
A Related Work

Our work belongs to the vast literature on establishing provably efficient RL methods without having
access to a generative model or a explorative behavioral policy. The tabular setting is well studied the
existing works. See, e.g., [33, 52, 6, 21, 65, 35, 56] and the references therein. It is shown in [6, 35]
that any RL algorithm necessarily incurs a ⌦(

p
SAT ) regret under the tabular setting, where S and

A are the cardinalities of the state and action spaces, respectively. Thus, the algorithms designed for
the tabular setting cannot be directly applied to the function approximation setting where the number
of states is gigantic. When function approximation is employed, [77, 78, 36, 12, 80, 73, 5, 83, 37]
focus on the (generalized) linear setting where the value function (or the transition model) can be
represented using a linear transform of a known feature mapping. Among these works, our work
is most related to [36]. In particular, in our kernel setting, when kernel function has a finite rank,
both our LSVI algorithm and the corresponding regret bound are reduced to the those established
in [36]. However, their sample complexity or regret bounds all diverge when the dimension of the
feature mapping goes to infinity and thus cannot be directly extended to the kernel setting. Another
closely related work is [71], which studies a similar optimistic LSVI algorithm for general function
approximation. Their work focuses on value function classes with bounded eluder dimensions
[57, 51] and it is unclear whether their construction of the bonus function can be extended to the
kernel or neural settings. Besides, [78] also study a kernelized MDP model where the transition
model can be directly estimated. Under a slightly more general model, [5] recently propose an
optimistic model-based algorithm via value-targeted regression, where the model class is allowed to
be general functions with bounded eluder dimension. In another recent work, [37] study a nonlinear
control problem where the system dynamics belongs to a known RKHS and can be directly estimated
from the data. As opposed to these works, we do not pose an explicit assumption on the transition
model and our proposed algorithm is model-free. Furthermore, regret or sample complexity results
have also been studied beyond linear function approximation. However, these algorithms are either
computational challenging [39, 34, 20, 22] or require additional assumptions on the transition model
that might be restrictive [74, 75, 24]

In addition, our work is also related to the literature on contextual bandits with kernel or [62, 38,
63, 67, 18, 28] neural network functions [84], which are special cases of our episodic MDP with
the episode length equal to one. The construction of our bonus function are adopted from these
works. However, our reinforcement learning problem has temporal dependence caused by state
transitions according to the Markov transition kernel, which is absent in bandit models. Specifically,
the covering number N1(✏⇤) in Table 1 arises due to such an additional structure captures the
fundamental challenge of temporally extended exploration in RL. When applying our algorithm to
kernel contextual bandits, the regret bound reduces to deff ·

p
T where deff is the effective dimension

of the RKHS. Such a regret bound matches those in [62, 18].

Furthermore, our analysis of the optimistic LSVI algorithm is akin to the recent study of
the optimization and generalization of over-parameterized neural networks via the framework
of the neural tangent kernel [32]. Most of these works focus on the supervised learning
[19, 32, 76, 25, 26, 3, 2, 85, 17, 44, 4, 15, 16, 43]. In contrast, our algorithm incorporates an
additional bonus term in the least-squares problem and thus requires novel analysis.

B Additional Background

In this section, we present the background of reproducing kernel Hilbert space and overparameterized
neural networks.

B.1 Reproducing Kernel Hilbert Space

In the next section, we aim to estimate the optimal value function Q?

h
using functions in a reproducing

kernel Hilbert space (RKHS) [31]. To this end, hereafter, to simplify the notation, we let z = (x, a)
denote a state-action pair and denote Z = S ⇥ A. Without loss of generality, we regard Z as
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a compact subset of Rd where the dimension d is assumed fixed. This can be achieved if there
exists a known embedding mapping  embed : Z ! Rd that pre-processes the input (x, a). Let H
be an RKHS defined on Z with kernel function K : Z ⇥ Z ! R, which contains a family of
functions defined on Z . Let h·, ·iH : H⇥H! R and k · kH : H! R denote the inner product and
RKHS norm on H, respectively. Since H is an RKHS, there exists a feature mapping � : Z ! H
such that f(z) = hf(·),�(z)iH for all f 2 H and all z 2 Z . Moreover, for any x, y 2 Z , we
have K(x, y) = h�(x),�(y)iH. In this work, we assume that the kernel function K is uniformly
bounded in the sense that sup

z2Z
K(z, z) < 1. Without loss of generality, we assume that

sup
z2Z

K(z, z)  1, which implies that k�(z)kH  1 for all z 2 Z .

