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Abstract

We study and provide instance-optimal algorithms in differential privacy by ex-
tending and approximating the inverse sensitivity mechanism. We provide two
approximation frameworks, one which only requires knowledge of local sensitiv-
ities, and a gradient-based approximation for optimization problems, which are
efficiently computable for a broad class of functions. We complement our analysis
with instance-specific lower bounds for vector-valued functions, which demonstrate
that our mechanisms are (nearly) instance-optimal under certain assumptions and
that minimax lower bounds may not provide an accurate estimate of the hardness
of a problem in general: our algorithms can significantly outperform minimax
bounds for well behaved instances. Finally, we use our approximation framework
to develop private mechanisms for unbounded-range mean estimation, principal
component analysis, and linear regression. For PCA, our mechanisms give an
efficient (pure) differentially private algorithm with near-optimal rates.

1 Introduction

We study the estimation of a function (statistic) of interest under differential privacy, where strong
privacy protections usually decrease utility relative to non-private data analysis. In an effort to
improve the utility of private algorithms, it is of utmost importance to design mechanisms that adapt
to the hardness of the underlying data. Such mechanisms are of growing prevalence in the privacy
literature, with prominent examples including the smooth sensitivity [25] and propose-test-release [12]
frameworks.

To further investigate adaptivity to underlying instance, Asi and Duchi [4] recently study instance-
optimal mechanisms—which, in a sense, achieve optimal utility for every possible data instance—in
differentially private release of 1-dimensional quantities, moving beyond the more standard (worst
case) minimax optimality. Inspired by classical statistical theory, Asi and Duchi develop local-
minimax optimality and optimality against unbiased mechanisms, both of which aim to capture
the hardness of the underlying data. By developing instance-specific lower bounds, they show that
classical frameworks such as smooth sensitivity and propose-test-release may not be instance-optimal
in general. To overcome this challenge, they investigate what they term the inverse sensitivity
mechanism, showing it is instance-optimal for a wide range of functions.

Yet instance-optimality in private statistical estimation remains widely unexplored. First, the imple-
mentation of the inverse sensitivity mechanism requires a calculation of a particular sample distance
(see Section 1.1.1), which may be intractable. Moreover, the current instance-optimality guarantees
are not sharp for vector-valued functions. This is in part because the paper [4] tailors its instance-
optimality notions for 1-dimensional functions by leveraging Stein’s “hardest one-dimensional
alternative” approach to lower bounds [31, 9], which gives tight lower bounds for 1-dimensional
functions but fails to yield correct bounds in higher dimensions.
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To address these challenges, in this work we develop extensions and approximations to the inverse
sensitivity mechanism with efficient implementations for a broad class of functions, which allows us
to (for example) develop efficient algorithms for private PCA with near-optimal sample complexity.
We also establish complementary instance-optimality results for vector-valued functions by proposing
two approaches for instance-specific lower bounds: (i) a local minimax approach that measures the
risk of an instance through the loss that an algorithm must incur on instances in a small neighborhood
around it, and (ii) lower bounds against families of appropriately unbiased mechanisms, which
includes many standard mechanisms. These instance-specific bounds suggest the limitations of more
prevalent minimax (worst-case) bounds in privacy [19, 11]: they do not always give the correct limits
on the performance of algorithms, and algorithms exist that achieve lower error on many instances.

1.1 Preliminaries

Given a function f : Xn → T and instance x ∈ Xn, we wish to design differentially private
mechanisms that accurately estimates the value f(x). We usually take X , T ⊂ Rd for a dimension d.

We begin by recalling the standard definition of differential privacy [16, 15]. We say that two instances
x,x′ ∈ Xn are neighboring if they differ in at most one example, that is, dham(x, x′) ≤ 1.

Definition 1.1. A randomized algorithm M : Xn → T is (ε, δ)-differentially private if for all
neighboring datasets x,x′ ∈ Xn and all measurable S ⊆ T ,

P (M(x) ∈ S) ≤ eεP (M(x′) ∈ S) + δ.

If δ = 0, then M is ε-differentially private.

Given a loss function L : T × T → R+, we quantify the utility of a mechanism M on instance x
through its expected loss E[L(M(x), f(x))]. A mechanism is instance-optimal if it achieves the best
utility for every instance. We formalize this through instance-specific lower bounds in Section 3.

For a function f : Xn → R, the standard method to preserve privacy is the Laplace mechanism [16].
Defining the global sensitivity of f to be GSf := supx,x′:dham(x,x′)≤1 |f(x)− f(x′)|, it adds Laplace

noise,MLap(x) := f(x)+
GSf
ε Lap(1). This can be conservative, therefore Nissim et al. [25] consider

the local sensitivity at instance x at hand LSf (x) := supx′:dham(x,x′)≤1 |f(x) − f(x′)|. Directly
using the local sensitivities may compromise privacy, hence the smooth sensitivity framework
adds noise that is proportional to a smooth upper bound Sβ(x) on the local sensitivity, that is,
Msm(x) := f(x) + 2Sβ(x)

ε Z, where Z is sampled from an admissible noise distribution and Sβ(x)

is the smooth sensitivity satisfying LS(x) ≤ Sβ(x) and Sβ(x) ≤ eβSβ(x′) for neighboring
instances x,x′, and β is chosen appropriately to guarantee the desired privacy level.

1.1.1 The inverse sensitivity mechanism

Our work builds on the inverse sensitivity mechanism [4], which we review. Key to the mechanism is
the path-length (inverse sensitivity), which, for a target t, measures how many users we must change
in x to reach x′ with a target value t:

lenf (x; t) := inf
x′
{dham(x,x′) | f(x′) = t} . (1)

The basic inverse sensitivity mechanism then instantiates the exponential mechanism [24] with the
path-length function (1), yielding the density

πMinv(x)(t) =
e−lenf (x;t)ε/2∫
T e
−lenf (x;s)ε/2ds

. (M.1)

A smoother variant of mechanism (M.1) is sometimes necessary to achieve instance-optimality, where
one instead uses

lenρf (x; t) = inf
s∈T :‖s−t‖≤ρ

lenf (x; s),

with a smoothing parameter ρ > 0 [4]. Different variations of these mechanisms are instance-optimal
for a range of real-valued functions. Yet while examples exist, it is often unclear how to compute the
length (1).
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Instance-specific bounds depend on the modulus of continuity, which (focusing in this work on a
vector space T with norm ‖·‖p) measures the sensitivity of a function when changing k users:

ωpf (x; k) = sup
x′∈Xn

{
‖f(x)− f(x′)‖p : dham(x,x′) ≤ k

}
. (2)

Instance-specific lower bounds show that the risk we expect for an ε-differentially private algorithm
on instance x is in general roughly ωf (x; 1/ε) for 1-dimensional functions (with p = 1) and loss
L(s, t) = |s− t| [4]. Unfortunately, this is not tight for d-dimensional functions.

Notation We denote samples using bold symbols x ∈ Xn and individual examples using non-bold
symbol x ∈ X . We let dham(x,x′) denote the Hamming distance of instance x,x′ ∈ Xn. The local
sensitivity of f : Xn → T at instance x is LSpf (x) = ωpf (x; 1), and the global sensitivity of f is
GSpf = supx∈Xn ω

p
f (x; 1). To facilitate notation, we sometimes remove the superscript p if p = 2.

We let diamp(T ) = sups,t∈T ‖s− t‖p, and Bd−1
p = {x ∈ Rd : ‖x‖p ≤ 1} denote the `p-ball.

1.2 Contributions

Approximate inverse sensitivity mechanisms We develop two approximation methods for the
inverse sensitivity mechanism: (i) using local sensitivities in Section 2.1 and (ii) a gradient-based
method for minimization problems in Section 2.2. These methods have efficient implementations for
a wide range of problems and can outperform smooth sensitivity mechanisms for pure differential
privacy. In contrast to Cauchy and Student’s T distributions used in such instantiations [7]—which
have infinite first and third moment respectively—our mechanisms add noise with bounded p’th
moments for all finite p, resulting in improved high-probability bounds for utility analysis which is
especially important for high dimensional functions as our examples demonstrate.

