηC
(
?′C · 62

C

)
≤ 4 log # +

)∑
C=1+log #

ηC
(
?′C · 62

C

)
.

Where we used the fact that
∑C
B=1 ηB =

∑C
B=1

√
log(#)/B ≤ 2

√
C log # . To conclude the proof it

suffices to show that ?′
C ,8
≤ 9?C ,8 for C ≥ 4 log # . To see this, denote �C =

∑C−1
B=1 6B and write

4−ηC+1�C+1,8

4−ηC�C,8
= 4−ηC+16C,8 4 (ηC−ηC+1)�C,8 .

For C ≥ 4 log # , the following relations hold:

0 < ηC+1 |6C ,8 | ≤ ηC+1 ≤
1
2

;

0 < (ηC − ηC+1) |�C ,8 | ≤
√

log #
√
C + 1 −

√
C√

C (C + 1)
C ≤

√
log #

√
C +
√
C + 1

≤ ηC ≤
1
2
.

Hence, for C ≥ 4 log # we have

1
3
≤ 4

−ηC+1�C+1,8

4−ηC�C,8
≤ 3,

and consequently

?C+1,8 =
4−ηC+1�C+1,8∑#
9=1 4

−ηC+1�C+1, 9
≤ 9

4−ηC�C,8∑#
9=1 4

−ηC�C, 9
= 9?C ,8 .

Since ?′C ∈ [?C , ?C+1], the same inequality holds for ?′C ; that is, ?′C ,8 ≤ 9?C ,8 for all 8, and the proof is
complete. �

Lemma 12. For the adaptive MW algorithm in Eq. (4) with loss vectors 6C = ˜̀
C ,8 , we have

)∑
C=1

ηC

#∑
8=1

?C ,8
( ˜̀
C ,8 − ˜̀

C ,8★
)2 ≤ 16 log #

∆
+ 1

8
R) .
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Proof. By setting C0 = 64∆−2 log # and ηC =
√

log(#)/C we obtain
)∑
C=1

ηC

#∑
8=1

?C ,8
( ˜̀
C ,8 − ˜̀

C ,8★
)2 ≤

C0∑
C=1

ηC +
)∑

C=C0+1
ηC0

#∑
8=1

?C ,8
( ˜̀
C ,8 − ˜̀

C ,8★
)2

≤ 2
√

log(#)
√
C0 +

∆

8

)∑
C=C0+1

#∑
8=1

?C ,8
( ˜̀
C ,8 − ˜̀

C ,8★
)2

≤ 16 log #
∆

+ 1
8

)∑
C=C0+1

#∑
8=1

?C ,8
(
µ8 − µ8★

)
,

where in the final inequality we used observation 3. To conclude we note that ?C ,8 (µ8 − µ8★) ≥ 0,
thus we can modify the last summation to range over C = 1, . . . , ) . �
Lemma 13. For the adaptive MW algorithm in Eq. (4), we have

1
log #

)∑
C=1

ηC� (?C+1) ≤
50 log #

∆
+ 5

8
R) .

Proof. First we split the sum as follows,

1
log #

)∑
C=1

ηC� (?C+1) =
1

log #

C0∑
C=1

ηC� (?C+1) +
1

log #

)∑
C=C0+1

ηC� (?C+1),

where C0 = 64∆−2 log # . For the summation of C = {C0 + 1, . . . , )} we use Lemma 7 with τ =

C log # ≥ C0 log # = 64∆−2 log2 # to obtain

1
log #

)∑
C=C0+1

ηC� (?C+1) =
)∑

C=C0+1

1√
C log #

#∑
8=1

?C+1,8 log
1

?C+1,8

≤ 5
8

)∑
C=C0+1

∑
8≠8★

?C+1,8∆ + 2
)∑

C=C0+1

1√
C log #

4−
1
8∆
√
C log #

≤ 5
8

)∑
C=C0+1

#∑
8=1

?C ,8
(
µ8 − µ8★

)
+ ∆ + 2

)∑
C=C0+1

1√
C log #

4−
1
8∆
√
C log # ,

where the last inequality follows for reordering terms in the summation and that ∆ ≤ µ8 − µ8★ for
8 ≠ 8★. Using the fact that ?C ,8 (µ8 − µ8★) ≥ 0 we get