Furthermore, let L2
(Z) be the space of square-integrable functions on Z with respect to the Lebesgue

measure and let h·, ·iL2 be the inner product on L2
(Z). The kernel function K induces a integral

operator TK : L2
(Z)! L2

(Z) defined as

TKf(z) =

Z

Z

K(z, z0) · f(z0) dz0, 8f 2 L2
(Z). (B.1)

By Mercer’s Theorem [64], the integral operator TK has countable and positive eigenvalues {�i}i�1

and the corresponding eigenfunctions { i}i�1 form an orthonormal basis of L2
(Z). Moreover, the

kernel function admits a spectral expansion

K(z, z0) =
1X

i=1

�i ·  i(z) ·  j(z
0
). (B.2)

Then, the RKHS H can be written as a subset of L2
(Z) as

H =

⇢
f 2 L2

(Z) :

1X

i=1

hf, ii2L2

�i
<1

�
,

and the inner product of H can be written as

hf, giH =

1X

i=1

1/�i · hf, iiL2 · hg, iiL2 , for all f, g 2 H.

By such a construction, the scaled eigenfunctions {p�i i}i�1 form an orthogonal basis of RKHS H
and the feature mapping �(z) 2 H can be written as �(z) =

P
1

i=1 �i i(z) ·  i for any z 2 Z .

B.2 Overparameterized Neural Networks

In addition to RKHS, we also study the setting where the value functions are approximated by
overparameterized neural networks. In the sequel, we define the class of neural networks that will be
used in the algorithm.

Recall that we denote Z = S ⇥A and view it as a subset of Rd. For neural networks, we further
regard Z as a subset of the unit sphere in Rd. That is, kzk2 = 1 for all z = (x, a) 2 Z . A two-layer
neural network f(·; b,W ) : Z ! R with 2m neurons and weights (b,W ) is defined as

f(z; b,W ) =
1p
2m

2mX

j=1

bj · act(W>

j
z), 8z 2 Z. (B.3)

Here act : R ! R is the activation function, bj 2 R and Wj 2 Rd for all j 2 [2m], and b =

(b1, . . . , b2m)
> 2 R2m and W = (W1, . . . ,W2m) 2 R2dm. During training, we initialize (b,W ) via

the symmetric initialization scheme [30, 9] as follows. For any j 2 [m], we set bj
i.i.d.⇠ Unif({�1, 1})

and Wj

i.i.d.⇠ N(0, Id/d), where Id is the identity matrix in Rd. For any j 2 {m+1, . . . , 2m}, we set
bj = �bj�m and Wj = Wj�m. We remark that such an initialization implies that the initial neural
network is a zero function, which is used only to simply the theoretical analysis. Besides, for ease of
presentation, during training we fix b at its initial value and only optimize over W . Moreover, we
denote f(z; b,W ) by f(z;W ) to simplify the notation.

