
A Missing Proofs from Section 2459

A.1 Proof of Proposition 2.2460

Proposition 2.2. In a first price auction or an all pay auction, for any bidding strategy bi(·) of461

bidder i, for any value distributions F�i, and any bidding strategies b�i(·), there is a monotone462

bidding strategy b0
i
(·) such that 8vi 2 Ti, ui(vi, b0i(vi), b�i(·)) � ui(vi, bi(vi), b�i(·)).463

Proof. For all practical purposes we may assume bi(Ti) to be compact. Fix the distributions F�i and464

strategies b�i(·) of other bidders. To simplify notation when b�i(·) is fixed, let the interim allocation465

xi(bi) be Ev�i⇠F�i [xi(bi, b�i(v�i))], the interim payment pi(bi) := Ev�i⇠F�i [pi(bi, b�i(v�i))],466

and the interim utility ui(vi, bi) := ui(vi, bi, b�i(·)). Without loss of generality, we may assume467

for each vi, ui(vi, bi(vi)) = maxv2Ti ui(vi, bi(v)) (Otherwise we can first readjust bi(·) this way,468

which only weakly improves the utility of all types.)469

Suppose bi(·) is non-monotone, i.e., there exist v0
i
> vi, such that bi(v0i) < bi(vi). By the assumption470

that ui(vi, bi(vi)) = maxv2Ti ui(vi, bi(v)) for each vi, we have471

vixi(bi(vi))� pi(bi(vi)) � vixi(bi(v
0
i
))� pi(bi(v

0
i
)); (6)

472

v0
i
xi(bi(v

0
i
))� pi(bi(v

0
i
)) � v0

i
xi(bi(vi))� pi(bi(vi)). (7)

Adding (6) and (7), we obtain473

(v0
i
� vi)[xi(bi(v

0
i
))� xi(bi(vi))] � 0. (8)

Since v0
i
> vi, we get474

xi(bi(v
0
i
)) � xi(bi(vi)). (9)

In both the first price auction and the all pay auction we also have xi(bi(v0i))  xi(bi(vi)) because475

the probability that i receives the item cannot decrease if her bid increases. Therefore, it must be476

xi(bi(v
0
i
)) = xi(bi(vi)). (10)

Plugging (10) into (6) and (7), we obtain477

pi(bi(v
0
i
)) = pi(bi(vi)). (11)

For the all pay auction, since bidder i pays her bid whether or not she wins the item, (11) implies478

bi(vi) = bi(v0i), a contradiction.479

For the first price auction, for any bid b made by bidder i, pi(b) = b·xi(b). By (11), bi(v0i)xi(bi(v0i)) =480

bi(vi)xi(bi(vi)). On the other hand, xi(bi(v0i)) = xi(bi(vi)) and bi(v0i) > bi(vi), so we must have481

xi(bi(v
0
i
)) = xi(bi(vi)) = 0.

In other words, bi(vi) must be monotone non-decreasing everywhere except maybe for values whose482

bids are so low that the bidder does not win and hence obtains zero utility. Letting the bidder bid 0483

for all values on which her allocation is 0 does not affect her utility and yields a monotone bidding484

strategy.485

B Missing Proofs from Section 3486

B.1 Upper Bound487

B.1.1 Proof of Lemma 3.7488

Lemma 3.7. If tie breaking is random allocation or no allocation, then Pdim(Hi) = O(n log n).489

Proof. We discussed the case with n = 2 in Section 3.1. Now we consider the general case with490

n > 2 bidders. We give the proof for the random-allocation tie-breaking rule; the proof for the491

no-allocation rule is similar (and in fact simpler). For ease of notation, we use xk to denote sk�i
.492

Recall that each xk is a vector in Rn�1. We write its j-th component as xk

j
. We start with a simple493
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observation: for any vi and b(·), the output of hvi,b(·) on any input xk must be one of the following494

n+1 values: vi � bi,
vi�bi

2 , . . . , vi�bi
n

, or 0; this value is fully determined by the n� 1 comparisons495

bi S bj(xk

j
) for each j 6= i. We argue that the hypothesis class Hi can be divided into O(m2n)496

sub-classes {Hk
i
}k2[m+1]2(n�1) such that each sub-class Hk

i
generates at most O(mn) different label497

vectors. Thus Hi generates at most O(m3n) label vectors in total. To pseudo-shatter m samples, we498

need O(m3n) � 2m, which implies m = O(n log n).499

We now define sub-classes {Hk
i
}k, each indexed by k 2 [m+1]2(n�1). For each dimension j 6= i, we500

sort the m samples by their j-th coordinates non-decreasingly, and use ⇡(j, ·) to denote the resulting501

permutation over {1, 2, . . . ,m}; formally, let x⇡(j,1)
j

 x⇡(j,2)
j

 · · ·  x⇡(j,m)
j

. For each hypothesis502

hvi,b(·)(·), for each j, we define two special positions; these positions are similar to the position k in503

the case for two bidders; we now need a pair, because of the need to keep track of ties, due to the504

more complex random-allocation tie-breaking rule. Let kj,1 be max{0, {k : bj(x
⇡(j,k)
j

) < bi(vi)}},505

and let kj,2 be min{m+ 1, {k : bj(x
⇡(j,k)
j

) > bi(vi)}}. As in the case for two bidders, this is well506

defined because of the monotonicity of bj(·). It also follows that, if kj,1 < kj,2 � 1, then for any k507

such that kj,1 < k < kj,2, we must have bj(x
⇡(j,k)
j

) = bi(vi). A hypothesis hvi,b(·)(·) belongs to508

sub-class Hk
i

where the index k is (kj,1, kj,2)j2[n]\{i}. The number of sub-classes is clearly bounded509

by (m+ 1)2(n�1).510

We now show that the hypotheses within each sub-class Hk
i

give rise to at most (m+1)n label vectors.511

Let us focus on one such class with index k. On the k-th sample xk, a hypothesis’s membership in512

H
k
i

suffices to specify whether bidder i is a winner on this sample, and, if so, the number of other513

winning bids at a tie. Therefore, the class index k determines a mapping c : [m] ! {0, 1, . . . , n},514

with c(k) > 0 meaning bidder i is a winner on sample xk at a tie with c(k)� 1 other bidders, and515

c(k) = 0 meaning bidder i is a loser on sample xk. The output of a hypothesis hvi,b(·)(·) 2 H
k
i

on516

sample xk is then (vi � bi(vi))/c(k) if c(k) > 0 and 0 otherwise. The same utility is output on two517

samples xk and xk
0

whenever c(k) = c(k0). Therefore, if we look at the labels assigned to a set S of518

samples that are mapped to the nonzero integer by c, there can be at most |S|+1  m+1 patterns of519

labels, because we compare the same utility with |S| witnesses; the set of samples mapped to 0 by c520

have only one pattern of labels. The vector of labels generated by a hypothesis in such a sub-class is521

a concatenation of these patterns. The image of c has n nonzero integers, and so there are at most522

(m+ 1)n label vectors.523

To conclude, the total number of label vectors generated by Hi =
S

k H
k
i

is at most524

(m+ 1)2(n�1)(m+ 1)n  (m+ 1)3n.