1
log #

)∑
C=C0+1

ηC� (?C+1) ≤
5
8

)∑
C=1

#∑
8=1

?C ,8
(
µ8 − µ8★

)
+ ∆ + 2

)∑
C=C0+1

1√
C log #

4−
1
8∆
√
C log # . (10)

Moreover, we have
)∑

C=C0+1

1√
C log #

4−
1
8∆
√

log #
√
C ≤ 1√

log #

∫ )

C0

1
√
C
4−

1
8∆
√

log #
√
C3C

=
1√

log #
· 16
∆
√

log #
4−

1
8∆
√

log #
√
C
���C0
)

≤ 16
∆ log #

≤ 16
∆
.

(11)

Lastly, for the summation of C = {1, . . . , C0} we get
1

log #

C0∑
C=1

ηC� (?C+1) ≤ 2
√
C0 log # =

16 log #
∆

(12)

which follows from � (?) ≤ log # and
∑C0
C=1 1/

√
C ≤ 2

√
C0. Combining Eqs. (10) to (12), the proof is

concluded. �
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A.3 Lower bound for OMD

Proof of Theorem 9. Let @C denote the probability that MW-OMD chooses the best expert (i.e.,
expert #1) on round C. For C ≤ �, the best expert suffers higher losses than the other expert, thus
E[@C ] ≤ 1/2. For C > �, it holds that

@C =
4−

∑C−1
B=1 ηB ( ˜̀B,1− ˜̀

B,2)

1 + 4−
∑C−1
B=1 ηB ( ˜̀B,1− ˜̀

B,2)
≤ 4−

∑C−1
B=1 ηB ( ˜̀B,1− ˜̀

B,2) = 4−
∑�
B=1 ηB exp

(
C−1∑
B=�+1

ηB (`B,2 − `B,1)
)
.

Now, observe that
�∑
B=1

ηB ≥ �η� = α
√
�.

Also, by a standard application of Hoeffding’s lemma (e.g., Appendix A of [3]),

E exp

(
C−1∑
B=�+1

ηB (`B,2 − `B,1)
)
=

C−1∏
B=�+1

E4ηB (`B,2−`B,1)

≤
C−1∏
B=�+1

4ηB∆+η
2
B/8

≤ exp

(
∆

C−1∑
B=1

ηB

)
exp

(
1
8

C−1∑
B=1

η2
B

)
≤ exp

(
2α∆
√
C + α2 log C

)
.

Overall, we have shown that for C > �,

E[@C ] ≤ exp
(
−α
√
� + 2α∆

√
C + α2 log C

)
.

Whenever C ≤ C1 := min
{
2−6�/∆2, exp

( 1
4
√
�/α

)}
, the right hand side is ≤ exp(− 1

2α
√
�) ≤ 1

2 for
α ≥ 1/

√
�. Hence, in that case,

R) ≥
C1∑
B=1

∆E[1 − @B] ≥
C1∑
B=1

1
2∆ ≥

1
2∆C1. �

B Analysis of OMD in the Purely Stochastic Case

Proof of Theorem 8. Applying Theorem 11 for the experts setting we get

R) ≤
1
η1

(
� (?1) − � (?★)

)
+
) −1∑
C=1

( 1
ηC+1
− 1
ηC

) #∑
8=1

?★8 log
?★
8

?C+1,8
+ 1

2

)∑
C=1

ηC
(
‖`C ‖∗C

)2
,

where we used the fact that the Bregman divergence of the negative entropy is the KL divergence. In
addition, using similar observations as in the proof of Lemma 6 (e.g., Eqs. (8) and (9)) and setting
ηC = 2/

√
C we obtain

R) ≤
log #
2
+ 1

222

) −1∑
C=1

ηC log
1

?C+1,8★
+ 1

2

)∑
C=1

#∑
8=1

ηC ?C ,8`
2
C ,8 .