Instance-optimality and lower bounds We propose two notions of instance optimality for vector-
valued functions and prove tight lower bounds for both notions in Section 3. Similarly to the
1-dimensional setting, our results give a characterization of the risk through the modulus of continuity.
Combined with our instance-specific upper bounds, these bounds establish that approximate and
exact inverse mechanisms are (nearly) instance-optimal for vector-valued functions under some
assumptions.

Applications We study three problems that illustrate the methodological possibilities of the inverse
sensitivity framework and its approximations in Section 4: mean estimation, PCA and linear regres-
sion. The utility improvements in these examples demonstrate the advantages of our mechanisms over
standard frameworks and the importance of these notions of instance-optimality. Here we highlight
the PCA example where smooth sensitivity algorithms require sample complexity (for dimension d
and ignoring other parameters) O(d3/2) [18], whereas our mechanisms require O(d) samples, which
is the optimal dependence on the dimension d according to PCA lower bounds [10, 21].

1.3 Related work

The most widely used frameworks for instance-dependent noise are smooth sensitivity [25] and
propose-test-release [12]. The former adds noise that scaling with a smooth upper bound on the local
sensitivity, and the latter adds noise scaling with a prespecified upper bound on the local sensitivity—
whose validity the algorithm tests—in a neighborhood of the instance. Applications are numerous:
Smith and Thakurta [30] develop an algorithm based on propose-test-release for high-dimensional
regression problems, and Bun and Steinke [7] design noise distributions for smooth sensitivity and
use them to estimate the mean of distributions with unbounded range. Other applications include
principal component analysis [18], outlier analysis [26], and graph data [22, 32]. The inverse
sensitivity framework is a distinct approach to instance-dependent noise that Asi and Duchi [4]
investigate ([20, 29, 8] propose variants of the mechanism). Their results suggest that this framework,
in contrast to smooth sensitivity and propose-test-release, is instance-optimal for a range of functions,
and can have quadratically better sample complexity than smooth sensitivity mechanisms.
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2 Approximate inverse sensitivity mechanisms

Having described the difficulty of sampling from the inverse sensitivity mechanism in general, in this
section we develop two approximation frameworks that are applicable for a broader range of functions
while maintaining some of the instance-optimality guarantees of the exact mechanism. First, in
Section 2.1 we describe a method that uses the local sensitivities to approximate the path-length, and
in Section 2.2 we describe an approximation for the specific setting of empirical risk minimization.

2.1 Approximation using local sensitivities

The mechanisms we develop in this section first construct an approximation lenf (x; t) for the path-
length, then apply the exponential mechanism for a base measure µ on T with this approximation

πMappr(x)(t) =
e−lenf (x;t)ε/2∫

T e
−lenf (x;s)ε/2dµ(s)

. (M.2)

Our main tool for calculating lenf (x; t) are the local sensitivities of instance x at distance `

LSp` (x) = sup
x′:dham(x,x′)=`

LSp(x′).

This definition implies that changing k users can vary the function value by at most
∑k
`=1 LSp` (x).

As a consequence, we have the lower bound lenf (x; t) ≥ min{k :
∑k
i=1 LSpi (x) ≥ ‖t− f(x)‖p}.

Unfortunately, directly using this lower bound may result in mechanisms that are not private. The
following theorem shows how to construct suitable approximations that preserve privacy.
Theorem 1. Let f : Xn → T and R` : Xn → R satisfy LSp(x) ≤ R1(x) and R`(x) ≤ R`+1(x′)
for any neighboring instances x,x′ ∈ Xn. Then, using the approximation

lenf (x; t) = min

{
k :

k∑
i=1

Ri(x) ≥ ‖t− f(x)‖p

}
, (3)

mechanism (M.2) is ε-differentially private.

Algorithm 1 efficiently samples from the approximate inverse sensitivity mech-
anism for reasonable choices of p: the main bottleneck is step 3 but effi-
cient algorithms exist for p ∈ {1, 2} using truncated Gamma distributions [23].

Algorithm 1: Sampling from approximate inverse sensitivity
Input: x ∈ Xn, p, {Ri(·)}ni=1

1 Denote Sk = {t :
∑k−1
`=1 R`(x) ≤ ‖t‖p ≤

∑k
`=1R`(x)};

2 Sample k ∼ K from P(K = k) ∝ Vol(Sk)e−kε/2 for 1 ≤ k ≤ n;
3 Sample z ∼ Uni(Sk);
4 return f(x) + z

Before proceeding to our utility analysis, we show that given the local sensitivities, we can always
find an appropriate choice of Ri without calculating the smooth sensitivities.
Proposition 2.1. Let f : Xn → Rd and assume LS(x) is such that LS(x) ≤ LS(x) for every
x. Then mechanism (M.2) using the approximation (3) with R`(x) = supx′:dham(x,x′)≤` LS(x) is
ε-differentially private.

2.1.1 Utility guarantees for vector-valued functions

In this section, we provide utility guarantees for the exact and approximate inverse sensitivity
mechanisms for vector-valued functions. Combined with our lower bounds of Section 3, this
establishes (near) instance optimality of these methods. Our guarantees hold with high probability, in
contrast to those of the smooth sensitivity framework which uses distributions with heavy tails. We
also show that our approximations can outperform smooth Laplace for real-valued functions.

We begin by analyzing the utility of the exact and approximate inverse sensitivity mechanisms.
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Theorem 2. Let f : Xn → Rd, diam2(f(Xn)) ≤ D, r > 0 and 1 ≤ K ≤ n. Then the (smooth)
inverse sensitivity mechanism (M.1) with ρ = 1/nr has

P (‖Minv(x)− f(x)‖2 ≥ ωf (x;K) + 1/nr) ≤ e−Kε/2(nrD)d.

Moreover, if Ri(x) ≤ D, the approximate mechanism (M.2) using (3) with p = 2 has

P

(
‖Mappr(x)− f(x)‖2 ≥

K∑
i=1

Ri(x)

)
≤ e−Kε/2+1

nD/ 1/ε∑
i=1

Ri(x)

d

.

We remark that using the smooth sensitivity framework to preserve pure differential privacy does not
usually result in such high probability bounds due to using noise distributions with heavy tails such
as Cauchy distribution [25]. Moreover, Theorem 2 implies that using k ≈ Cd logn

ε for large constant
C, with high probability the inverse sensitivity mechanism roughly has

‖Minv(x)− f(x)‖2 ≤ O(ωf (x;Cd log n/ε)).

The approximate mechanism has similar loss whenever our approximate Ri are accurate such that∑K
i=1Ri(x) = O(ωf (x;K)). The lower bounds in Section 3 show this is (near) instance optimal.

We conclude this section with another choice of Ri that uses the smooth sensitivities instead. This
guarantees that the approximate mechanism always outperforms the smooth Laplace mechanism [25].

Proposition 2.2. Let f : Xn → R, ε = O(1) and R`(x) = supx′:dham(x,x′)≤` Sβ(x′). Then mecha-
nism (M.2) using (3) is ε-differentially private. If p = 1 and β = ε

8 then E [|Mappr(x)− f(x)|] ≤
O( Sβ(x)

ε ).

The smooth Laplace mechanism—which guarantees only approximate (ε, δ > 0)-DP—has loss
O( Sβ(x)

ε ) with a much smaller β = ε
2 log 2/δ , which can be log 1/δ worse in some settings.

2.2 Gradient-based approximations for empirical risk minimization

In this section, we describe our second approximation which applies to empirical risk minimization
problems. Given data points (xi, yi) ∈ Rd × R and L-Lipschitz loss function `(θ;xi) for θ ∈ Θ, we
wish to solve the following minimization problem

θ̂n = argmin
θ∈Θ

Ln(θ;x,y) :=
1

n

n∑
i=1

`(θ;xi, yi).

