
A Pre-training Hyperparameters

Table 4 describes the hyperparameters for pre-training the baseline and PLD.

Table 4: Hyperparameters for pre-training the baseline and PLD.
Hyperparameter Baseline PLD
Number of Layers 12 12
Hidden zies 768 768
Attention heads 12 12
Dropout 0.1 0.1
Attention dropout 0.1 0.1
Total batch size 4K 4K
Train micro batch size per gpu 16 16
Optimizer Adam Adam
Peak learning rate 1e-04 1e-03
Learning rate scheduler warmup_linear_decay_exp warmup_linear_decay_exp
Warmup ratio 0.02 0.02
Decay rate 0.99 0.99
Decay step 1000 1000
Max Training steps 200000 200000
Weight decay 0.01 0.01
Gradient clipping 1 1

B Establishing Identity Mapping with PreLN

Prior studies [28, 45] suggest that establishing identity mapping to keep a clean information path (no
operations except addition) is helpful for easing optimization of networks with residual connections.
With the change of PreLN, we can express the output of the i-th Transformer layer as the input xi of
that layer plus a residual transformation function fRT = fS−ATTN (fLN (xi)) + fFFN (fLN (x

′

i)),
and the output layer xL = xl +

∑L−1
i=l fRT (xi) as the recursive summation of preceding fRT

functions in shallower layers (plus xl). If we denote the loss function as E , from the chain rule of
backpropagation [46] we have:

∂E
∂xl

=
∂E
∂xL

∂xL
∂xl

=
∂E
∂xL

(1 +
∂

∂xl

L−1∑
i=l

fRT (xi)) (5)

Eqn. 5 indicates that the gradient ∂E
∂Xl

can be decomposed into two additive terms: a term of ∂E
∂XL

that
propagates information directly back to any shallower l-th block without concerning how complex
∂
∂xl

∑L−1
i=l fRT (xi)) would be, and another term of ∂E

∂XL
(∂
∂Xl

∑L−1
i=l fRT (Xi)) that propagates

through the Transformer blocks. The equation also suggests that it is unlikely for the gradient ∂
∂Xl

to be canceled out for a mini-batch, and in general the term ∂
∂Xl

∑L−1
i=l fRT (Xi) cannot be always

-1 for all samples in a mini-batch. This explains why the gradients of Transformer layers in Fig. 1
become more balanced and do not vanish after identity mapping reordering. In contrast, the PostLN
architecture has a series of layer normalization operations that constantly alter the signal that passes
through the skip connection and impedes information propagation, causing both vanishing gradients
and training instability. Overall, PreLN results in several useful characteristics such as avoiding
vanishing/exploding gradient, stable optimization, and performance gain.

C PreLN From the View of Unrolled Iterative Refinement

From a theoretical point of view [40], a noisy estimate for a representation by the first Transformer
layer should, on average, be correct even though it might have high variance. The unrolled iterative
refinement view says if we treat "identity mapping" (as in PreLN) as being an unbiased estimator for
the target representation, then beyond the first layer, the subsequent Transformer layer outputs xni (e.g.,
i ∈ 2...L) are all estimators for the same latent representation Hn, where Hn refers to the (unknown)

14

value towards which the n-th representation is converging. The unbiased estimator condition can
then be written as the expected difference between the estimator and the final representation:

E
x∈X

[xni −Hn] = 0 (6)

With the PreLN equation, it follows that the expected difference between outputs of two consecutive
layers is zero, because

E[xni −Hn]− E[xni−1 −Hn] = 0⇒ E[xni − xni−1] = 0 (7)

If we write representation xni as a combination of xi−1n and a residual fRT n, it follows from the
above equation that the residual has to be zero-mean:

xni = xni−1 + fRT
n ⇒ E[fRT

n] = 0 (8)
which we have empirically verified to be correct, as shown in Figure 2. Therefore, PreLN ensures
that the expectation of the new estimate will be correct, and the iterative summation of the residual
functions in the remaining layers determines the variance of the new estimate E[FRT i].

D Downstream Task Accuracy Result

Fig. 10 shows the full comparison of the baseline and PLD, fine-tuned at different checkpoints.
Overall, we observe that PLD not only trains BERT faster in pre-training but also preserves the
performance on downstream tasks. Interestingly, our model achieves higher performance on MNLI,
QNLI, QQP, RTE, SST-2, and CoLA on later checkpoints, indicating that the model trained with our
approach also generalizes better on downstream tasks than our baseline does. From a knowledge
transferability perspective, the goal of training a language model is to learn a good representation of
natural language that ideally ignores the data-dependent noise and generalizes well to downstream
tasks. However, training a model with a constant depth is at least somewhat noisy and can bias
the model to prefer certain representations, whereas PLD enables more sub-network configurations
to be created during training Transformer networks. Each of the L ST blocks is either active or
inactive, resulting in 2L possible network combinations. By selecting a different submodular in each
mini-batch, PLD encourages the submodular to produce good results independently. This allows
the unsupervised pre-training model to obtain a more general representation by averaging the noise
patterns, which helps the model to better generalize to new tasks. On the other hand, during inference,
the full network is presented, causing the effect of ensembling different sub-networks.

The effect of learning rates on downstream tasks. We focus on evaluating larger datasets and
exclude very small datasets, as we find that the validation scores on those datasets have a large
variance for different random seeds.

For fine-tuning models on downstream tasks, we consider training with batch size 32 and performing
a linear warmup for the first 10% of steps followed by a linear decay to 0. We fine-tune for 5 epochs
and perform the evaluation on the development set. We report the median development set results for
each task over five random initializations, without model ensemble.

Results are visualized in Fig. 11, which shows that the baseline is less robust on the choice of
learning rates. Specifically, the fine-tuning results are often much worse with a large learning rate. In
comparison, PLD is more robust and often achieves better results with large learning rates.

E Additional Results

15

(a) MNLI-m (b) MNLI-mm (c) QNLI

(d) QQP (e) RTE (f) SST-2

(g) WNLI (h) CoLA (i) MRPC (acc.)

(j) MRPC (F1.) (k) SST-B (PCC) (l) SST-B (SCC)
Figure 10: The fine-tuning results at different checkpoints.

16

(a) MNLI-m (b) MNLI-mm (c) QNLI

(d) QQP (e) RTE (f) SST-2
Figure 11: The fine-tuning results at different checkpoints.

Figure 12: Convergence curves varying the keep ratio θ̄.

17

	Pre-training Hyperparameters
	Establishing Identity Mapping with PreLN
	PreLN From the View of Unrolled Iterative Refinement
	Downstream Task Accuracy Result
	Additional Results