Applying additive translation we get,

R) ≤
log #
2
+ 1

222

) −1∑
C=1

ηC log
1

?C+1,8★
+ 1

2

)∑
C=1

ηC

#∑
8=1

?C ,8 (`C ,8 − `C ,8★)2. (13)

Similarly to Lemma 12 we can bound the third term by

1
2

)∑
C=1

ηC

#∑
8=1

?C ,8 (`C ,8 − `C ,8★)2 ≤
22

∆
+ 1

2
R) =

log #
∆
+ 1

2
R) . (14)
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We now examine the second term. Using the MW algorithm defined in Eq. (5) we have,

log
1

?C+1,8★
= log

∑#
8=1 4

−
∑C−1
B=1 ηB`C,8

4−
∑C−1
B=1 ηB`B,8★

= log
(
1 +

∑
8≠8★

4−
∑C−1
B=1 ηB (`B,8−`B,8★ )

)
.

Plugging it back to the original term we get

1
222

) −1∑
C=1

ηC log
1

?C+1,8★
=

1
22

) −1∑
C=1

1
√
C

log
(
1 +

∑
8≠8★

4−
∑C−1
B=1 ηB (`B,8−`B,8★ )

)
.

By taking the expectation and using its linearity property we obtain

1
22

) −1∑
C=1

1
√
C
E
[
log

(
1 +

∑
8≠8★

4−
∑C−1
B=1 ηB (`C,8−`C,8★ )

)]
≤ 1

22

) −1∑
C=1

1
√
C

log
(
1 +

∑
8≠8★

E
[
4−

∑C−1
B=1 ηB (`B,8−`B,8★ )

] )
≤ 1

22

) −1∑
C=1

1
√
C

log
(
1 +

∑
8≠8★

C−1∏
B=1

E
[
4−ηB (`B,8−`B,8★ )

] )
,

where we used Jensen inequality for concave functions for the first inequality and the fact that
GC := `C ,8 − `C ,8★ are i.i.d. for the second inequality. Applying Hoeffding’s Lemma yields,

1
22

) −1∑
C=1

1
√
C

log
(
1 +

∑
8≠8★

C−1∏
B=1

E
[
4−ηB (`B,8−`B,8★ )

] )
≤ 1

22

) −1∑
C=1

1
√
C

log

(
1 + # exp

( C−1∑
B=1

( 1
2η

2
B − ηB∆

) ))
.

Next, we bound the argument of the exponent
C−1∑
B=1

( 1
2η

2
B − ηB∆

)
≤ 2

2

2

C−1∑
B=1

1
B
− 2∆

C−1∑
B=1

1
√
B

≤ 2
2

2
(1 + log C) − 2∆

√
C

≤ 22 log C − 2∆
√
C,

where we bounded the summations by their integrals. Therefore we have

1
22

) −1∑
C=1

1
√
C

log
(
1 + #4

∑C−1
B=1 (

η2
B
2 −ηB∆)

)
≤ 1

22

) −1∑
C=1

1
√
C

log
(
1 + #422 log C−2∆

√
C
)
.

First we examine the sum from C1 onward, while we require that for C ≥ C1 it holds
22 log C ≤ 1

22∆
√
C. (15)

To satisfy Eq. (15) it suffices to take

C1 =

(82
∆

)2
log2 82

∆
.

Therefore,

1
22

) −1∑
C=C1+1

1
√
C

log
(
1 + #422 log C−22∆

√
C
)
≤ 1

22

) −1∑
C=C1+1

1
√
C

log
(
1 + #4− 1

2 2∆
√
C
)

≤ #

22

) −1∑
C=C1+1

1
√
C
4−

1
2 2∆
√
C (log(1 + G) ≤ G)

≤ #

22

∫ ) −1

C1

1
√
C
4−

1
2 2∆
√
C3C

≤ #

22∆
4−

1
2 2∆
√
C13C

≤ 2#
22∆

4−2
2 log C1 (22 log C1 ≤ 1

22∆
√
C1)

≤ 2
∆ log #

. (C1 > 1 and 2 =
√

log #)
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To conclude we examine the bound up to C1,

1
22

C1∑
C=1

1
√
C

log
(
1 + #422 log C−22∆

√
C
)
≤ 1

22

C1∑
C=1

1
√
C

log
(
2#42

2 log C−22∆
√
C
)

≤ 1
22

C1∑
C=1

1
√
C

(
log 2# + 22 log C

)
≤ log 2# + 22 log C1

22

C1∑
C=1

1
√
C

(log C ≤ log C1)

≤ log 2# + 22 log C1
2

√
C1.