It is possible to calculate the path-length using gradients for robust regression [4]. Here, we use
similar techniques to approximate the inverse sensitivity mechanism in general settings. As ` is
L-Lipschitz, we need to change len(x,y; θ) ≥ n

L‖∇Ln(θ;x,y)‖2 users to make θ a minimizer with
∇Ln(θ;x′,y′) = 0. The gradient mechanism uses this approximation of len, resulting in the density

πGrad(θ | x,y) ∝ e− nε2L‖∇Ln(θ;x,y)‖2 . (4)

Sampling from this distribution can be hard in general, but we show an efficient implementation for
linear regression in Section 4.3. For general twice differentiable functions, we propose an efficient
heuristic of the gradient mechanism based on Taylor’s expansion which gives ∇Ln(θ;x,y) ≈
∇2Ln(θ̂n;x,y)(θ−θ̂n). Letting GSHess denote the global sensitivity of ‖∇2Ln(θ̂n;x,y)(θ − θ̂n)‖2,
we define the following Hessian-based mechanism for θ ∈ Θ

πHess(θ | x,y) ∝ e−
ε

2GSHess
‖∇2Ln(θ̂n;x,y)(θ−θ̂n)‖

2 . (5)

The main advantage of the Hessian mechanism (5) is that now we can design efficient and simple
sampling procedures (see Section 4.3). It also provides an accurate approximation of the gradient
mechanism with good utility whenever∇2Ln is H-Lipschitz with small H .

The privacy of these mechanisms follow immediately from the privacy of the exponential mechanism.
For utility, we start with the following lemma which upper bound GSHess.
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Lemma 2.1. Assume `(·;xi, yi) is L-Lipschitz, ∇2Ln(θ̂n;x,y) � λI , θ̂n ∈ int Θ, and
∇2Ln(·;x,y) is H-Lipschitz. If H ≤ λ = O(1) and n ≥ 4Ldiam2(Θ) + 1 then GSHess ≤ O

(
L
n

)
.

We are now ready to analyze the utility of the Hessian-based mechanism.
Proposition 2.3. Let the set of instances (xi, yi)

n
i=1 satisfy the assumptions of Lemma 2.1. Then the

Hessian mechanism (5) is ε-DP. If infθ∈bd Θ ‖θ − θ̂n‖2 ≥ Ω( dL
2

n2ε2 tr(∇2L(θ̂n;x,y)−2)), then

Eθ∼πHess(·|x,y)

[
‖θ − θ̂n‖22

]
≤ O

(
dL2 tr(∇2L(θ̂n;x,y)−2)

n2ε2

)
.

When H = 0, the gradient (4) and Hessian mechanisms (5) are identical and the gradient mechanism
has the same utility. In Section 4.3, we use these mechanisms for solving regression problems and
show the significant advantages of instance-specific bounds over standard minimax bounds.

Finally, we remark that our gradient-based approximations of the inverse sensitivity mechanism
are closely related to the K-norm mechanism [27] where the authors use gradient norms as a score
function for the exponential mechanism. However, their work only provides asymptotic utility
analyses without finite-sample guarantees, and they propose an approximate implementation of their
mechanisms using an MCMC procedure without providing privacy guarantees for the implementation.

3 Instance-specific lower bounds for vector-valued functions

Given a function f : Xn → Rd, in this section we prove instance-specific lower bounds on the
loss that any private mechanism must incur. Unfortunately, the instance-specific notions in [4] were
tailored for 1-dimensional functions, hence do not result in satisfactory lower bounds in our setting.
To this end, we propose extensions that result in tight bounds. The first notion gives lower bounds
by restricting to families of appropriately unbiased mechanisms. The second is a local-minimax
approach that measures the performance in a small neighborhood around a given instance.

We begin with our optimality notion for unbiased mechanisms, which we define now.
Definition 3.1. We say that a randomized algorithm M is ‖·‖-unbiased if for any x,x′ ∈ Xn and
ρ > 0,

P(‖M(x)− f(x)‖ ≤ ρ) ≥ P(‖M(x)− f(x′)‖ ≤ ρ).

Definition 3.1 says that when applying an unbiased mechanism M on instance x, the output is more
likely to be in a ball around the correct value f(x) rather than f(x′) for some other instance x′.
Anderson’s theorem [2] implies that the Laplace mechanism, Gaussian mechanism, their smooth
sensitivity instantiations, the approximate inverse sensitivity mechanism, and any instantiation of the
exponential mechanism with a concave score function are ‖·‖-unbiased.

Our lower bounds require a growth condition on the set of values at distance at most k, Wf (x; k) =
{f(x′) : dham(x,x′) ≤ k}. We have the following instance-specific lower bound for unbiased
mechanisms.
Theorem 3. Let f : Xn → Rd and assume Wf (x; k) ⊇ c · ωf (x; k) ·Bd−1

2 for c > 0. If M is ε-DP,

sup
x∈Xn

E [‖M(x)− f(x)‖2] ≥ c

8
sup

x∈Xn
max

1≤k≤n
e−kε/dωf (x; k).

Moreover, if M is ‖·‖2-unbiased, then for any x ∈ Xn,

E [‖M(x)− f(x)‖2] ≥ c

8
max

1≤k≤n
e−2kε/dωf (x; k).

Theorem 3 suggests that worst-case lower bounds may be too pessimistic: while the minimax risk is
roughly supx∈Xn ωf (x; d/ε), we may hope to achieve a better risk for instance x, that is, ωf (x; d/ε).

Now we define the local-minimax risk for an instance x following similar ideas in statistical theory [cf.
33, Ch. 8]. LetMε be the family of ε-differentially private mechanisms. For a radius r, we define
the local-minimax risk of x to be the worst-case risk in a small neighborhood around x, that is,

R(x; r) := inf
M∈Mε

sup
x′:dham(x,x′)≤r

E [‖M(x′)− f(x′)‖2] . (6)
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The choice of r in this definition is important to exclude trivial mechanisms such as M(x′) = f(x);
briefly, we choose the smallest radius that excludes such mechanisms, which is in this case r = Θ(d/ε)
(see Appendix C.2 for more details about this definition).

We have the following lower bound for the local-minimax risk.

Theorem 4. Let f : Xn → Rd and assume Wf (x; k) ⊇ c · ωf (x; k) · Bd−1
2 for c > 0. Then for any

x ∈ Xn,R(x; d/ε) ≥ Ω (ωf (x; d/ε)) .

Similarly to our lower bounds for unbiased mechanisms, Theorem 4 shows that any mechanism must
incur local-minimax risk roughly ωf (x; d/ε) for instance x. The upper bounds of Theorem 2 show
that the exact inverse mechanism achieves this loss for every instance up to logarithmic factors, as
well as the approximate version if the approximations Ri are accurate.

4 Applications

We investigate three examples that demonstrate different advantages and applications of the exact,
approximate, and gradient inverse sensitivity mechanisms. Our examples include (i) mean estimation
with unbounded range, (ii) principal component analysis and (iii) linear regression, and show that our
techniques yield private algorithms with better noise distributions resulting in improved utility, which
in some cases can significantly outperform existing minimax-optimal algorithms.

4.1 Unbounded-range mean estimation

Given xi
iid∼ P with unbounded range, our goal is to privately estimate the mean µ = Ex∼P [x]. The

difficulty here is that the empirical mean has infinite global and even local sensitivity, leading Bun
and Steinke [7] to use the trimmed mean which calculates the mean after removing the smallest and
largest m samples. Letting x(1) ≤ · · · ≤ x(n) denote the order statistics, the trimmed mean is

trimm(x) =
x(m+1) + x(m+2) + · · ·+ x(n−m)

n− 2m
. (7)

This is useful as it leads to small local sensitivity under distributional assumptions. Bun and Steinke
[7] use the smooth sensitivity to estimate the trimmed mean, resulting in strong utility but only with
the weaker concentrated differential privacy [14, 6]. To preserve pure differential privacy, they use
Student’s T distribution which has infinite third moments and consequently heavy tails.

We use the exact inverse mechanism to estimate the mean with strong utility. This algorithm has finite
p’th moment for any finite p, therefore yields tight confidence intervals. We assume µ ∈ [a, b] and let
[c][a,b] denote projection to [a, b]. The following lemma enables exact calculation of the path-length.

Lemma 4.1. Let f(x) = [trimm(x)][a,b]. Then, for any t ∈ [a, b], if t ≥ trimm(x), we have
lenf (x; t) = min{k : k ≤ m, t− f(x) ≤ 1

n−2m

∑k
i=1(x(n−m+i) − x(m+i))} ∪ {m+ 1}.