To pseudo-shatter m samples, we need (m+ 1)3n � 2m, which implies m = O(n log n).525

526

B.1.2 Proof of Lemma 3.10527

Lemma 3.10. Let H be a class of functions from a product space T to [0, H]. If H is (✏, �)-uniformly528

convergent with sample complexity m = m(✏, �), then H is
�
2✏, H�

✏

�
-uniformly convergent on529

product distribution with sample complexity m.530

Proof. Think of the samples s as an m⇥ n matrix (sj
i
), where each row j represents sample sj , and531

each column i consists of the values sampled from Fi. Then we draw n permutations ⇡1, ...,⇡n of532

[m] = {1, . . . ,m} independently and uniformly at random, and permute the m elements in column i533

by ⇡i. Regard each new row j as a new sample, denoted by s̃j = (s⇡1(j)
1 , s⇡2(j)

2 , ..., s⇡n(j)
n ). Given534

⇡1, . . . ,⇡n, the “permuted samples” s̃j , j = 1, . . . ,m then have the same distributions as m i.i.d.535

random draws from F .536
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For h 2 H, let ph be Ev⇠F [h(v)]. Then by the definition of (✏, �)-uniform convergence (but not on537

product distribution),538

Prs,⇡

2

49h 2 H,

������
ph �

1

m

mX

j=1

h(s̃j)

������
� ✏

3

5  �. (12)

For a set of fixed samples s = (s1, . . . , sm), recall that Ei is the uniform distribution over539

{s1
i
, . . . , sm

i
}, and E =

Q
n

i=1 Ei. We show that the expected value of h on E satisfies540

Ev⇠E [h(v)] = E⇡[
1
m

P
m

j=1 h(s̃
j)]. This is because541

E⇡

"
1

m

mX

i=1

h(s̃j)

#
=

1

m

mX

j=1

E⇡

⇥
h(s̃j)

⇤

=
1

m

mX

j=1

X

(k1,...,kn)2[m]n

h(sk1
1 , . . . , skn

n
) ·

Pr⇡ [⇡1(j) = k1, . . . ,⇡n(j) = kn]

=
1

m

mX

j=1

X

(k1,...,kn)2[m]n

h(sk1
1 , . . . , skn

n
) ·

1

mn

=
1

mn

X

(k1,...,kn)2[m]n

h(sk1
1 , . . . , skn

n
)

= Ev⇠E [h(v)] .

Thus,542

|ph �Ev⇠E [h(v)]| =

������
ph �E⇡

2

4 1

m

mX

j=1

h(s̃j)

3

5

������

 E⇡

2

4

������
ph �

1

m

mX

j=1

h(s̃j)

������

3

5

 Pr⇡

2

4

������
ph �

1

m

mX

j=1

h(s̃j)

������
� ✏

3

5 ·H

+

0

@1�Pr⇡

2

4

������
ph �

1

m

mX

j=1

h(s̃j)

������
� ✏

3

5

1

A · ✏

 Pr⇡ [Bad(h,⇡, s)] ·H + ✏,

where in the last step we define event543

Bad(h,⇡, s) = I

2

4

������
ph �

1

m

mX

j=1

h(s̃j)

������
� ✏

3

5 .

By simple calculation, whenever |ph �Ev⇠E [h(v)]| � 2✏, we have Pr⇡[Bad(h,⇡, s)] � ✏/H .544

Finally, consider the random draw s ⇠ F ,545

Prs [9h 2 H, |ph �Ev⇠E [h(v)]| � 2✏]  Prs
h
9h 2 H, Pr⇡ [Bad(h,⇡, s)] �

✏

H

i

 Prs
h
Pr⇡ [9h 2 H, Bad(h,⇡, s) holds] �

✏

H

i
.
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By Markov’s inequality, this is in turn upper bounded by546

H

✏
Es [Pr⇡ [9h 2 H, Bad(h,⇡, s) holds]] =

H

✏
Prs,⇡ [9h 2 H, Bad(h,⇡, s) holds]


H�

✏
By (12)

547

B.2 Lower Bound: Proof of Theorem 3.15548

Theorem 3.15. For any ✏ < 1
4000 , � < 1

20 , there is a family of product distributions for which no549

algorithm (✏, �)-learns, with m samples, utilities over the set of all monotone bidding strategies, for550

any m 
1

4⇥108 ·
n

✏2
.551

Fixing ✏ > 0, fixing c1 = 2000, we first define two value distributions. Let F+ be a distribution552

supported on {0, 1}, and for v ⇠ F+, Pr[v = 0] = 1� 1+c1✏

n
, and Pr[v = 1] = 1+c1✏

n
. Similarly553

define F�: for v ⇠ F�, Pr[v = 0] = 1� 1�c1✏

n
, and Pr[v = 1] = 1�c1✏

n
.554

Let KL(F+;F�) denote the KL-divergence between the two distributions.555

Claim B.1. KL(F+;F�) = O( ✏
2

n
).556

Proof. By definition,557

KL(F+;F�) =
1 + c1✏

n
ln

✓
1 + c1✏

1� c1✏

◆
+

n� 1� c1✏

n
ln

✓
n� 1� c1✏

n� 1 + c1✏

◆

=
1

n
ln

 
1 + c1✏

1� c1✏
·
(1� c1✏

n�1 )
n�1

(1 + c1✏

n�1 )
n�1

!
+

c1✏

n
ln

 
1 + c1✏

1� c1✏
·
1 + c1✏

n�1

1� c1✏

n�1

!