Furthermore, we assume that the neural network in is overparameterized in the sense that the width
2m is much larger than the number of episodes T . Overparameterization is shown to be pivotal for
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neural training in both theory and practice [49, 2, 4]. Under the such a regime, the dynamics of
training neural networks are well captured by the framework of neural tangent kernel (NTK) [32].
Specifically, let '(·;W ) : Z ! R2md be the gradient of f(;W ) with respect to W , which is given by

'(z;W ) = rW f(z;W ) =
�
rW1f(z;W ), . . . ,rW2mf(z;W )), 8z 2 Z. (B.4)

Let W (0) be the initial value of W . Condition on the realization of W (0), we define a kernel matrix
Km : Z ! Z as

Km(z, z0) =
⌦
'(z;W (0)

),'(z0;W (0)
)
↵
, 8(z, z0) 2 Z ⇥ Z. (B.5)

When m is sufficiently large, for all W that is in a neighborhood of W (0), it can be shown that
f(·,W ) is close to its linearization at W (0),
f(·;W ) ⇡ bf(·;W ) = f(·,W (0)

) +
⌦
�(·;W (0)

),W �W (0)
↵
=
⌦
�(·;W (0)

),W �W (0)
↵
. (B.6)

The linearized function bf(·;W ) belongs to the RKHS with kernel Km. Moreover, as m goes to
infinity, due to random initialization, Km converges to a kernel Kntk : Z ⇥ Z , dubbed as neural
tangent kernel (NTK), which is given by

Kntk(z, z
0
) = E

⇥
act

0
(w>z) · act0(w>z0) · z>z0

⇤
, (z, z0) 2 Z ⇥ Z, (B.7)

where act
0 is the derivative of the activation function, and the expectation in (B.7) is taken with

respect to w ⇠ N(0, Id/d).

C Kernel and Neural Optimistic Least-Squares Value Iteration

In this section, we lay out the details of KOVI and NOVI, which are omitted for brevity. We remark
that the loss function Lt

h
in Line 7 of Algorithm 4 is given in (C.1) and its global minimizer cW t

h
can

be efficiently obtained by first-order optimization methods.

Algorithm 2 Kernelized Optimistic Least-Squares Value Iteration (KOVI)
1: Input: Parameters � and �.
2: for episode t = 1, . . . , T do
3: Receive the initial state xt

1.
4: Set V t

H+1 as the zero function.
5: for step h = H, . . . , 1 do
6: Compute the response yt

h
2 Rt�1, the Gram matrix Kt

h
2 R(t�1)⇥(t�1), and function kt

h

as in (3.6) and (3.7), respectively.
7: Compute
8: ↵t

h
= (Kt

h
+ � · I)�1yt

h
,

9: bt
h
(·, ·) = ��1/2 ·

⇥
K(·, ·; ·, ·)� kt

h
(·, ·)>(Kt

h
+ �I)�1kt

h
(·, ·)

⇤1/2.
10: Obtain value functions

Qt

h
(·, ·) min{kt

h
(·, ·)>↵t

h
+ � · bt

h
(·, ·), H � h+ 1}+, V t

h
(·) = max

a

Qt

h
(·, a).

11: end for
12: for step h = 1, . . . , H do
13: Take action at

h
 argmax

a2A
Qt

h
(xt

h
, a).

14: Observe the reward rh(xt

h
, at

h
) and the next state xt

h+1.
15: end for
16: end for

C.1 Neural Optimistic Value Iteration

In this subsection, we estimate the value functions {Q?

h
}h2[H] using overparameterized neural

networks. We aim to estimate each Q?

h
using a neural network given in (B.3), which is initialized via

the symmetric initialization scheme [30, 9] introduced in §B.2. Moreover, for simplicity, we assume
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Algorithm 3 Neural Optimistic Least-Squares Value Iteration (NOVI)
1: Input: Parameters � and �.
2: Initialize the network weights (b(0),W (0)

) via the symmetric initialization scheme.
3: for episode t = 1, . . . , T do
4: Receive the initial state xt

1.
5: Set V t

H+1 as the zero function.
6: for step h = H, . . . , 1 do
7: Solve the neural network optimization problem cW t

h
= argmin

W
Lt

h
(W ).

8: Update ⇤
t

h
= ⇤

t�1
h

+ '(xt�1
h

, at�1
h

;cW t

h
)'(xt�1

h
, at�1

h
;cW t

h
)
>.