Since 2 =
√

log # , for C1 ≥ d42e we have 22 log C1 = log # log C1 ≥ log 2#, and also Eq. (15) still
holds. This implies

log 2# + 22 log C1
2

√
C1 ≤ 22 log C1

√
C1

≤ 2∆C1

≤ 128
log #
∆

log2
(8

√
log #
∆

)
.

when we used the fact that 2 log C1 ≤ ∆
√
C1 for the last inequality. Adding both results(up to C1 and

from C1 onward) we obtain,

1
222

) −1∑
C=1

ηC log
1

?C+1,8★
≤ 128

log #
∆

log2
(8

√
log #
∆

)
+ 2
∆ log #

(16)

Finally, plugging Eqs. (14) and (16) into Eq. (13), taking the expectation and rearranging terms we get

E
[
R)

]
≤ 256 log #

∆
log2

(8 log #
∆

)
+ 8 log #

∆
. �

C Analysis of Time-varying Regularization Algorithms

In this section, we assume the setup of online (linear) optimization, with the notation established in
Section 4.1. For the proofs below, we recall the notion of a Bregman divergence. For a continuously
differentiable and strictly convex function � : W → ℝ defined on a closed convex set W, the
Bregman divergence associated with � at a point F ∈W is defined by

∀F′ ∈W, �� (F′, F) = � (F′) − � (F) − ∇� (F) · (F′ − F).

C.1 Follow the Regularized Leader

First, we present a general analysis for Follow the Regularized Leader, described in Eq. (6), and later
establish Theorem 10.
Theorem 14. There exists a sequence of points IC ∈ [FC , FC+1] such that, for all F★ ∈W,

)∑
C=1

6C · (FC − F★) ≤ ') +1 (F★) − '1 (F1) +
)∑
C=1

(
'C (FC+1) − 'C+1 (FC+1)

)
+ 1

2

)∑
C=1

(
‖6C ‖∗C

)2
.

Here ‖F‖C =
√
FT∇2'C (IC )F is the local norm induced by 'C at IC , and ‖ · ‖∗C is its dual.

Proof. Denote ΦC (F) = F ·
∑C−1
B=1 6B + 'C (F), so that FC = argminF ∈W ΦC (F). We first write

)∑
C=1

6C · FC+1 =

)∑
C=1

(
ΦC+1 (FC+1) − ΦC (FC+1)

)
+

)∑
C=1

(
'C (FC+1) − 'C+1 (FC+1)

)
= Φ) +1 (F) +1) − Φ1 (F1) +

)∑
C=1

(
ΦC (FC ) − ΦC (FC+1)

)
+

)∑
C=1

(
'C (FC+1) − 'C+1 (FC+1)

)
.
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Since FC is the minimizer of ΦC over W, first-order optimality conditions imply
ΦC (FC ) − ΦC (FC+1) = −∇ΦC (FC ) · (FC+1 − FC ) − �ΦC (FC+1, FC ) ≤ −�ΦC (FC+1, FC ) = −�'C (FC+1, FC ),
where we have used the fact that the Bregman divergence is invariant to linear terms. On the other
hand, since F) +1 is the minimizer of Φ) +1, we have that

)∑
C=1

6C · F★ = Φ) +1 (F★) − ') +1 (F★) ≥ Φ) +1 (F) +1) − ') +1 (F★).

Combining inequalities and observing that Φ1 (F1) = '1 (F1), we obtain
)∑
C=1

6C · (FC+1 − F★) ≤ ') +1 (F★) − '1 (F1) +
)∑
C=1

(
'C (FC+1) − 'C+1 (FC+1)

)
−

)∑
C=1

�'C (FC+1, FC ).