1

n
ln

0

B@
1 + c1✏

1� c1✏
·

⇣
1� c1✏

n�1

⌘n�1

1 + c1✏

1

CA+
2c1✏

n
ln

✓
1 +

2c1✏

1� c1✏

◆


1

n
ln

✓
1� c1✏+

1
2 (c1✏)

2

1� c1✏

◆
+

8c21✏
2

n


10c21✏

2

n
.

In the last two inequalities we used c1✏ <
1
2 and ln(1 + x)  1 + x for all x > 0.558

It is well known that upper bounds on KL-divergence implies information theoretic lower bound on559

the number of samples to distinguish distributions (e.g. Mansour, 2011).560

Corollary B.2. Given t i.i.d. samples from F+ or F�, if t  n

80c21✏
2 , no algorithm H that maps561

samples to {F+, F�
} can do the following: when the samples are from F+, H outputs F+ with562

probability at least 2
3 , and if the samples are from F�, H outputs F� with probability at least 2

3 .563

We now construct product distributions using F+ and F�. For any S ✓ [n � 1], define product564

distribution F S to be
Q

i
Fi where Fi = F+ if i 2 S, and Fi = F� if i 2 [n � 1] \ S, and Fn is565

a point mass on value 1. For any j 2 [n� 1] and S ✓ [n� 1], distinguishing F S[{j} and F S\{j}566

by samples from the product distribution is no easier than distinguishing F+ and F�, because the567

coordinates of the samples not from Fj contains no information about Fj .568

Corollary B.3. For any j 2 [n � 1] and S ✓ [n � 1], given t i.i.d. samples from F S[{j} or569

F S\{j}, if t  n

80c21✏
2 , no algorithm H can do the following: when the samples are from F S[{j}, H570

outputs F S[{j} with probability at least 2
3 , and when the samples are from F S\{j}, H outputs F S\{j}571

with probability at least 2
3 .572

We now use Corollary B.3 to derive an information theoretic lower bound on learning utilities for573

monotone bidding strategies, for distributions in {F S}S✓[n].574
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Proof of Theorem 3.15. Without loss of generality, assume n is odd. Let S be an arbitrary subset575

of [n� 1] of size either bn/2c or dn/2e. We focus on the interim utility of bidder n with value 1 and576

bidding 1
2 . Denote this bidding strategy by bn(·). The other bidders may adopt one of two bidding577

strategies. One of them is b+(·): b+(0) = 0 and b+(1) = 1
2 + ⌘ for sufficiently small ⌘ > 0. The578

other bidding strategy b�(·) maps all values to 0. For T ✓ [n� 1], let bT (·) be the profile of bidding579

strategies where bi(·) = b+(·) for i 2 T , and bi(·) = b�(·) for i /2 T .580

For the distribution F S ,581

un

✓
1,

1

2
, bT (·)

◆
=

1

2
Pr


max
i2T

vi = 0

�

=
1

2

✓
1�

1 + c1✏

n

◆|S\T |✓
1�

1� c1✏

n

◆|T\S|

=
1

2

✓
1�

1 + c1✏

n

◆|T |✓n� 1 + c1✏

n� 1� c1✏

◆|T\S|
.

Therefore, for T, T 0
✓ [n� 1] with |T | = |T 0

|,582

un(1,
1
2 , bT (·))

un(1,
1
2 , bT 0(·))

=

 
1 +

2c1✏/(n� 1)

1� c1✏

n�1

!|T\S|�|T 0\S|

� 1 +
2c1✏

n� 1
· (|T \ S|� |T 0

\ S|);

Suppose |T \ S| � |T 0
\ S| and |T | = |T 0

| � b
n

2 c, then583

un

✓
1,

1

2
, bT (·)

◆
� un

✓
1,

1

2
, bT 0(·)

◆
� (|T \ S|� |T 0

\ S|) ·
2c1✏

n� 1
· un

✓
1,

1

2
, bT 0(·)

◆

� (|T \ S|� |T 0
\ S|) ·

2c1✏

n� 1
·

1

8e2
, (13)

where the last inequality is because un(1,
1
2 , bT 0(·)) � 1

2 (1�
2
n
)n = 1

2 [(1�
2
n
)

n
2 ]2 �

1
2 (

1
2e )

2 = 1
8e2 .584

Now suppose an algorithm A (✏, �)-learns the utilities of all monotone bidding strategies with t585

samples s for t  n

80c21✏
2 . Define H : Rn⇥t

+ ⇥ N ! 2[n�1] be a function that outputs among all586

T ✓ [n� 1] of size k, the one that maximizes bidder n’s utility when they bid according to bidding587

strategy bT . Formally,588

H(s, k) = argmax
T✓[n�1],|T |=k

A (s, n, 1, (bT (·), bn(·))) ,

By Definition 3.1, for any S with |S| = bn/2c, for samples drawn from F S , with probability at least589

1� �,590

A(s, n, 1, (b[n�1]\S(·), bn(·)) � un

✓
1,

1

2
, b[n�1]\S(·)

◆
� ✏;

and for any T ✓ [n� 1] with |T | = dn/2e,591

A(s, n, 1, (bT (·), bn(·))  un

✓
1,

1

2
, bT (·)

◆
+ ✏.

Therefore, for W = H(s, dn/2e),592

un

✓
1,

1

2
, bW (·)

◆
� un

✓
1,

1

2
, b[n�1]\S(·)

◆
� 2✏.

Since |W | = [n� 1] \ S = dn/2e, by (13),593

⇣
d
n

2
e � |W \ S|

⌘
·

c1✏

(n� 1)4e2
 2✏.
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So594

|W \ S|  (n� 1) ·
8e2

c1
.

In other words, with probability at least 1 � �, H(s, dn/2e) is the complement of S except for at595

most 8e2

c1
fraction of the coordinates in [n� 1].596

Similarly, for S of cardinality dn/2e,597

|H(s, dn/2e) \ S|  (n� 1) ·
8e2

c1
+ 1.