9: Obtain the bonus function bt
h

defined in (C.4).
10: Obtain value functions

Qt

h
(·, ·) min

�
f
�
·, ·;cW t

h

�
+ � · bt

h
(·, ·), H � h+ 1

 +
, V t

h
(·) = max

a

Qt

h
(·, a).

11: end for
12: for step h = 1, . . . , H do
13: Take action at

h
 argmax

a2A
Qt

h
(xt

h
, a).

14: Observe the reward rh(xt

h
, at

h
) and the next state xt

h+1.
15: end for
16: end for

that all the neural networks share the same initial weights, denoted by (b(0),W (0)
). Besides, we fix

b = b(0) in (B.3) and only update the value of W 2 R2md.

Under such a neural setting, we replace the least-squares regression in (3.2) by a nonlinear ridge
regression. In particular, for any (t, h) 2 [T ]⇥ [H], we define the loss function Lt

h
: R2md ! R as

Lt

h
(W ) =

t�1X

⌧=1

⇥
rh(x

⌧

h
, a⌧

h
) + V t

h+1(x
⌧

h+1)� f(x⌧
h
, a⌧

h
;W )

⇤2
+ � ·

��W �W (0)
��2
2
, (C.1)

where � > 0 is the regularization parameter. Then we define bQt

h
as

bQt

h
(·, ·) = f

�
·, ·;cW t

h

�
, where cW t

h
= argmin

W2R2md

Lt

h
(W ). (C.2)

Here we assume that there is an optimization oracle that returns the global minimizer of the loss
function Lt

h
. It has been shown in a large body of literature that, when m is sufficiently large, with

random initialization, simple optimization methods such as gradient descent provably find the global
minimizer of the empirical loss function at a linear rate of convergence [26, 25, 4]. Thus, such an
optimization oracle can be realized by gradient descent with sufficiently large number of iterations
and the computational cost of realizing such a oracle is polynomial in m, T , and H .

It remains to construct the bonus function bt
h

. Recall that we define '(·;W ) = rW f(·;W ) in (B.4).
We define matrix ⇤

t

h
2 R2md⇥2md as

⇤
t

h
= � · I2md +

t�1X

⌧=1

'
�
x⌧
h
, a⌧

h
;cW ⌧+1

h

�
'
�
x⌧
h
, a⌧

h
;cW ⌧+1

h

�>
, (C.3)

which can be recursively computed by letting

⇤
1
h
= � · I2md, ⇤

t

h
= ⇤

t�1
h

+ '
�
xt�1
h

, at�1
h

;cW t

h

�
'
�
xt�1
h

, at�1
h

;cW t

h

�>
, 8t � 2.

Then the bonus function bt
h

is defined as

bt
h
(x, a) =

⇥
'
�
x, a;cW t

h

�>
(⇤

t

h
)
�1'

�
x, a;cW t

h

�⇤1/2
, 8(x, a) 2 S ⇥A. (C.4)

Finally, we obtain the value functions Qt

h
and V t

h
via (3.5), with bQt

h
and bt

h
defined in (C.2) and (C.4),

respectively. By letting ⇡t be the greedy policy with respect to {Qt

h
}h2[H], we obtain the Neural

Optimistic Least-Squares Value Iteration (NOVI) algorithm, whose details are stated in Algorithm 4
in §F.
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The intuition of the bonus term in (C.4) can be understood via the connection between overparame-
terized neural networks and NTK. Specifically, when m is sufficiently large, it can be shown that
each cW t

h
is not far from the initial value W (0). When this is the case, suppose we replace the neural

tangent features {'(·;cW ⌧

h
)}⌧2[T ] in (C.3) and (C.4) by '(·;W (0)

), then bt
h

recovers the UCB bonus
in linear contextual bandits and linear MDPs with feature mapping '(·;W (0)

) [1, 36, 73]. Moreover,
when m converges to infinity, it will become the UCB bonus defined in (3.8) for the RKHS setting
with the kernel being Kntk. Thus, when the neural networks are overparameterized, value functions
{Qt

h
}h2[H] are approximately elementwise upper bounds of the optimal value functions and thus we

achieve optimism approximately.

