
Table 1: Update of Table 4 with con-
verged models and additional base-
lines.

Model (converged) Params (M) bpd

Glow (256 channels) 15.973 3.40
Glow (512 channels) † 44.235 3.35
Glow-large 287.489 3.30
RQ-NSF (C) † 11.8 3.38
FFJORD † 0.801 3.40
Flow++ † 32.3 3.28
ResidualFlow † 25.174 3.28

NanoFlow-naive 9.263 3.40
NanoFlow-decomp 9.935 3.32
NanoFlow 10.113 3.27
NanoFlow (K=48) 10.718 3.25

Thank you for the constructive feedback. We address concerns raised by the1

reviewers 1 and 2 regarding comparative results by an update with additional2

baselines in the literature.3

Updated results with baselines Table 1 shows an updated version of the Glow-4

based experiments. Our initial demonstration at submission timeline was an5

ablation study without full convergence. This could potentially result in mislead-6

ing impressions of our method. After the submission, we trained each models7

for longer duration up to 3000 epochs where each model reached the saturation.8

Thus, we can now accurately compare the models to the results in the literature.9

† indicates that the numbers are taken from existing literature under uniform10

dequantization regime for fairness (Finlay et al, How to train your neural ODE,11

ICML 2020). Reviewer 1 and 2 raised a valid concern regarding to the baseline12

Glow model that it is hard to identify the gain in bpd at the cost of the larger13

architecture. Here, we accurately show that the baseline Glow does scale with the14

higher capacity, at the cost of the increased parameters and diminishing return.15

NanoFlow outperformed the recently proposed models with less capacity, even16

compared to models with more complex non-affine coupling, including neural17

spline flows (RQ-NSF (C)), Flow++, and ResidualFlow.18

Table 2: Results when applying the
method to the reference topology of
Glow model (NanoFlowAlt), evalu-
ated at 600 epochs.

Model (600 epochs) Params (M) bpd

Glow (256 channels) 15.973 3.44
NanoFlowAlt-naive 0.778 3.75
NanoFlowAlt-decomp 6.783 3.54
NanoFlowAlt 6.961 3.53
NanoFlowAlt (K=48) 10.319 3.51

Filling in missing results Reviewer 1 pointed out that the results should also19

include NanoFlow’s method applied to the reference topology of Glow to fully20

compare the results for better understanding of the method. Table 2 shows the21

results when applied to the reference Glow topology. Original Glow uses a total22

of 3 layers: 3× 3 conv→ 1× 1 conv→ 3× 3 projection conv. NanoFlowAlt23

shares the first two layers and use separate 3× 3 projection conv. Results show24

that the model performed significantly worse than the baseline architecture, even25

though NanoFlowAlt (K=48) has similar network size (10 M) to our main result.26

This is reasonable and expected, because the shared estimator’s capacity is too27

restricted (0.7 M) to model multistep densities. Thus, one should be careful28

about allocating the parameters under NanoFlow framework, where the shared29

estimator should have sufficient capacity, while keeping the non-shared projection30

layers slim. We hope that these addional results combined with our main updated31

result would alleviate the concern about "moving the goal post". Reviewer 1 also32

mentioned that NanoFlow-decomp is missing in WaveFlow results, thus it is hard to identify how much the gain is33

achieved from our two strategies (decomposition and embedding). Table 3 shows that NanoFlow-decomp stays between34

NanoFlow-naive and NanoFlow, consistent with the Glow-based models. Thus, we emphasize that both methods do35

contribute to the performance. We will add the converged results. We also attach preliminary results applying RQ-NSF36

to WaveFlow-based models in Table 3, and show that NanoFlow is applicable beyond affine coupling.37

Table 3: Additional WaveFlow
experiment, now with NanoFlow-
decomp evaluated at 100K steps.

Model Params (M) LL

WaveFlow 22.336 5.1164
NanoFlow-naive 2.792 5.0341
NanoFlow-decomp 2.794 5.048
NanoFlow 2.818 5.0774

WaveFlow + RQ-NSF 22.432 5.1262
NanoFlow + RQ-NSF 2.915 5.0862

Implementation details and choice of embedding We will precisely add im-38

plementation details of the embedding strategies we used to improve clarity. The39

input at the start of each flow is hk,0 = concatenate(x, εk). for l-th layer inside40

k-th flow, we get hidden state for the next layer hk,l+1 as follows:41

hk,l+1 = exp(δk,l) ∗ (gk,l(hk,l; θ̂·,l) + gk,lembed(ε
k; ηk,l)) (1)

where δk,l ∈ RH serves as the multiplicative gating and H is the num-42

ber of hidden channels. It is initialized to zero to initially perform identity.43

gk,lembed(ε
k; ηk,l) ∈ RH is the additive bias obtained by ηk,l with one fully-44

connected layer (1× 1 convolution). ηk,l is discarded after training and caching45

the bias vectors from gk,lembed. We observed that these implementation choices46

ensured stability during training. We partially dropped the methods that showed47

no improvements during preliminary experiments, depending on the architecture.48

Improving related work In line with the updated results in Table 1, we will49

describe other classes of flows beyond the affine coupling in related work and background. Notably, continuous-time50

flows (CNF) can utilize a "shared" neural network f , as commented by reviewer 2. The central difference between CNF51

and NanoFlow (and non-continuous NFs in general) is that CNFs use numerical ODE solvers that iteratively evaluate f52

to reach below tolerance, whereas NFs directly model pre-defined steps of transformation with fk (or f in NanoFlow)53

with a single pass. The effectiveness and potential benefits of the shared f outside the ODE-based CNFs are yet to be54

studied in the literature, where NanoFlow aims to systematically address, reaching to non-trivial solutions as proposed.55