On the other hand, a Taylor expansion of 'C (·) around FC with an explicit second-order remainder
term implies that, for some intermediate point IC ∈ [FC , FC+1], it holds that

�'C (FC+1, FC ) = 1
2 (FC+1 − FC )

T ∇2'C (IC ) (FC+1 − FC ) = 1
2 ‖FC+1 − FC ‖

2
C .

An application of Holder’s inequality then gives

6C · (FC − FC+1) ≤ ‖6C ‖∗C ‖FC − FC+1‖C ≤ 1
2
(
‖6C ‖∗C

)2 + 1
2 ‖FC − FC+1‖

2
C =

1
2
(
‖6C ‖∗C

)2 + �'C (FC+1, FC ).
The proof is finalized by summing over C = 1, . . . , ) and adding to the inequality above. �
Proof of Theorem 10. Fix any F★ ∈W. Observe that FTRL with regularizations 'C (F) = η−1

C '(F)
is equivalent to FTRL with 'C (F) = η−1

C ('(F) − '(F★)). Applying Theorem 14 for the latter and
rearranging, we obtain the claimed bound. �

C.2 Online Mirror Descent

We next consider Online Mirror Descent (see Eq. (7)), and prove the following general bound from
which Theorem 11 directly follows.
Lemma 15. There exist points IC ∈ [FC , F′C+1] such that for all F★ ∈W,
)∑
C=1

6C · (FC − F★) ≤ '1 (F★) − '1 (F1) +
) −1∑
C=1

(
�'C+1 (F★, FC+1) − �'C (F★, FC+1)

)
+ 1

2

)∑
C=1

(
‖6C ‖∗C

)2
.

Here ‖F‖C =
√
FT∇2'C (IC )F is the local norm induced by 'C at IC , and ‖ · ‖∗C is its dual.

Proof. Fix any F★ ∈W. We will bound each of the terms 6C · (FC − F★). First, from the update rule
of Mirror Descent and the three-point property of the Bregman divergence, we have

6C · (F′C+1 − F
★) = (∇'(FC ) − ∇'(F′C+1)) · (F

′
C+1 − F

★)
= �'C (F★, FC ) − �'C (F★, F′C+1) − �'C (F

′
C+1, FC ).

Now, a Taylor expansion of 'C at GC (with an explicit Lagrange remainder term) shows that there
exists IC ∈ [FC , FC+1] for which

�'C (F′C+1, FC ) = 1
2 (F

′
C+1 − FC )

T ∇2'C (IC ) (F′C+1 − FC ) = 1
2 ‖F

′
C+1 − FC ‖

2
C .

Also, since FC+1 is the projection (with respect to the Bregman divergence 'C ) of the point F′C+1 onto
the set W that contains F★, it holds that �'C (F★, FC+1) ≤ �'C (G★, F′C+1). Putting things together,
we obtain

6C · (F′C+1 − F
★) ≤ �'C (F★, FC ) − �'C (F★, FC+1) − 1

2 ‖F
′
C+1 − FC ‖

2
IC
. (17)

On the other hand, Hölder’s inequality and the fact that 01 ≤ 1
2 (0

2 + 12) yield
6C · (FC − F′C+1) ≤ ‖6C ‖

∗
C · ‖FC − F′C+1‖C ≤ 1

2 (‖6C ‖
∗
C )2 + 1

2 ‖FC − F
′
C+1‖

2
C . (18)

Summing Eqs. (17) and (18) together over C = 1, . . . , ) gives the regret bound
)∑
C=1

6C · (FC − F★) ≤
)∑
C=1

(
�'C (F★, FC ) − �'C (F★, FC+1)

)
+ 1

2

)∑
C=1

(
‖6C ‖∗C

)2
.

Rearranging the first summation and using the facts that �') (F★, F) +1) ≥ 0 and �'1 (F★, F1) ≤
'1 (F★) −'1 (F1) (the latter follows since F1 is the minimizer of '1, and so ∇'1 (F1) · (F★−F1) ≥ 0)
gives the stated regret bound. �
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