D Theory of Neural Optimistic Least-Squares Value Iteration

In this section, we establish the regret of NOVI. Throughout this subsection, we let H be the RKHS
whose kernel function is Kntk define in (B.7). Also recall that we regard Z = S ⇥A as a subset of
the unit sphere Sd�1

= {z 2 Rd
: kzk2 = 1}. Moreover, let (b(0),W (0)

) be the initial value of the
network weights obtained via the symmetric initialization scheme introduced in §B.2. Conditioning
on the randomness of the initialization, we define a finite-rank kernel Km : Z ⇥ Z ! R by letting
Km(z, z0) = hrW f(z; b(0),W (0)

),rW f(z0; b(0),W (0)
)i. Notice that the rank of Km is md, where

m is much larger than T and H and is allowed to increase to infinity. Besides, with a slight abuse of
notation, we define

Q?
=

⇢
f↵(z) =

Z

Rd

act
0
(w>z) · z>↵(w) dp0(w) : ↵ : Rd ! Rd, k↵k2,1  RQH/

p
d

�
, (D.1)

where RQ is a positive number, p0 is the density of N(0, Id/d), and we define k↵k2,1 =

sup
w
k↵(w)k2. That is, Q? consists of functions that can be expressed as infinite number of random

features. As shown in Lemma C.1 of [30], Q? is a dense subset of the RKHS H. Thus, when RQ is
sufficiently large, Q? in (D.1) is an expressive function class. We impose the following condition
on Q?.
Assumption D.1. We assume that for any h 2 [H] and any Q : S⇥A! [0, H], we have T?

h
Q 2 Q?.

Assumption D.1 is in the same vein as Assumption 4.1. Here we focus on Q⇤ instead of an RKHS
norm ball of NTK only due to technical considerations. However, since functions of the form in (D.1)
are dense in H, Assumptions D.1 and 4.1 are indeed very similar.

To characterize the value function class associated with NOVI, for any discrete set D ✓ Z , similar to
(C.3), we define

⇤D = � · I2md +

X

z2D

'(z;W (0)
)'(z;W (0)

)
>,

where '(·;W (0)
) is the neural tangent feature defined in (B.4). With a slight abuse of notation, for

any R,B > 0, we let Qucb(h,R,B) denote that class of functions that take the form of

Q(z) =min

n⌦
'(z;W (0)

),W i+ � ·
⇥
'(z;W (0)

)
>
(⇤D)

�1'(z;W (0)
)
⇤1/2

, H � h+ 1

o+
,

(D.2)
where W 2 R2md satisfies kWk2  R, � 2 [0, B], and D has cardinality no more than T . Intuitively,
when both R and B are sufficiently large, Qucb(h,R,B) contains the counterpart of neural-based
value function Qt

h
that is based on neural tangent features. When m is sufficiently large, it is expected

that Qt

h
is well-approximately by functions in Qucb(h,R,B) where the approximation error decays

with m. It is worth noting the class of linear functions of '(·;W (0)
) forms an RKHS with kernel

Km in (B.5). Any function f in this class can be written as f(·) = h'(·;W (0)
),Wf i for some

Wf 2 R2md. Moreover, the RKHS norm of f is given by kWfk2. Thus, Qucb(h,R,B) defined
above coincides with the counterpart defined in (4.4) with the kernel function being Km. We set
RT = H

p
2T/� and let N1(✏;h,B) denote the ✏-covering number of Qucb(h,RT , B) with respect

to the `1-norm on Z .