Take c2 to be 8e2

c1
. We have c2 < 1

20 . For all large enough n and all S of size bn/2c or dn/2e, with598

probability at least 1� �, H(s, dn/2e) correctly outputs the elements not in S with an exception of599

at most c2 fraction of coordinates.600

Let S be the set of all subsets of [n � 1] of size either dn/2e or bn/2c. Consider any S 2 S. Let601

✓(S) ✓ [n � 1] denote the set of coordinates whose memberships in S are correctly predicted602

by H(s, dn/2e) with probability at least 2/3; that is, i 2 ✓(S) iff with probability at least 2/3,603

H(s, dn/2e) is correct about whether i 2 S. Let the cardinality of |✓(S)| be z(n� 1). Suppose we604

draw coordinate i uniformly at random from [n� 1], and independently draw samples s from F S ,605

then the probability that H(s, dn/2e) is correct about whether i 2 S satisfies:606

Pri,s [H(s, dn/2e) is correct about whether i 2 S] � (1� c2)(1� �)

� 0.9,

and607

Pri,s [H(s, dn/2e) is correct about whether i 2 S]  Pri [i 2 ✓(S)] · 1 +Pri [i /2 ✓(S)] ·
2

3

= z · 1 + (1� z) ·
2

3
,

which implies z > 0.6. If a pair of sets S and S0 differ in only one coordinate i, and i 2 ✓(S)\ ✓(S0),608

then H(·) serves as an algorithm that tells apart F S and F S0 , contradicting Corollary B.3. We now609

show, with a counting argument, that such a pair of S and S0 must exist.610

Since for each S 2 S, |✓(S)| � 0.6(n� 1), there exists a coordinate i 2 [n� 1] and T ✓ S, with611

|T | � 0.6|S|, such that for each S 2 T , i 2 ✓(S). But S can be decomposed into |S|/2 pairs of612

sets, such that within each pair, the two sets differ by one in size, and precisely one of them contains613

coordinate i. Therefore among these pairs there must exist one (S, S0) with S, S0
2 T , i.e., i 2 ✓(S)614

and i 2 ✓(S0). Using H, which is induced by A, we can tell apart F S and F S0 with probability at615

least 2/3, which is a contradiction to Corollary B.3. This completes the proof of Theorem 3.15.616

C Auctions with Costly Search617

We extend our sample complexity results to auctions in which bidders need to incur a cost to know618

precisely their values, a model proposed and studied by Kleinberg et al. (2016).619

In this model, each bidder i knows the distribution Fi from which her value is drawn, but gets to620

know her value vi only after incurring a cost ci. This models well, for example, a real estate market,621

where ci is an inspection cost. Kleinberg et al. (2016) showed that, due to the search costs, the622

English auction can have low efficiency, whereas the Dutch auction, with its descending price, can623

coordinate the bidders’ searching in an almost efficient way. Intuitively, a bidder does not inspect624

her value until the price drops to a certain level, and then, after inspection at this threshold, either625

claims the item at the threshold price, or waits till later. In fact, absent incentive issues, this is the626

procedure a central authority would follow to maximize the welfare; the elegant algorithm is known627

as the Pandora’s Box algorithm (Weitzman, 1979). With incentives, bidders shade their bids just628

as in a first price auction, and there is efficiency loss. This was made precise by Kleinberg et al.,629

who showed a correspondence between the equilibria in a Dutch auction with search costs and the630

equilibria in a first price auction without search costs but with transformed value distributions. The631
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near efficiency of the Dutch auction therefore follows from Price of Anarchy results on the first price632

auction (Syrgkanis and Tardos, 2013; Hoy et al., 2018).633

In this appendix, we first review in Section C.1 Pandora’s Box algorithm, necessary for understanding634

the correspondence observed by Kleinberg et al. (2016). En route, we show that Õ(n/✏2) samples635

from the value distributions suffice for the algorithm to be ✏-close to optimal when the distributions636

are unknown. Our bound slightly improves a recent result by Guo et al. (2019a).637

We then review, in Section C.2, the correspondence between the Dutch auction with search costs and638

the FPA without search costs. The correspondence between auctions involves mappings between639

strategies and a transformation on value distributions. These mappings and transformation depend640

on the value distributions. We show that, when the value distributions are unknown, with Õ(1/✏2)641

value samples, an “empirical correspondence” can be established such that all monotone bidding642

strategies in the Dutch auction have approximately the same utilities as the corresponding bidding643

strategies in an FPA; combining with our learning results on the FPA, with Õ(n/✏2) samples, any644

equilibrium of the FPA without search costs on a transformed empirical distribution can be mapped645

to an approximate equilibrium of the Dutch auction on the true distribution.646

C.1 Pandora’s Box Problem and Its Sample Complexity647

Absent search costs, the welfare (a.k.a. the efficiency) of a single item auction is the value of the648

bidder who is allocated the item. The maximum expected welfare is therefore simply the expectation649

of the largest value among the bidders. Auctions that sell to the highest bidder and charges the winner650

a price equal to the second highest bid gives bidders correct incentives to bid their true values and651

maximizes the welfare. The sealed-bid second price auction, the ascending price auction (English652

auction) and the descending price auction (Dutch auction) all achieve this. With search costs, the653

welfare of an auction is the value of the bidder winning the item minus all the search costs paid. Even654

without incentive considerations, the problem is nontrivial algorithmically.655

The Pandora’s Box Problem. The following Pandora’s Box problem, named by Weitzman (1979),656

abstracts the welfare maximization problem in the presence of search costs. We are given n boxes,657

each box i containing a value vi drawn independently from a known distribution Fi; to open box i658

and see vi, we must pay a cost of ci; at any point, we can take any box that has been opened and quit,659

or open a closed box at a cost, or quit without taking anything. Our payoff is the value in the box660

taken (if any) minus the costs we paid along the way. Given F1, · · · , Fn and c1, . . . , cn, we need to661

compute a procedure that maximizes the expected payoff.662

Weitzman (1979) used this setting to model a consumer searching for an item to purchase; he gave an663

optimal algorithm, which is in turn a special case of Gittins Index algorithm from Bayesian bandits664

(Gittins, 1979).665

We describe his algorithm below. To facilitate discussion of learning, we treat search costs as given,666

and algorithms as mappings from (unseen) values v1, . . . , vn to a payoff. Certainly, only mappings667

that correspond to valid search procedures are meaningful; in particular, the procedure’s decision668

(e.g., to open which box) cannot depend on values that have not been revealed. It is the associated669

search procedure that we are interested in.670

Definition C.1 (Index Based Algorithms/Mappings). Given search costs (c1, . . . , cn), a mapping A671

from (v1, . . . , vn) 2 [0, H]n to R is index based if there exist indices r1, . . . , rn 2 R such that on672

any vector of values (v1, . . . , vn), the output of A is given by the following procedure:673