The calculation for t < trimm(x) is similar and we present it in Appendix D. Using Lemma 4.1, we
can efficiently sample (Algorithm 4 in Appendix D.1 which runs in O(n log n) time) from the inverse
sensitivity mechanism. To analyze the performance of this algorithm, we assume P is σ-subgaussian
while noting that these results can be extended to other settings in [7]. The following proposition
upper bounds the error of our algorithm, which resembles the bounds that the algorithms of [7]
achieve with the weaker concentrated differential privacy.

Proposition 4.1. Let a, b ∈ R and xi
iid∼ P where P is σ-subgaussian with mean µ ∈ [a, b]. If P is

symmetric about its mean and n ≥ 12 log(n(b−a)/σ2)
ε , the inverse sensitivity mechanism (Algorithm 4)

with ρ = σ2

n2 is ε-differentially private and has

E[(x̂− µ)2] ≤ σ2

n
+
σ2

n2
·O
(

log((b− a)/σ)

ε
+

log n

ε2

)
.
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4.2 Principal component analysis

In this section, we apply our approximations to calculate a rank k approximation of a matrix. Given
x1, . . . , xn ∈ Bd−1

2 with covariance Σ(x) = 1
n

∑n
i=1 xix

T
i , we wish to find V ∈ Rd×k that solves

V̂ (x) = argmax
V :V TV=Ik

F (V ) := tr(V TΣ(x)V ) (8)

Gonen and Gilad-Bachrach [18] design ε-DP algorithms based on the smooth sensitivity framework
with suboptimal error of roughly d3/2

nGAP(x)ε . We show that our algorithms achieve a near-optimal rate
d

nGAP(x)ε . Though there exist algorithms that achieve this rate using the exponential mechanism [10,
21], these algorithms require sampling from complex distributions and the only implementation with
theoretical runtime analysis requires O(d6) time. In contrast, given the eigenvectors, our algorithm
(Algorithm 2) returns a private version of the leading eigenvector in time O(n + d) with high
probability.

We only consider k = 1 as extensions to larger k are straightforward using QR factorization [18].
Our algorithm builds on techniques from [18] and the approximate inverse mechanism. It requires a
non-private PCA algorithmA1 that calculates the first eigenvector v̂ ∈ Rd (which maximizes (8)) and
the gap between the two largest eigenvalues GAP(x) := λ1(Σ(x))− λ2(Σ(x)). Then it randomly
flips the sign of v̂ as −v̂ is also a solution, and adds noise using the approximate inverse sensitivity.
Algorithm 2 describes our private PCA procedure. Given the output of the non-private PCA algorithm,
the main computational difficulty in Algorithm 2 is step 3 which requires sampling from the noise
distribution of Algorithm 1. Using the rejection-sampling algorithms of Laud et al. [23] for sampling
from truncated Gamma distributions (which has constant success probability in our setting), we can
efficiently sample from Algorithm 1 in time O(n+ d) with high probability.

Algorithm 2: Private PCA using approximate inverse sensitivity
Input: x

1 Calculate v̂ = A1(x),GAP = GAP(x);
2 Set v = Bv̂ for B ∼ Uni{−1,+1};
3 Sample z from (M.2) using Algorithm 1 with p = 2, Ri = min(Cpca/(nGAP− 2k),

√
2);

4 return vout = v+z
‖v+z‖2

;

Following [18], we define the local sensitivity (k = 1) while taking into consideration the vector sign

LS(x) = sup
x′:dham(x,x′)≤1

min(‖V̂ (x)− V̂ (x′)‖2, ‖V̂ (x) + V̂ (x′)‖2).

We build on the following key lemma that bounds the local sensitivity.
Lemma 4.2 ([18], Theorem 5, Lemma 11). If GAP(x) > 0 then there is a universal constant Cpca <

∞ such that LS(x) ≤ min(
Cpca

nGAP(x) ,
√

2). Moreover, |GAP(x)− GAP(x′)| ≤ 2dham(x,x′)/n.

Using this bound and the guarantees of our approximate mechanism, we get the following proposition.

Proposition 4.2. Assume n ≥ 1/Cpca, β > 0 and Ω( d
GAP(x)ε ) ≤ n

logn/β . Algorithm 2 is ε-
differentially private and with probability 1− β,

|F (vout)− F (v̂)| ≤ O
(
d log n/β

nGAP(x)ε
+

1

n4

)
.

4.3 Linear regression

For our final example, we investigate the setting of linear regression where we have data points
(xi, yi) ∈ Rd × R. Our goal here is to find θ ∈ Θ that minimizes

θ̂n = argmin
θ∈Θ

Ln(θ;x,y) :=
1

2n

n∑
i=1

(〈θ, xi〉 − yi)2.

We let X ∈ Rn×d has xi in the i’th row, Σn = 1
nX

TX , and y ∈ Rd denote the vector of yi.
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The gradient mechanism (4) have an efficient implementation in this setting. Assuming Σn � 0, we
get that∇Ln(θ) = Σn(θ − θ̄) where θ̄ = 1

nΣ−1
n XTy. The gradient mechanism has density

π(θ̄ + ∆ | x) ∝ e− nε2L‖Σn∆‖2 ,

for θ̄ + ∆ ∈ Θ (and Lipschitz constant L) which Algorithm 3 samples from
(see Appendix F.1). The main difficulty in Algorithm 3 is calculating the non-
private estimator θ̄ in step 1 while the remaining steps (for private noise addi-
tion) only require sampling from simple distributions and matrix-vector products.

Algorithm 3: Gradient mechanism for linear regression
Input: (xi, yi)

n
i=1

1 Calculate Σn = 1
nX

TX , θ̄ = 1
nΣ−1

n XTy;
2 Sample R ∼ Gamma(d, 1), U ∼ Uni(Sd−1);
3 Set θout = θ̄ + 2L

nεΣ−1
n ·R · U ;

4 if θout /∈ Θ then go to 3 ;
5 return θout;

The following proposition states the utility and privacy guarantees of Algorithm 3.
Proposition 4.3. For the set of instances (xi, yi)

n
i=1 with Σn(x) � 0 and Lipschitz constant L,

Algorithm 3 is ε-differentially private. Moreover, if infθ∈bd Θ ‖θ − θ̂n‖2 ≥ Ω
(
dL2

n2ε2 tr
(
Σn(x)−2

))
,

E
[
Ln(θout;x,y)− Ln(θ̂n;x,y)

]
≤ O

(
dL2 tr

(
Σn(x)−1

)
n2ε2

)
.

To appreciate the instance-specific upper bounds of Proposition 4.3, recall that existing private
algorithms for empirical risk minimization of L-Lipschitz and λ-strongly convex functions achieve
excess loss E[Ln(θ) − Ln(θ̂n)] = O( d

2L2

n2ε2λ ) which is minimax optimal in some regimes [5]. In
contrast, for natural instances where Σn(x)−1 has polynomially decaying eigenvalues λj = j−α for
α ∈ (0, 1], Proposition 4.3 implies that Algorithm 3 achieves excess loss Õ(d

2−αL2

n2ε2 ) which can offer
up to Õ(d) improvement. Finally, we note that Wang [34]—which focuses on approximate (ε, δ)-
DP—develops private algorithms for linear regression that exhibit good adaptivity to the difficulty of
the underlying instance. There exists an extensive prior work on private linear regression and—as
this is not the main focus of our work—we refer the reader to [34, 28] for a survey of results.

Comparison with the smooth sensitivity framework We conclude the paper with a short com-
parison of the smooth sensitivity framework and inverse sensitivity mechanisms. While smooth
sensitivity mechanisms may not be instance-optimal in many settings, Asi and Duchi [4] show
that the inverse sensitivity mechanism is (nearly) instance-optimal for most well-behaved functions
and can offer quadratic improvement in sample complexity over smooth sensitivity mechanisms in
certain settings. The inverse sensitivity mechanism also outperforms smooth Laplace uniformly for
every instance for natural families of sample-monotone functions (see Section 4.3 in [4]). As our
development in this paper shows, the approximate versions of the inverse sensitivity mechanism
still enjoy similar advantages over smooth mechanisms. Proposition 2.2 shows that—for certain
choices of approximations—the approximate inverse sensitivity mechanisms uniformly outperform
the smooth Laplace mechanism for every instance. Moreover, the smooth sensitivity framework
requires adding noise with heavy-tailed distributions and unbounded moments (such as Cauchy) to
preserve ε-differential privacy, in contrast to the approximate inverse sensitivity mechanisms which
(depending on the approximation and inverse sensitivity) has noise with exponentially decaying
tails, resulting in better high-probability bounds and confidence intervals. The PCA example clearly
demonstrates these advantages where the approximate inverse sensitivity mechanism enjoys a factor
of
√
d improvement in sample complexity over smooth sensitivity mechanisms.
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Broader Impact

The substantial growth in data collection and analysis and the increasing awareness for privacy
concerns has led to a growing body of work on privacy risks in both academic [16] and industrial
settings [17, 3]. Differential privacy [16] has emerged as the standard method for preserving privacy
and has enjoyed several applications including in statistical estimation [11], machine learning [5],
and game theory [24].

