
[Submission 1194: “DISK”] We thank all reviewers for their insightful comments, and address their concerns.1
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Figure A: Rotation invariance vs. rotations in data.

Cell
NMS 3×3 5×5 7×7 9×9

8×8 0.7751 0.7824 0.7778 0.7586
12×12 0.7576 0.7580 0.7502 0.7431
16×16 0.7213 0.7214 0.7120 0.6999

Figure B: mAA vs. cell size & NMS on IMW2020 (val).
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R1, R5: domain-specific engineering & lack of mathematical innovations. Only one other work applies policy3

gradient to local features [7]. It relies on non-differentiable methods based on assumptions on the pre-trained model4

([7], Sec. 3.3, points 1 and 2). Instead, we optimize a simpler objective function and exploit its structure to reduce5

gradient variance (L129-133 in our paper), allowing us to train from scratch, unlike [7] that we outpeform on two6

datasets. In short, ours is the first learned, end-to-end method to outperform well-tuned baselines using hand-crafted7

detectors. Finally, please note that [7] was officially published after the NeurIPS submission deadline, which by NeurIPS8

guidelines makes it a contemporaneous submission.9

R1: DISK is based on previous work (U-Net, SuperPoint) and only offers moderate innovation. The only10

similarity with SuperPoint is that we also use a CNN to densely find keypoint score maps and descriptors. SuperPoint is11

not a RL method and uses neither feature/match distributions nor a reward function. We used a U-Net because it is a12

proven architecture and our focus was more on the RL algorithm than on developing a specific architecture.13

R1, R4, R5: Rotation invariance. Limited rotation invariance is a deliberate choice, because rotation estimation is14

counterproductive for upright images: see [14] (Sec. 6.5, Tables 10-11). As an experiment, we randomly pick 36 images15

from the IMW2020 test set, and extract and match features between them and their copies, rotated by θ. We compute16

the ratio of correct matches (within a 3px threshold) and show it in Fig. A. We also superimpose a histogram of relative17

image rotations between all pairs of images on the IMW2020 validation set. Our current approach is extremely robust to18

the rotations found in the data, which could be further increased by data augmentation. We will clarify this in the paper.19

R1: Hyperparameters. We have relatively few of them: (1) cycle-consistency temperature θM (2) true positive reward20

λtp (3) false positive penalty λfp (4) detection cost λkp. Aside from the initial annealing of λfp and λkp (L172-175),21

we did not find the method sensitive to hyperparameters, including ADAM LR. They were chosen arbitrarily and found22

to work well. We tuned inference parameters (NMS window & RANSAC settings) by search, as described in L194-197.23

R1, R3, R5: What is the contribution of individual components of the pipeline? Can they be replaced? We do24

not view DISK as a series of independent components. Because we maintain a probabilistic interpretation throughout25

the pipeline, we can easily reason about the effect of hyperparameters λtp, λfp and λkp. An ablation study, such as26

replacing our matching scheme with a margin loss [23], would require “plumbing” to balance the respective loss terms,27

making the comparison unreliable. We experimented with an alternative matching relaxation, using the entropy of the28

match distribution as a proxy for confidence (in place of cycle-consistency). It performed comparably while requiring29

more hyperparameters and computation, and we dropped it from the submission due to space constraints and simplicity.30

R3: Relative vs. absolute importance of features. Absolute importance measures keypoint quality. Relative31

importance is a mechanism to enforce feature sparsity in a differentiable manner. Absolute importance can be paired32

with a different sparsity mechanism – in fact, for inference we replace relative importance with NMS.33

R3: Cell size vs. NMS. We find models trained with 8× 8 to outperform larger grid cells, regardless of NMS window.34

Fig. B summarizes this for different settings, on IMW2020. For brevity, we average stereo and multiview performance.35

R3: Feature “duplication” on cell borders. Experimentally, we observe that 19.9% of features from grid selection36

(training) have a neighbour within 2 px. This has three potential downsides. (1) Compute/memory is increased, due to37

redundancies. (2) It rescales λkp. Imagine that some detections are strictly duplicated. The probability of matching two38

locations remains constant – this means that learning dynamics are not impacted, other than λkp acting more strongly39

(on a larger number of detections). (3) Detections are close by, instead of duplicated, which may make the algorithm40

less spatially precise: since duplication means a failure of the sparsity mechanism, we learn in a regime where imprecise41

correspondences are more common than at inference, slightly favoring shift-invariance in the descriptors. However,42

DISK is #1 on HPatches, even at a 1px threshold, and attains very low reprojection error on ETH-COLMAP benchmark.43

R5: Features on textureless areas. We claim that features outside object boundaries are matched using contextual44

information. Fig. 6 of the appendix illustrates this with detections on the sky (many of them matched – blue dots) near45

objects of interest. Since the sky has no intrinsic features, only the spatial context could be used to match them.46

R5: Motivation for policy gradient and relation to [7] and [9]. Please note we discuss this in L18-L30 and L51-65.47