In the following theorem, we present a general regret bound for NOVI.
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Theorem D.2. Under Assumptions D.1, We also assume that m is sufficiently large such that
m = ⌦(T 13H14 · (logm)

3
). In Algorithm 4, we let � be a sufficiently large constant and let � = BT

which satisfies inequality
16�Km(T,�) + 16 · logN1(✏⇤, h+ 1, BT ) + 32 · log(2TH) + 4R2

Q
· (1 + �/d)  (BT /H)

2

(D.3)
for all h 2 [H]. Here ✏⇤ = H/T and �Km(T,�) is the maximal information gain defined for
kernel Km. In addition, for the neural network in (B.3), we assume the activation function act is
Cact-smooth, i.e., its derivative act

0 is Cact-Lipschitz, and m is sufficiently large such that
m = ⌦

�
�12 · T 13 ·H14 · (logm)

3
�
. (D.4)

Then with probability at least 1� (T 2H2
)
�1, we have

Regret(T ) = 5�H ·
p
T · �Km(T,�) + 10�TH · ◆, (D.5)

where we define ◆ = T 7/12 ·H1/6 ·m�1/12 · (logm)
1/4.

This theorem shows that, when m is sufficiently large, NOVI enjoys a similar regret bound as KOVI.
Specifically, the choice of � in (D.3) is similar to that in (4.5) for kernel Km. Here we set � to be an
absolute constant as sup

z
Km(z, z)  1 no longer holds. In addition, here we assume that act0 is

Cact-Lipschitz on R, which can be relaxed to only assuming act
0 is Lipschitz continous on a bounded

interval of R that contains w>z with high probability, where w is drawn from the initial distribution
of Wj , j 2 [m].

Moreover, comparing (D.6) and (D.5) we observe that, when m is sufficiently large, NOVI can
be viewed as a misspecified version of KOVI for the RKHS with kernel Km, where the model
misspecification error is errmis = 10� · ◆. Specifically, the first term in (D.5) is the same as that
in (D.6), where the choice of � and �Km(T,�) reflect the intrinsic complexity of Km. Whereas
the second term is equal to errmis · TH , which arises due to approximating neural network value
functions by functions in Qucb(h,RT , BT ), which are constructed using kernel functions with feature
mapping '(·;W (0)

). Moreover, when � is bounded by a polynomial of TH , to make errmis · TH
negligible, it suffices to let m be a polynomial of TH . That is, when the network width is a polynomial
of the total number of steps, NOVI achieves the same performance as KOVI.

Furthermore, when neglecting the constants and logarithmic terms in (D.3), we simplify the regret
bound in (D.5) into

Regret(T ) = O
⇣
H2 ·

h
�Km(T,�) + max

h2[H]

p
�Km(T,�) · logN1(✏⇤, h, BT )

i
·
p
T + errmis · T

⌘
.

which depends on the intrinsic complexity of Km through both the effective dimension �Km(T,�)
and the log-covering number logN1(✏⇤, h, BT ). To obtain a more concrete regret bounds, in the
following, we pose an assumption on the spectral structure of Km.

Assumption D.3 (Eigenvalue Decay of the Empirical NTK). Conditioning on the randomness of
(b(0),W (0)

), let Km be the kernel induced by the neural tangent features rf(·; b(0),W (0)
). Let

TKm be the integral operator induced by Km and the Lebesgue measure on Z and let {�j}j�1 and
{ j}j�1 be its eigenvalues and eigenvectors, respectively. We assume that {�j}j�1 and { j}j�1

satisfy either one of the two decay conditions specified in Assumption 4.3. Here we assume the
constants C1, C2, C , �, and ⌧ do not depend on m.

Here we assume that Km satisfies Assumption 4.3. Since Km depends on the initial network weights,
which are random, this assumption should be better understood in the limit sense. Specifically, as m
goes to infinity, Km converges to Kntk, which is determined by both the activation function and the
distribution of the initial network weights. Thus, if the RKHS with kernel Kntk satisfy Assumption
4.3, when m is sufficiently large, it is reasonable to expect that such a condition also holds for Km.
Due to the space limit, we present concrete examples of Kntk satisfying Assumption 4.3 in §G.3 in
the appendix.