1. Initialize: let the current option be 0 (for taking nothing), write ri on box i for i = 1, . . . , n,674

and let the cumulative cost be 0.675

2. Iterate till termination:676

If all the numbers written on the box are lower than the current option:677

• Stop searching, and output the current option minus the cumulative cost.678

Otherwise:679

• Let box i be the box with the largest number written on it.680

• If the number written on box i is a value (vi), then replace the current option by vi.681
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• If the number written on box i is an index (ri), then open box i, add ci to the cumulative682

cost, reveal vi and replace the number written on box i by vi.683

Theorem C.2 (Weitzman, 1979). The optimal algorithm corresponds to an index-based mapping;684

the index ri for box i is the unique solution to Ev⇠Fi [max(v � ri, 0)] = ci.685

Learning. We now answer the following learning question: if the distributions F1, · · · , Fn are686

unknown, how many samples from them suffice for us to devise an algorithm that is close to optimal687

on the original distribution? Recently, Guo et al. (2019a) gave a polynomial bound for the problem;688

we give an alternative analysis using pseudo-dimension, which leads to a slightly improved bound.689

We make use of a technical lemmas of theirs (Lemma C.5). For our learning algorithm to be run in690

polynomial time, we invoke Lemma 3.10 to perform learning on the empirical product distribution.691

Given our view of the algorithms as mappings from value vectors to the payoff, the expected payoff692

of an algorithm is then the expectation of its output on the value distributions. Given Theorem C.2, it693

suffices to learn the expected payoff of all index-based algorithms. The problem then boils down694

to bounding the pseudo-dimension of the class of index-based mappings. Modulo a technical issue695

which calls for truncating the index-based algorithms, that is an outline of the proof of the following696

sample complexity theorem.697

Theorem C.3. Given search costs c1, . . . , cn, such that for any ✏, � 2 (0, 1), there is M =698

O
⇣

H
2
n logn

✏2
log2( 1

✏
)
⇥
log(H

✏
) + log(H

✏�
)
⇤⌘

, such that for any m > M , given m samples, a search699

procedure computed on these samples has expected payoff within additive ✏ to the optimal algorithm700

with probability at least 1� �. Moreover, the procedure can be computed in polynomial time.701

We devote the rest of this subsection to the proof of this theorem. Let HP be the class of all702

index-based mappings. The technical centerpiece is a bound on the pseudo-dimension of HP .703

Lemma C.4. Pdim(HP ) = O(n log n).704

Proof. Given any profile of values (v1, . . . , vn) 2 [0, H]n, the output of any index-based mapping705

with indices (ri)i is fully determined by the following O(n2) linear inequalities: for any i, j 2 [n],706

whether ri � rj or ri < rj ; for any i, j 2 [n], whether ri � vj or ri < vj . That is, the space of707

indices is partitioned by the hyperplanes given by these O(n2) inequalities, and within each region708

the corresponding index-based mapping remains a constant for this profile of values. Consider any m709

value profiles that are pseudo-shattered by HP . Each of these m value profiles imposes O(n2) linear710

inequalities on the space of indices, and we will have altogether O(mn2) inequalities. A crucial711

observation is that, for any positive integer t, the space Rn can be partitioned by t hyperplanes into712

at most O(tn) regions. Therefore the space of indices, which is Rn, can be divided into at most713

(Cmn2)n regions, for some constant C > 0. Any index-based algorithm within such a region gives714

the same outputs on all these m value profiles, and therefore cannot give different signs for any715

profile no matter what the corresponding witness is. To shatter m profiles we need at least 2m regions.716

Therefore 2m  (Cmn2)n, which gives m  C 0n log n for some C 0 > 0.717

Note that, if the values are between 0 and H , without loss of generality we may assume ci  H for718

each i. (Otherwise the box should be discarded by any reasonable algorithm.) With this, directly719

combining Lemma C.4 and Theorem 3.6 would still yield a bound having a cubic dependence on n,720

because the output of an index-based mapping may span the range [�nH,H]. A similar problem also721

arose in the approach of Guo et al. (2019a), who remedied this by observing that the performance of722

the optimal index algorithm is not affected much if it is truncated: to truncate an algorithm for the723

Pandora’s Box problem, the algorithm is terminated immediately when its cumulated cost exceeds724

⌦(log 1
✏
).725

Lemma C.5 (Lemma 25 of Guo et al., 2019a). On an instance of the Pandora’s Box problem, the726

expected payoff of the optimal index-based algorithm exceeds that of its truncated version by no more727

than ✏.728

The proof of Lemma C.4 is easily modified to give the same bound on the pseudo-dimension of729

mappings corresponding to truncated index-based algorithms. With this, we can now combine730

Theorem 3.6 and Lemma 3.10 to obtain a sample complexity upper bound.731
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Compared with Guo et al. (2019a)’s bound O( n

✏2
log2( 1

✏
) log(n

✏
) log( n

✏�
)) (where H is normalized732

to 1), our bound is better: theirs has a n

✏2
log2( 1

✏
)(log2 n+ log 1

✏
log 1

✏�
) term while we do not.733

We remark that in Theorem C.3 we show the sample complexity for uniform convergence on product734

distribution, because this yields a fast algorithm given samples: simply running the optimal truncated735

index-based algorithm on the empirical product distribution is guaranteed to be approximately optimal736

on F with high probability. On the other hand, picking out the best index-based algorithm on the737

empirical distribution, which is correlated, appears computationally challenging.738

C.2 Descending Auction with Search Costs739

In this section, we briefly review the main results by Kleinberg et al. (2016) in Section C.2.1, and then740

in Section C.2.2 present our learning results in auctions with search costs. Recall that in this setting,741

we consider a single-item auction, where each bidder i has a value vi 2 [0, H] drawn independently742

from distribution Fi, but vi is not known to anyone at the beginning of the auction. In order to observe743

the value, bidder i needs to pay a known search cost ci 2 [0, H].744

C.2.1 Transformation with Distributional Knowledge745

Descending auction with search costs. In a descending auction (or Dutch auction), a publicly746

visible price descends continuously from H . At any point, any bidder may claim the item at the747

current price. With search cost, a bidder’s strategy ↵i consists of two parts:2 a threshold price ti and748

a mapping bi(·) from values to bids. Concretely, bidder i decides to inspect when the price descends749

to ti, at which point she pays the search cost and immediately learns her value vi. After seeing her750

value, the bidder chooses another a purchase price bi(vi)  ti at which to claim the item. The latter751

is equivalent to submitting a bid bi(vi)  ti.752

We say a strategy ↵i = (ti, bi(·)) is monotone if bi(·) is monotone non-decreasing. A strategy is753

mixed if it is a distribution over pure strategies ↵i’s. Mixed strategies allow bidders to randomize754

over the threshold price ti and the purchase price bi(vi). Abusing notations, we also use ↵i to denote755

a mixed strategy. We say a mixed strategy ↵i is monotone if it is a distribution over monotone pure756

strategies.757

We use DA(F , c) to denote a descending auction on value distributions F with search costs c, and758

let uDA(F ,c)
i

(↵i,↵�i) be the expected utility of bidder i when bidders use strategies ↵ = (↵i,↵�i)759

and their values are drawn from F . Note that this utility is ex ante, since the value is unknown until760

the bidder searches. The solution concept we consider is therefore a Nash equilibrium rather than a761