Unfortunately, it is usually challenging to develop private algorithms that achieve satisfactory util-
ity [11]. Therefore, while differential privacy has been successfully deployed in several industrial
companies, most applications instantiate a large privacy parameter ε to achieve acceptable utility,
potentially compromising the privacy of users [1].

However, the standard approach in differential privacy to measure the performance of an algorithm
is through its (worst case) minimax risk [11]. This—as our theory demonstrates—may be too
pessimistic in general and may not capture the correct trade-off between privacy and utility for natural
data that arises in real-life. An instance-specific understanding of this trade-off can therefore result in
significant improvements in both utility and privacy.

We hope that this work—and instance-optimality in differential privacy in general [4]—can lead to a
better understanding of the privacy-utility trade-off of private algorithms for the underlying data at
hand. By exploiting the average-case nature of data in real life, we believe that the instance-optimal
algorithms we develop can achieve satisfying utility with significantly stronger privacy protections
for users.
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Appendix

A Proofs of Section 2.1

A.1 Proof of Theorem 1

Using the privacy guarantees of the exponential mechanism [24, Theorem 6], it is enough to prove
that lenf (x; t) is 1-Lipschitz. Let x,x′ be two neighboring datasets and let t ∈ T . Assume w.l.o.g.
that ` = lenf (x; t) ≤ lenf (x′; t). We need to prove that lenf (x′; t) ≤ `+ 1. From the definition of
len in Equation (1), we have that

∑`
i=1Ri(x) ≥ ‖t− f(x′)‖p , so the claim follows from conditions

on R`(·) since

‖t− f(x′)‖p ≤ ‖f(x)− f(x′)‖p + ‖t− f(x)‖p ≤ R1(x′) +
∑̀
i=1

Ri(x) ≤
`+1∑
i=1

Ri(x
′).

A.2 Proof of Proposition 2.1

To prove the claim about privacy, it is enough to show that R` satisfy the conditions of Lemma 1. We
clearly have LS(x) ≤ LS(x) ≤ R1(x) for all x ∈ Xn. Moreover, we have that R`(x) ≤ R`+1(x′)
for all neighboring datasets x,x′ ∈ Xn since

R`(x) = sup
x1:dham(x,x1)≤`

LS(x1) ≤ sup
x1:dham(x′,x1)≤`+1

LS(x1) = R`+1(x′).

A.3 Proof of Theorem 2

We begin with the exact inverse sensitivity mechanism. LetCk = {t : lenρf (x; t) = k}. The definition
of lenρ implies that lenρf (x; t) = 0 for t such that ‖t− f(x)‖2 ≤ ρ and that lenρf (x; t) ≥ K for any
t such that ‖t− f(x)‖2 ≥ ωf (x;K) + ρ. Thus we have that

P (‖Minv(x)− f(x)‖2 ≥ ωf (x;K) + ρ) ≤
n∑

k=K

P(Minv(x) ∈ Ck)

≤
e−Kε/2

∑n
k=K

∫
s∈Ck ds∫

s∈T e
−lenρf (x;t)ε/2ds

≤ e−Kε/2
Vol{t : ‖t‖2 ≤ D}
Vol{t : ‖t‖2 ≤ ρ}

≤ e−Kε/2(D/ρ)d.

This gives the first part of the claim.

Now we prove the bounds for the approximate mechanism. First, we notice that the noise added by
the approximate mechanism (M.2) satisfies

z(x) := M(x)− f(x),
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where P(z(x) = z) ∝ e−kε/2 for z ∈ Bk = {z ∈ Rd :
∑k−1
i=1 Si ≤ ‖z‖2 <

∑k
i=1 Si}. Noting that

‖z(x)‖2 ≥
∑K
i=1Ri(x) implies that z(x) ∈ Bk for k ≥ K, we get that

P

(
‖Mappr(x)− f(x)‖2 ≥

K∑
i=1

Ri(x)

)
= P

(
‖z(x)‖2 ≥

K∑
i=1

Ri(x)

)

≤
n∑

k=K

P(z(x) ∈ Bk)

≤ e−Kε/2
Vol{t : ‖t‖2 ≤ nD}

e−1Vol{t : ‖t‖2 ≤
∑1/ε
i=1Ri(x)}

≤ e−Kε/2+1

(
nD∑1/ε

i=1Ri(x)

)d
,

where the last inequality follows using that the ratio of the volumes of two `p-balls with radii r1 and
r2 is (r1/r2)d.

A.4 Proof of Proposition 2.2

The claim about privacy follows from identical arguments to the proof of Proposition 2.1. We now
prove the claim about utility. We remove x to simplify notation. First, we have that 1 ≤ Ri

R1
≤ eiβ

from the definition of smooth sensitivity. Thus we have

E [|M(x)− f(x)|] =

∑n
i=1 e

−iε/2Ri
∑i
j=1Rj∑n

i=1 e
−iε/2Ri

≤
∑n
i=1 e

−iε/2eiβR2
1

∑i
j=1 e

jβ∑n
i=1 e

−iε/2R1

≤ R1

∑n
i=1 e

−iε/2eiβ eiβ

eβ−1∑n
i=1 e

−iε/2

=
R1

eε/8 − 1

∑n
i=1 e

−iε/4∑n
i=1 e

−iε/2

=
R1

eε/8 − 1

eε/2 − 1

eε/4 − 1
= O

(
Sβ(x)

ε

)
,

where the last equality follows since ε = O(1).

B Proofs of Section 2.2

B.1 Proof of Lemma 2.1

We begin with some notation. Let (x,y) and (x′,y′) be two neighboring instances, and denote their
minimizers by θ̂n and θ̂′n, respectively. We let D = diam2(Θ).

The following lemma bounds the distance between these minimizers.
Lemma B.1. Under the assumptions of Proposition 2.1,∥∥∥θ̂n − θ̂′n∥∥∥

2
≤ 2L

λn
.

To prove Lemma B.1, we first prove the following weaker version.
Lemma B.2. Assume Ln(θ;x,y) is λ-strongly convex and L-Lipschitz. Then∥∥∥θ̂n − θ̂′n∥∥∥

2
≤ L

λn
.
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Proof Since Ln is λ-strongly convex and L-Lipschitz, we have

λ
∥∥∥θ̂n − θ̂′n∥∥∥2

2
≤ 〈∇Ln(θ̂n;x,y)−∇Ln(θ̂′n;x,y), θ̂n − θ̂′n〉

≤
∥∥∥∇Ln(θ̂n;x,y)−∇Ln(θ̂n;x,y)

∥∥∥
2

∥∥∥θ̂n − θ̂′n∥∥∥
2
.

The claim now follows since∇Ln(θ̂n;x,y) = 0 and
∥∥∥∇Ln(θ̂′n;x,y)

∥∥∥
2
≤ L

n .

Proof [of Lemma B.1] First, we have that∇Ln(θ̂n;x,y) = 0 and
∥∥∥∇Ln(θ̂′n;x,y)

∥∥∥
2
≤ L

n since

`(·;xi) is L-Lipschitz. We split to cases whether
∥∥∥θ̂n − θ̂′n∥∥∥

2
≤ λ

2H . First, if
∥∥∥θ̂n − θ̂′n∥∥∥

2
≤ λ

2H then

we know that the function Ln(θ;x,y) is λ/2-strongly convex on the setA = {θ :
∥∥∥θ̂n − θ∥∥∥

2
≤ λ

2H }.

We have θ̂′n ∈ A, and therefore Lemma B.2 implies that
∥∥∥θ̂n − θ̂′n∥∥∥

2
≤ 2L

λn .

Now assume that
∥∥∥θ̂n − θ̂′n∥∥∥

2
> λ

2H and we get a contradiction. Indeed let θt = (1 − t)θ̂n + tθ̂′n.

For any 0 ≤ t ≤ 1 such that
∥∥∥θ̂n − θt∥∥∥

2
≤ λ

2H , we have that

λ
∥∥∥θ̂n − θt∥∥∥2

2
≤ 〈∇Ln(θt;x,y), θt − θ̂n〉

(i)

≤ 〈∇Ln(θ1;x,y), θ1 − θ̂n〉

≤
L
∥∥∥θ̂′n − θ̂n∥∥∥

2

n
,

where the third inequality follows from Cauchy-Schwartz inequality since θ1 = θ̂′n and (i) follows
from a monotonicity argument which we explain presently. This implies that

∥∥∥θ̂′n − θ̂n∥∥∥
2
≥ nλ2

4LH2

which is a contradiction.
Let us now explain why inequality (i) holds. First we denote u = θ̂′n − θ̂n and we notice that
θt = θ̂n + tu. Define g(t) = Ln(θt;x) which is convex in t. As g is convex with minimizer
at t? = 0, we have g′(0) = 0 and 0 ≤ g′(t) ≤ g′(s) for 0 ≤ t ≤ s. Therefore we have that
0 ≤ 〈∇Ln(θt;x,y), u〉 ≤ 〈∇Ln(θs;x,y), u〉. Inequality (i) now follows since

〈∇Ln(θt;x,y), θt − θ̂n〉 = t〈∇Ln(θt;x,y), u〉
≤ s〈∇Ln(θs;x,y), u〉
= 〈∇Ln(θs;x,y), θs − θ̂n〉.

Now we are ready to prove Proposition 2.1. First, Lemma B.1 implies that

∥∥∥θ̂n − θ̂′n∥∥∥
2
≤ 2L

λn
.

Therefore as ∇2Ln(·;x,y) is H-Lipschitz, we get

∥∥∥∇2Ln(θ̂n;x,y)−∇2Ln(θ̂′n;x,y)
∥∥∥

2
≤ 2LH

λn
.
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As a consequence we have∣∣∣∥∥∥∇2Ln(θ̂n;x,y)(θ − θ̂n)
∥∥∥

2
−
∥∥∥∇2Ln(θ̂′n;x′,y′)(θ − θ̂′n)

∥∥∥
2

∣∣∣
=
∣∣∣∥∥∥∇2Ln(θ̂n;x,y)(θ − θ̂n)

∥∥∥
2
−
∥∥∥∇2Ln(θ̂′n;x′,y′)(θ − θ̂n) +∇2Ln(θ̂′n;x′,y′)(θ̂n − θ̂′n)

∥∥∥
2

∣∣∣
≤
∥∥∥∇2Ln(θ̂n;x,y)−∇2Ln(θ̂′n;x,y)

∥∥∥
2

∥∥∥θ − θ̂n∥∥∥
2

+
∥∥∥∇2Ln(θ̂′n;x′,y′)(θ̂n − θ̂′n)

∥∥∥
2

≤ 2DLH

λn
+
∥∥∥∇Ln(θ̂n;x′,y′)

∥∥∥
2

+O(H
∥∥∥θ̂n − θ̂′n∥∥∥2

2
)

≤ 2DLH

λn
+
L

n
+O

(
H

(
2LH

λn

)2
)
.

B.2 Proof of Proposition 2.3

The claim about privacy is immediate from the exponential mechanism. Let us now argue about the
claim for utility. To simplify notation, we let Σ = ∇2L(θ̂n;x,y). We later show (see Section F.1)
that to sample from the distribution (5), one can sample R ∼ Gamma(d, 1) and U ∼ Uni(Sd−1) and
then set θ = θ̂n + Z where Z = 2GSHess

ε Σ−1 ·R · U , and finally we accept θ if θ ∈ Θ, otherwise we
repeat the process, It is easy to show that for Z we have

E
[
‖Z‖22

]
=

4E[R2]GS2
Hess

ε2
E
[∥∥Σ−1U

∥∥2

2

]
≤ CdGS2

Hess

ε2
tr
(
Σ−2

)
,

for a universal constant C. But we need to upper bound E
[
‖Z‖22 | θ̂n + Z ∈ Θ

]
as this is the error

of the mechanism. To finish the proof, we now prove that for every random variable W ,

E
[
‖W‖22 | θ̂n + Z ∈ Θ

]
≤ 2E

[
‖W‖22

]
. (9)

To this end, we let ρ2 = E
[
‖Z‖22

]
and define three disjoint sets, S1 = {Z : ‖Z‖2 ≤ 2ρ},

S2 = {Z : θ̂n + Z ∈ Θ, Z 6∈ S1}, and S3 = Rd \ (S1 ∪ S2). Clearly these sets are disjoint and the
assumptions of the Proposition imply that S1 ⊆ Θ and therefore Θ = S1 ∪ S2. Using conditional
expectation and denoting pi = P(Z ∈ Si), we have that

E
[
‖W‖22

]
=

3∑
i=1

piE
[
‖W‖22 | Z ∈ Si

]
.

Noting that p1 ≥ 1/2 by Markov inequality, we now get that

E
[
‖W‖22 | θ̂n + Z ∈ Θ

]
=

p1

p1 + p2
E
[
‖W‖22 | Z ∈ S1

]
+

p2

p1 + p2
E
[
‖W‖22 | Z ∈ S2

]
≤ 2p1E

[
‖W‖22 | Z ∈ S1

]
+ 2p2E

[
‖W‖22 | Z ∈ S2

]
≤ 2E

[
‖W‖22

]
.

The claim follows.

C Proofs of Section 3 (lower bounds)

C.1 Proofs of Theorem 3

We start with the lower bound for unbiased mechanisms. Fix x ∈ Xn and assume towards a
contradiction that E[‖M(x)− f(x)‖2] ≤ 1

8βk where βk = c · e−2kε/dωf (x; k). The definition
of Wf (x; k) implies that there exists a βk/4 packing, namely S, of Wf (x; k) of size at least
mβk ≥ (

4cωf (x;k)
βk

)d ≥ 4de2kε. The definition of Wf (x; k) implies that there is an instance x′ such
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that dham(x,x′) ≤ k and f(x′) = t for every t ∈ S, hence we have a set A of size mβk of datasets
x′ such that f(x′) ∈ S. For every x′ ∈ A, we define

Bx′ = {y : ‖y − f(x′)‖2 ≤ βk/4}.

We now have that:

P(M(x) ∈ Bx′)
(i)

≥ P(M(x′) ∈ Bx′)e
−kε

(ii)

≥ P(M(x′) ∈ Bx)e−kε

(iii)

≥ P(M(x) ∈ Bx)e−2kε
(iv)

≥ e−2kε

2
,

where (i) and (iii) follow from the definition of differential privacy, (ii) follows since M is ‖·‖2-
unbiased, and (iv) follows from Markov inequality. As the sets Bx′ are disjoint for x′ ∈ A, we have
a contradiction

1 ≥
∑
x′∈A

P(M(x) ∈ Bx′) ≥
1

2
mβke

−2kε ≥ 4d

2
.

To prove the first part of the claim (i.e., the minimax lower bound), we use similar ideas while
starting from the assumption that for every x we have E[‖M(x)− f(x)‖2] ≤ 1

8βk where βk =

c · supx′ e
−kε/dωf (x′; k). We again define a packing A (now with mβk ≥ 4dekε) and we get using

Markov inequality and the definition of differential privacy that P(M(x) ∈ Bx′)≥P(M(x′) ∈
Bx′)e

−kε≥ e
−kε

2 . This gives a contradiction similarly to our argument above.