Bayes Nash equilibrium.762

Definition C.6. In DA(F , c), a (mixed) strategy profile ↵ is an ✏-Nash equilibrium (NE) if for each763

bidder i and any strategy ↵0
i
,764

uDA(F ,c)
i

(↵0
i
,↵�i)� uDA(F ,c)

i
(↵i,↵�i)  ✏.

If ✏ = 0, ↵ is a Nash equilibrium.765

We use FPA(F ) to denote the first price auction with value distributions F . Denote by uFPA(F )
i

(�)766

the (ex ante) expected utility of bidder i in FPA(F ), when the bidders use strategy profile �. We can767

similarly define the Nash equilibrium for a first price auction.768

Definition C.7. In FPA(F ), a (mixed) strategy profile � is an ✏-Nash equilibrium (NE) if for each769

bidder i and any strategy �0
i
,770

uFPA(F )
i

(�0
i
,��i

)� uFPA(F )
i

(�i,��i
)  ✏.

If ✏ = 0, � is a Nash equilibrium.771

Note that Nash equilibrium is an ex ante notion, in contrast with BNE (Definition 2.1), which is an772

interim notion and requires that every type best respond. In FPA(F ), an ✏-BNE must be an ✏-NE,773

but the reverse is not true.774

2Note that there is no private information at the beginning of the auction.
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With no search cost, the descending auction is well known to be equivalent to a first price auction.775

Kleinberg et al. (2016) gave a first price auction without search costs and with transformed value776

distributions, and showed that the NE of this auction corresponds to the NE of the Dutch auction with777

search costs.778

Definition C.8. Given a distribution Fi and a search cost ci, define the index ri of (Fi, ci) to be779

the unique solution to Evi⇠Fi [max{vi � ri, 0}] = ci. If ci = 0, let ri = H . Always assume780

Evi⇠Fi [vi] � ci, so that ri 2 [0, H]. (Otherwise the search cost would be so high that the bidder781

should never search for the value.)782

For a distribution F and r 2 R, denote by F r the distribution of  := min{v, r} where v ⇠ F . For a783

product distribution F and a vector r, we use F r to denote the product distribution where the i-th784

component is F ri
i

. A key insight of Kleinberg et al. (2016) is a pair of utility-preserving mappings785

between strategies in DA(F , c) and FPA(F r), where r is the vector of indices for (F , c).786

Definition C.9. For each bidder i, given distribution Fi and ri 2 [0, H], define two mappings:3787

1. �ri: for a monotone strategy �i : [0, ri] ! R+ for FPA(F r), its image strategy �r(�i)788

in DA(F , c) consists of the threshold price ti = �i(ri) and the bidding function bi(vi) =789

�i(min{vi, ri}). (By the monotonicity of �i, we have bi(vi)  ti).790

2. µ(Fi,ri): for a strategy ↵i = (ti, bi(·)) for DA(F , c), its image strategy �i = µ(Fi,ri)(↵i)791

in FPA(F r) is defined as �i(vi) = bi(vi) for i < ri and �i(ri) = bi(v0i) for a v0
i

redrawn792

from Fi, conditioning on v0
i
� ri.793

The superscripts ri and (Fi, ri) should make it clear that the mapping �ri is determined solely by ri794

while µ(Fi,ri) is related to both the distribution and ri.795

We say a strategy ↵i in a descending auction claims above ri if vi � ri =) bi(vi) = ti, i.e., the796

bidder claims the item immediately if she finds the value of the item greater than or equal to ri.797

Claim C.10 (Claim 2 of Kleinberg et al., 2016). Given distribution Fi and index ri,798

1. If ↵i claims above ri, then ↵i = �ri(µ(Fi,ri)(↵i)).799

2. If �i is monotone, then �i = µ(Fi,ri)(�ri(�i)).800

Theorem C.11 (Claim 3 of Kleinberg et al., 2016). Suppose r is the indices of (F , c) (Definition C.8).801

1. For any monotone mixed strategy profile � = (�i,��i
) for FPA(F r), for each bidder i,802

uFPA(F r)
i

(�) = uDA(F ,c)
i

(�r(�)).

2. For any mixed (not necessarily monotone) strategy profile ↵ = (↵i,↵�i) for DA(F , c), for803

each bidder i,804

uDA(F ,c)
i

(↵)  uFPA(F r)
i

(µ(F ,r)(↵)),

where “=” holds if ↵i claims above ri.805

Theorem C.12 (Kleinberg et al., 2016). Given DA(F , c) and FPA(F r) where r is the indices of806

(F , c). If � is a BNE in FPA(F r), then �r(�) is an NE in DA(F , c). Conversely, if ↵ is an NE in807

DA(F , c), then µ(F ,r)(↵) is an NE in FPA(F r).808

C.2.2 Transformation with Samples809

We are now ready to present our learning results in auctions with search costs. In Kleinberg et al.810

(2016), the utility- and equilibrium-preserving mappings �r and µ(F ,r) are distribution-dependent.811

We examine the number of samples needed to compute approximations of these mappings, when812

the value distributions are unknown. We find that, given search costs and value samples, Õ(1/✏2)813

samples suffice to construct mappings between strategies that approximately preserve utility; with814

Õ(n/✏2) samples, any equilibrium of the first price auction without search costs on a transformed815