C.2 Local-minimax lower bound and proof of Theorem 4

First, we start by explaining why r = Ω(d/ε) is necessary to exclude trivial mechanisms in the local
minimax definition (6). Assume that we choose r � d/ε. Then for an instance x ∈ Xn, consider the
trivial constant mechanism that sets Mtriv(x

′) = f(x) for every x′ ∈ Xn. Clearly this mechanism is
ε-differentially private and its local-minimax risk for x is

sup
x′:dham(x,x′)≤r

E [‖Mtriv(x
′)− f(x′)‖2] = sup

x′:dham(x,x′)≤r
‖f(x)− f(x′)‖2 = ωf (x; r).

Our lower bounds of Lemma C.1 on the local minimax risk with radius r show this is the optimal
risk—up to constant factors that do not depend on r—for x whenever r ≤ d/ε. Therefore we need
to pick a larger value of r such that the optimal mechanism is not the trivial constant mechanism.
Picking r = C · d/ε, our lower bounds are roughly sup1≤i≤C e

−iωf (x; id/ε) (which is usually
maximized at i = 1 resulting in ωf (x; d/ε)) and so the trivial mechanism does not achieve this for C
large enough.

Moreover, when r � d/ε, no single mechanism M can be instance-optimal according to this
definition: if there exists M? such that E[‖M?(x)− f(x)‖2] ≤ O(1)R(x; r) ≤ O(1)ωf (x; r) for
every x ∈ Xn, then we get that

sup
x∈Xn

E[‖M?(x)− f(x)‖2] ≤ O(1) sup
x∈Xn

ωf (x; r)� sup
x∈Xn

ωf (x; d/ε),

which contradict the minimax lower bounds of Theorem 3.

Theorem 4 follows from the following lemma by setting r = d/ε.

Lemma C.1. Let the assumptions of Theorem 4 hold. Then for any r ≥ 1, R(x; r) ≥
c
8 supk≤r e

−kε/dωf (x; k).

Proof The proof follows similar arguments to those we had in the proof of Theorem 3. Assume
toward a contradiction that R(x; r) ≤ 1

8βk where βk = c · e−kε/dωf (x; k) for k ≤ r. This
implies that there exists a mechanism M such that for every x′ such that dham(x,x′) ≤ r, we have
E[‖M(x′)− f(x′)‖2] ≤ 1

8βk. Repeating the arguments of the proof of Theorem 3 with Wf (x; k)
for k ≤ r proves the claim.
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D Proofs and further details of Section 4.1 (mean estimation)

In this section we provide proofs for the claims in Section 4.1 and give our algorithm. We begin by
giving the full version of Lemma 4.1, which we prove in Appendix D.2.
Lemma (Full version of Lemma 4.1). Let f(x) = [trimm(x)][a,b]. Then, for any t ∈ [a, b], if
t ≥ trimm(x)

lenf (x; t) = min{k : k ≤ m, |t− f(x)| ≤ 1

n− 2m

k∑
i=1

(x(n−m+i) − x(m+i))} ∪ {m+ 1}.

Moreover, if t ≤ trimm(x)

lenf (x; t) = min{k : k ≤ m, |t− f(x)| ≤ 1

n− 2m

k∑
i=1

(x(n−m+1−i) − x(m+1−i))} ∪ {m+ 1}.

D.1 Sampling from the inverse sensitivity mechanism

We describe an algorithm for sampling from the inverse sensitivity mechanism with ρ > 0 for the
mean estimation problem of Section 4.1. Our goal is to sample from

πMinv(x)(t) =
e−len

ρ(x;t)ε/2∫
T e
−lenρ(x;s)ε/2ds

.

Algorithm 4 shows how to sample from this distribution using Lemma 4.1. To see this, note that
Lemma 4.1 implies that Sk in Algorithm 4 is exactly the set {t : lenρ(x; t) = k}. And so all values
t ∈ Sk have the same probability. Moreover, the probability of sampling a value from the set Sk is
Vol(Sk)e−kε/2 using the definition of the mechanism.

Algorithm 4: Inverse sensitivity for mean estimation
Input: x ∈ Rn, m, ρ, a, b

1 Calculate x̂t = [trimm(x)][a,b];

2 Calculate uk = min
(
ρ+ 1

n−2m

∑k
i=1(x(n−m+i) − x(m+i)), b− x̂t

)
for 0 ≤ k ≤ m;

3 Calculate `k = min
(
ρ+ 1

n−2m

∑k
i=1(x(n−m+1−i) − x(m+1−i)), x̂t − a

)
for 0 ≤ k ≤ m;

4 Set um+1 = b− x̂t and `m+1 = x̂t − a;
5 Set Sk = [−`k+1,−`k] ∪ [uk, uk+1];
6 Sample k ∝ Vol(Sk)e−kε/2;
7 Sample z ∼ Uni(Sk);
8 return x̂ = x̂t + z

D.2 Proof of Lemma 4.1

We only prove the case t ≥ trimm(x) as the other one is similar. In this case, to make the value
of the trimmed mean t by changing k values, we must change the value of the k smallest samples
x(1), · · · , x(k) and set their value to∞. Denote the resulting sample by x′. The trimmed mean x′ is

trimm(x′) =
x′(m+1) + x′(m+2) + · · ·+ x′(n−m)

n− 2m
.

We split to two cases. First, if k ≥ m+1, then we get that x′n−m =∞ and therefore trimm(x′) =∞.
This means that for any t > trimm(x) we can set suitable new values to x(1), · · · , x(k) (instead of
∞) such that trimm(x′) = t. Now assume k ≤ m. In this case, we get that

trimm(x′) =
x(m+k+1) + x(m+k+2) + · · ·+ x(n+k−m)

n− 2m
.

The claim follows as we have

trimm(x′)− trimm(x) =

∑k
i=1(x(n−m+i) − x(m+i))

n− 2m
.
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D.3 Proof of Proposition 4.1

The privacy guarantees of Algorithm 4 follow from Proposition 3.2 in [4].

To prove the claim about utility, we use the following result from [7] which upper bounds the error of
the trimmed mean estimator.

Lemma D.1 (Bun and Steinke [7], Proposition 10). Let xi
iid∼ P where P has mean µ and variance

σ2. Then

E[(trimm(x)− µ)2] ≤ n(1 +
√

8m)

(n− 2m)2
σ2 = O

(m
n

)
σ2.

Moreover, if P is symmetric about its mean then

E[(trimm(x)− µ)2] ≤
(

1 +O
(m
n

)) σ2

n
.

We have that

E[(x̂− µ)2] ≤ E[([trimm(x)][a,b] − µ)2] + E[z2]

≤ E[(trimm(x)− µ)2] + E[z2],

where the second inequality follows since µ ∈ [a, b], and so a projection to [a, b] cannot increase
error. Thus, given the bound of Lemma D.1, now we only need to upper bound E[z2].

We begin with the following lemma for a fixed x.
Lemma D.2. Let x ∈ Rn and K ≤ m. Let L(x) = max1≤k≤K(uk+1 − uk, `k+1 − `k). Then

E[z2] ≤ O
(
L(x)2

ε2

)
+ e−Kε/2

m(b− a)2

ρ
.

Proof Let vk = uk + `k. Then we have that vk+1− vk ≤ 2L for k ≤ K and v0 ≥ ρ, hence we get

E[z2] ≤
∑m+1
k=0 e−kε/2v2

k(vk − vk−1)∑m+1
k=0 e−kε/2(vk − vk−1)

≤
∑K
k=0 e

−kε/2v2
k(vk − vk−1)∑m+1

k=0 e−kε/2(vk − vk−1)
+ e−Kε/2

m(b− a)2

ρ

(i)

≤ O

(
L2

ε2

)
+ e−Kε/2

m(b− a)2

ρ
.

Inequality (i) follows from similar arguments to the proof of Proposition 4.3 in [4]: let T ≤ K be
the smallest such that vT ≥ L

ε . If no such T exists, then inequality (i) clearly holds. Note that
vT ≤ L

ε + L ≤ O(Lε ). Thus we get∑K
k=1 e

−kε/2v2
k(vk − vk−1)∑m+1

k=1 e−kε/2(vk − vk−1)
≤ vT +

∑K
k=T 2e−kε/2k2L3

e−Tε/2L/ε
= O

(
L2

ε2

)
.

Now we are ready to finish the proof of Proposition 4.1. We notice that for any x

L(x) ≤
x(n) − x(1)

n−m
≤ 2 max1≤i≤n |xi|

n−m
.

Therefore using standard bound on the expectation of maximum of subgaussian variables (Lemma 45
in full version [7])

E[L(x)2] ≤ 4E[max1≤i≤n x
2
i ]

(n−m)2
≤ 8σ2 log n

(n−m)2
.
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Overall we have that using K = m in Lemma D.2 implies that for a constant C,

E[(x̂− µ)2] ≤ E[(trimm(x)− µ)2] +
Cσ2 log n

(n−m)2ε2
+ e−mε/2

m(b− a)2

ρ
.

As ρ = σ2

n2 and m ≤ n, setting m = 12 log(n(b−a)/σ2)
ε and using Lemma D.1 proves the claim.

E Proofs of Section 4.2 (PCA)

Here we prove Proposition 4.2. First, we prove the claim about privacy then we proceed to show the
utility analysis.

E.1 Proof of Proposition 4.2 (privacy)

We only need to prove that w(x) = v + z is ε-DP as the claim for Algorithm 2 then follows since
post-processing preserves privacy [13, Proposition 2.1]. To this end, first we note that Lemma 4.2
implies that the choice of Ri(x) in Proposition 4.2 satisfies the conditions of Theorem 1. Now
assume we have two neighboring instances x,x′ with leading eigenvectors u1, u2 = −u1 and
u′1, u

′
2 = −u′1 respectively and assume without loss of generality ‖u1 − u′1‖2 ≤ LS(x). We get that

w(x) = w1(x) = u1 + z with probability 1/2 and w(x) = w2(x) = u2 + z otherwise. Similarly
we have w1(x′) and w2(x′). Theorem 1 now implies that the densities of w1(x) and w1(x′) are
ε-DP (i.e., πw1(x)(t)

πw1(x′)(t)
≤ eε) and similarly for the densities of w2(x) and w2(x′), therefore by quasi

convexity we get that w(x) is ε-DP.

E.2 Proof of Proposition 4.2 (utility)

To facilitate notation, we drop x from our analysis. First, we bound the norm of the noise z that the
algorithm adds. We claim that there exists a universal constant C1 > 0 such that the noise z in step 4
of Algorithm 2 has with probability 1− β

‖z‖2 ≤ C1

(
d log n/β

nGAP(x)ε
+

1

n4

)
.

Deferring the proof of this, we can now complete the proof of the claim. We assume that n is large
enough so that ‖z‖2 ≤ 1/2. Notice that in our setting (k = 1) we have that F (v) = vTΣv =∥∥Σ1/2v

∥∥2

2
. Therefore denoting λ = 1

‖v+z‖2
we get that

|F (vout)− F (v̄)| ≤ |F (vout)− F (v + z)|+ |F (v + z)− F (v̄)|

= |λ2 − 1|F (v + z) +

∣∣∣∣∥∥∥Σ1/2(v + z)
∥∥∥2

2
−
∥∥∥Σ1/2v̄

∥∥∥2

2

∣∣∣∣
≤ |λ2 − 1| ‖v + z‖2 +

∥∥∥Σ1/2z
∥∥∥2

2

(∥∥∥Σ1/2(v + z)
∥∥∥2

2
+
∥∥∥Σ1/2v̄

∥∥∥2

2

)
≤ 2|λ2 − 1|+ 3 ‖z‖22 ,

where we use the fact that ‖z‖2 ≤ 1/2, ‖v‖2 = 1, and ‖xi‖2 ≤ 1 so that
∥∥Σ1/2u

∥∥
2
≤ ‖u‖2 for

every u. Now we only need to upper bound |λ2 − 1|. As λ ≤ 2, we have

|λ2 − 1| ≤ 3|λ− 1| = 3
|1− ‖v + z‖2|
‖v + z‖2

≤ 6 ‖z‖2 .

Therefore overall we have that
|F (vout)− F (v̂)| ≤ 15 ‖z‖2 ,

which proves the claim.

Now we return to prove the claim about the norm of z. We use Theorem 2 with K = c1d logn/β
ε to

get

P

(
‖z‖2 ≥

K∑
i=1

Ri(x)

)
≤ e−Kε/2

e

(
n
√

2∑1/ε
i=1Ri(x)

)d
.
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Assuming K ≤ nGAP(x)/4 as we can take n large enough in the assumption of the proposition,
we get that Ri(x) ≤ 2Cpca

nGAP(x) for i ≤ K and therefore
∑K
i=1Ri(x) = O(

Cpcad logn/β
nGAP(x)ε ). Since

Ri(x) ≥ Cpca

nGAP(x) , setting c1 large enough we get that

P

(
‖z‖2 ≥

K∑
i=1

Ri(x)

)
≤ e−Kε/2

e

(
n2GAP(x)

√
2

Cpca

)d
≤ β.

F Proofs of Section 4.3 (linear regression)

F.1 Sampling from the gradient mechanism

In this section, we show how Algorithm 3 is basically sampling from the distribution of the gradient
mechanism. To this end, we show how to sample a vector t ∈ Rd with density π(t) = exp(−‖At‖)
for a matrix A � 0. The change of variables u = At and then using rotational symmetry gives that∫

π(t)dt =
1

det(A)

∫
exp(−‖u‖)du =

1

det(A)

∫ ∞
0

exp(−r)Vold−1(rSd−1)dr

=
1

det(A)

dπd/2

Γ(d2 + 1)

∫ ∞
0

rd−1e−rdr =
dπd/2Γ(d)

det(A)Γ(d2 + 1)
.

In particular, to sample T with the density π(t) = exp(−‖At‖), we draw R ∼ Gamma(d, 1), then
U ∼ Uni(Sd−1), and set T = RA−1U .

Recall that the gradient mechanism has π(t) = exp(−‖At‖) only for t ∈ S for some set S ⊂ Rd
and π(t) = 0 otherwise. Therefore we apply rejection sampling until we get t ∈ S. This shows that
Algorithm 3 is sampling from the gradient mechanism.

F.2 Proof of Proposition 4.3

Similarly to the proof of Proposition 2.3, and letting Z = 2L
nεΣ−1

n ·R ·U for R ∼ Gamma(d, 1), and
U ∼ Uni(Sd−1), we note that Algorithm 3 sets θout = θ̄+Z and accepts it if θout ∈ Θ. We also have

Ln(θout;x,y)− Ln(θ̂n;x,y) = (θout − θ̂n)TΣn(θout − θ̂n).

Since θ̂n ∈ int(Θ), we get that θ̄ = θ̂n and thus the excess loss of the algorithm is

E
[
Ln(θout;x,y)− Ln(θ̂n;x,y)

]
≤ E

[
ZTΣnZ | θ̂n + Z ∈ Θ

]
.

Using inequality (9) in the proof of Proposition 2.3, the claim follows since

E
[
ZTΣnZ | θ̄ + Z ∈ Θ

]
≤ 2E

[
ZTΣnZ

]
=

8E[R2]L2

n2ε2
E
[
UΣ−1

n U
]

= O

(
dL2

n2ε2
tr
(
Σ−1
n

))
.

21


	Introduction
	Preliminaries
	The inverse sensitivity mechanism

	Contributions
	Related work

	Approximate inverse sensitivity mechanisms
	Approximation using local sensitivities
	Utility guarantees for vector-valued functions

	Gradient-based approximations for empirical risk minimization

	Instance-specific lower bounds for vector-valued functions
	Applications
	Unbounded-range mean estimation
	Principal component analysis
	Linear regression

	Proofs of Section 2.1
	Proof of Theorem 1
	Proof of Proposition 2.1
	Proof of Theorem 2
	Proof of Proposition 2.2

	Proofs of Section 2.2
	Proof of Lemma 2.1
	Proof of Proposition 2.3

	Proofs of Section 3 (lower bounds)
	Proofs of Theorem 3
	Local-minimax lower bound and proof of Theorem 4

	Proofs and further details of Section 4.1 (mean estimation)
	Sampling from the inverse sensitivity mechanism
	Proof of Lemma 4.1
	Proof of Proposition 4.1

	Proofs of Section 4.2 (PCA)
	Proof of Proposition 4.2 (privacy)
	Proof of Proposition 4.2 (utility)

	Proofs of Section 4.3 (linear regression)
	Sampling from the gradient mechanism
	Proof of Proposition 4.3