3We describe mappings for pure strategies here. For mixed strategies, their images are naturally distributions
over the images of pure strategies under � and µ.
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empirical distribution can be mapped to an approximate equilibrium of the descending auction on the816

true distribution.817

When value distribution Fi’s are unknown (but cost ci’s are known), the mapping �r cannot be used818

to transform an NE for a first price auction with no search costs to an ✏-NE for a descending auction819

with search costs because the computation of index ri involves distribution Fi. Instead, we estimate820

an index r̂i from samples and use the corresponding mapping �r̂ to do so.821

Definition C.13. Partition the samples s into two sets, sA and sB , each of size m/2. Denote the822

empirical product distributions on sA and sB as EA and E, respectively. The empirical indices823

are the indices r̂ for (EA, c); namely, r̂i is the unique solution to Evi⇠E
A
i
[max{vi � r̂i, 0}] = ci.824

The empirical counterpart of DA(F , c) is FPA(Er̂). The empirical mappings are �r̂ and µ(F ,r̂),825

computed as in Definition C.9.826

Note that µ(F ,r̂) depends on distributions while �r̂ does not. The following theorem, analogous to827

Theorem C.11, shows that the empirical mappings �r̂ and µ(F ,r̂) approximately preserve the utilities828

with high probability.829

Theorem C.14. There is M = O
⇣

H
2

✏2

⇥
log
�
H

✏

�
+ log

�
n

�

�⇤⌘
, such that for all m > M , with830

probability at least 1� � over the random draw of sA,831

1. For any monotone mixed strategy profile � = (�i,��i
) for FPA(F r̂), for each bidder i,832

���uFPA(F r̂)
i

(�)� uDA(F ,c)
i

(�r̂(�))
���  ✏.

2. For any mixed strategy profile ↵ = (↵i,↵�i) for DA(F , c), for each bidder i,833

uDA(F ,c)
i

(↵)  uFPA(F r̂)
i

(µ(F ,r̂)(↵)) + ✏.

If ↵i claims above r̂i, then we also have uDA(F ,c)
i

(↵) � uFPA(F r̂)
i

(µ(F ,r̂)(↵))� ✏.834

Before proving Theorem C.14, we first derive a few important consequences.835

Corollary C.15. If m > M as in the condition of Theorem C.14, then with probability at least 1� �,836

1. For any monotone strategy profile �, if � is an ✏0-NE in FPA(F r̂), then �r̂(�) is an837

(✏0 + 2✏)-NE in DA(F , c).838

2. Conversely, for any strategy profile ↵ that claims above r̂, if ↵ is an ✏0-NE in DA(F , c),839

then µ(F ,r̂)(↵) is an (✏0 + 2✏)-NE in FPA(F r̂).840

Proof. We prove the two items respectively,841

1. Let � = (�i,��i
) be an ✏0-NE in FPA(F r̂) satisfying the condition in the statement. For842

any strategy ↵i, by Theorem C.14 item 2,843

uDA(F ,c)
i

(↵i,�
r̂(��i

))  uFPA(F r̂)
i

(µ(F ,r̂)(↵i), µ
(F ,r̂)(�r̂(��i

))) + ✏.

Since ��i
is monotone, by Claim C.10 item 2, we have µ(F ,r̂)(�r̂(��i

)) = ��i
. Thus,844

uDA(F ,c)
i

(↵i,�
r̂(��i

))  uFPA(F r̂)
i

(µ(F ,r̂)(↵i),��i
) + ✏

� is an ✏0-NE in FPA(F r̂)845

 uFPA(F r̂)
i

(�) + ✏0 + ✏

Theorem C.14 item 1846

 uDA(F ,c)
i

(�r̂(�)) + ✏0 + 2✏.
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2. For any strategy �i, by Proposition 2.2, there exists some monotone strategy �0
i
, such that847

uFPA(F r̂)
i

(�i, µ
(F ,r̂)(↵�i))  uFPA(F r̂)

i
(�0

i
, µ(F ,r̂)(↵�i)).

Then by Theorem C.14 item 1,848

uFPA(F r̂)
i

(�0
i
, µ(F ,r̂)(↵�i))  uDA(F ,c)

i
(�r̂(�0

i
),�r̂(µ(F ,r̂)(↵�i))) + ✏.

Since ↵�i claims above r̂�i, by Claim C.10 item 1, we have �r̂(µ(F ,r̂)(↵�i)) = ↵�i.849

Thus850

uFPA(F r̂)
i

(�i, µ
(F ,r̂)(↵�i))  uDA(F ,c)

i
(�r̂(�0

i
),↵�i) + ✏

↵ is an ✏0-NE in DA(F , c)851

 uDA(F ,c)
i

(↵) + ✏0 + ✏

Theorem C.14 item 2852

 uFPA(F r̂)
i

(µ(F ,r̂)(↵)) + ✏0 + 2✏.

853

As a consequence of Corollary C.15 and Corollary 3.13, any approximate BNE in FPA(Er̂) is854

transformed by �r̂ to an approximate NE in DA(F , c), as formalized by the following theorem.855

Theorem C.16. There is M = O
⇣

H
2

✏2

⇥
n log n log

�
H

✏

�
+ log

�
n

�

�⇤⌘
, such that for all m > M ,856

with probability at least 1� � over random draws of samples s, we have: for any monotone strategy857

profile � that is an ✏0-BNE in FPA(Er̂), �r̂(�) is an (✏0 + 4✏)-NE in DA(F , c).858

Proof. First use Corollary 3.13 for distributions F r̂ . Note that Er̂ is an empirical product distribution859

for F r̂, because E consists of samples sB , r̂ is determined from samples sA, and these two sets860

of samples are disjoint. Thus, with probability at least 1 � �/2 over the random draw of sB , any861

monotone strategy profile � that is an ✏0-BNE in FPA(Er̂) is an (✏0 + 2✏)-BNE in FPA(F r̂). An862

(✏0 + 2✏)-BNE must be an (✏0 + 2✏)-NE in FPA(F r̂), so by Corollary C.15, with probability at least863

1� �/2 over the random draw of sA, �r̂(�) is an (✏0 + 4✏)-NE in DA(F , c).864

Theorem C.16 does not include the reverse direction, i.e., from an ✏0-NE in DA(F , c) to an (✏0 + ✏)-865

BNE in FPA(Er̂) (cf. Theorem C.12). This is for two reasons: (1) Such a transformation will result866

in (✏0 + 4✏)-NE in FPA(Er̂), but (✏0 + 4✏)-NE in FPA(Er̂) is not necessarily an (✏0 + 4✏)-BNE.867

(2) Unlike interim utility, ex ante utility cannot be learned from samples directly; in other words,868

uFPA(Er̂)
i

(�) does not necessarily approximate uFPA(F r̂)
i

(�) even if � is monotone. This is because869

in the computation of ex ante utility we need to take expectation over bidder i’s own value but for870

interim utility we do not need to take such an expectation.871

Proof of Theorem C.14. The main idea is as follows: For item 1, we need to show that the utility872

of a strategy profile � in FPA(F r̂) approximates the utility of its image ↵ = �r̂(�) in DA(F , c).873

We wish to use Theorem C.11 to do so but it cannot be used directly because r̂ is not the indices of874

(F , c). Instead, we construct a set of “empirical costs” ĉ such that r̂ becomes the indices of (F , ĉ).875

Then Theorem C.11 can be used to show that uFPA(F r̂)
i

(�) = uDA(F ,ĉ)
i

(↵). With an additional876

lemma (Lemma C.17) which shows that ĉ approximates c up to ✏-error, we are able to establish the877

following chain of approximate equations878

uFPA(F r̂)
i

(�) = uDA(F ,ĉ)
i

(↵)
✏

⇡ uDA(F ,c)
i

(↵).

The proof for item 2 is similar.879

Formally, define ĉ = (ĉi)i2[n], where880

ĉi := Evi⇠Fi [max{vi � r̂i, 0}] . (14)

Note that ĉi is determined by samples sA since the empirical index r̂i is computed from sA.881
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Lemma C.17. There is M = O
⇣

H
2

✏2

⇥
log H

✏
+ log n

�

⇤⌘
, such that if m/2 > M , then with probabil-882

ity at least 1� � over the random draw of sA, for each i 2 [n], |ci � ĉi|  ✏.883

Proof. The main idea to prove this claim is to show that the class Hi = {hr
| r 2 [�H,H]} where884

hr(x) = max{x � r, 0} has pseudo-dimension Pdim(Hi) = O(1) and thus uniformly converges885

with O
⇣

H
2

✏2

⇥
log H

✏
+ log 1

�

⇤⌘
samples.886

Formally, consider the pseudo-dimension d of the class Hi = {hr
| r 2 [�H,H]} where887

hr(x) := max{x � r, 0} for x 2 [0, H] (thus hr(x) 2 [0, 2H]). We claim that d = O(1). To see888

this, fix any d samples (x1, x2, . . . , xd) and any witnesses (t1, t2, . . . , td), we bound the number of889

distinct labelings that can be given by Hi to these samples. Each sample xj induces a partition of890

the parameter space (the space of r) [�H,H] into two intervals [�H,xj ] and (xj , H], such that for891

any r  xj , hr(xj) = xj � r, and for r > xj , hr(xj) = 0. All d samples partition [�H,H] into (at892

most) d+ 1 consecutive intervals, I1, . . . , Id+1, such that within each interval Ik, hr(xj) is either893

xj � r for all r 2 Ik or 0 for all r 2 Ik, for each j 2 [d]. We further divide each Ik using witnesses894

tj’s: for each j 2 [d], if hr(xj) = xj � r for r 2 Ik, then we cut Ik at the point r = xj � tj ; in this895

way we cut each Ik into at most d+ 1 sub-intervals. Within each sub-interval I 0 ✓ Ik, the labeling896

of the d samples given by all hr (r 2 I 0) is the same. Since there are at most (d+ 1)2 sub-intervals897

in total, there are at most (d + 1)2 distinct labelings. To pseudo-shatter d samples, we must have898

2d  (d+ 1)2, which gives d = O(1).899

By the definition of r̂i, we have900

ci = Evi⇠E
A
i
[max{vi � r̂i, 0}] = Evi⇠E

A
i

⇥
hr̂i(vi)

⇤
,

and r̂i 2 [�H,H]. Also note that ĉi = Evi⇠Fi [h
r̂i(vi)]. Thus the conclusion |ci � ĉi|  ✏ follows901

from Theorem 3.6 and a union bound over i 2 [n].902

Lemma C.18. Suppose |ci � ĉi|  ✏, then for any strategies ↵,903

���uDA(F ,c)
i

(↵)� uDA(F ,ĉ)
i

(↵)
���  ✏.

Proof. Couple the realizations of values (and threshold prices and bids if the strategies are random-904

ized) in DA(F , c) and DA(F , ĉ). When all bidders use the same strategies ↵ in DA(F , c) and905

DA(F , ĉ), bidder i receives the same allocation and pays the same price (but not the same search906

costs) in these two auctions. The only difference in bidder i’s utilities is the search costs she pays,907

and the difference is upper-bounded by |ci � ĉi|  ✏.908

Now we finish the proof of Theorem C.14.909

Proof of Theorem C.14. First consider item 1. We use a
✏

⇡ b to denote |a�b|  ✏. For any monotone910

strategies � for FPA(Er̂),911

uFPA(F r̂)
i

(�) = uDA(F ,ĉ)
i

(�r̂(�)) Theorem C.11 item 1
✏

⇡ uDA(F ,c)
i

(�r̂(�)) Lemma C.18.

As for item 2, for any strategies ↵ for DA(F , c), by Lemma C.18,912

uDA(F ,c)
i

(↵)
✏

⇡ uDA(F ,ĉ)
i

(↵)

By Theorem C.11 item 2, we have uDA(F ,ĉ)
i

(↵)  uFPA(F r̂)
i

(µ(F ,r̂)(↵)) where “=” holds if ↵i913

claims above r̂i, which concludes the proof.914

24


	Introduction
	Preliminaries on Auctions
	Sample Complexity of Utility Estimation
	Upper Bound on Sample Complexity
	Pseudo-dimension and the Proof of Theorem 3.3
	Learning on Empirical Product Distributions and Equilibrium Preservation

	Lower Bound of Sample Complexity

	Auctions with Costly Search
	Conclusion
	Missing Proofs from Section 2
	Proof of Proposition 2.2

	Missing Proofs from Section 3
	Upper Bound
	Proof of Lemma 3.7
	Proof of Lemma 3.10

	Lower Bound: Proof of Theorem 3.15

	Auctions with Costly Search
	Pandora’s Box Problem and Its Sample Complexity
	Descending Auction with Search Costs
	Transformation with Distributional Knowledge
	Transformation with Samples