Now we are ready to characterize the performances of NOVI for each case separately.
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Corollary D.4. Under Assumptions D.1 and D.3, we assume the activation function is Cact-smooth
and the number of neurons of the neural network satisfies (D.4). Besides, in Algorithm 4 we let � be
a sufficiently large constant and set � = BT as in (4.8). Then exists an absolute constant Cr such
that, with probability at least 1� (T 2H2

)
�1, we have

Regret(T ) 
(
Cr ·H2 ·

p
�3T · log(�TH) + 10�TH · ◆ �-finite spectrum,

Cr ·H2 ·
p
(log T )3/� · T · log(TH) + 10�TH · ◆ �-exponential decay,

(D.6)
where we define ◆ = T 7/12 ·H1/6 ·m�1/12 · (logm)

1/4.

Corollary D.4 is parallel to Corollary 4.4, with an additional misspecification error 10�TH · ◆.
It remains to see whether there exist concrete neural networks that induce NTKs satisfying each
eigenvalue decay condition. As we will show in §G.3, neural network with quadratic and sine
activation functions induce NTKs satisfying the finite-spectrum and exponential eigenvalue decay
conditions, respectively. Corollary D.4 can be directly applied to these concrete examples to obtain
sublinear regret bounds.

E Proofs of the Main Results

In this section, we provide the proofs of Theorems 4.2 and D.2. The proofs of the supporting lemmas
and auxiliary results are deferred to the appendix.

E.1 Proof of Theorem 4.2

Proof. For simplicity of presentation, we define the temporal-difference (TD) error as
�t
h
(x, a) = rh(x, a) + (PhV

t

h+1)(x, a)�Qt

h
(x, a), 8(x, a) 2 S ⇥A. (E.1)

Here �t
h

is a function on S ⇥A for all h 2 [H] and t 2 [T ]. Note that V t

h
(·) = maxa2A Qt

h
(·, a). In-

tuitively, {�t
h
}h2[H] quantifies the how far the {Qt

h
}h2[H] are from satisfying the Bellman optimality

equation in (2.2). Next, recall that ⇡t is the policy executed in the t-th episode, which generates a
trajectory {(xt

h
, at

h
)}h2[H]. For any h 2 [H] and t 2 [T ], we further define ⇣1

t,h
, ⇣2

t,h
2 R as

⇣1
t,h

=
⇥
V t

h
(xt

h
)� V ⇡

t

h
(xt

h
)
⇤
�
⇥
Qt

h
(xt

h
, at

h
)�Q⇡

t

h
(xt

h
, at

h
)
⇤
, (E.2)

⇣2
t,h

=
⇥
(PhV

t

h+1)(x
t

h
, at

h
)� (PhV

⇡
t

h+1)(x
t

h
, at

h
)
⇤
�
⇥
V t

h+1(x
t

h+1)� V ⇡
t

h+1(x
t

h+1)
⇤
. (E.3)

By definition, ⇣1
t,h

and ⇣2
t,h

capture two sources of randomness—the randomness of choosing an action
at
h
⇠ ⇡t

h
(· |xt

h
) and that of drawing the next state xt

h+1 from Ph(· |xt

h
, at

h
), respectively. As we will

see in Appendix §H.3, {⇣1
t,h

, ⇣2
t,h

} form a bounded martingale difference sequence with respect to
a properly chosen filtration, which enables us to bound their total sum via the Azuma-Hoeffding
inequality [7].

To establish an upper bound on the regret, the following lemma first decomposes the regret into three
parts using the notation defined above. Similar regret decomposition results also appear in [12, 29].

Lemma E.1 (Regret Decomposition). The temporal-difference error is the mapping �t
h
: S ⇥A!

defined in (E.1) for all (t, h) 2 [T ]⇥ [H]. We can thus write the regret as

Regret(T ) =
TX

t=1

HX

h=1

⇥
E⇡? [�t

h
(xh, ah) |x1 = xt

1]� �th(xt

h
, at

h
)
⇤

| {z }
(i)

+

TX

t=1

HX

h=1

(⇣1
t,h

+ ⇣2
t,h

)

| {z }
(ii)

TX

t=1

HX

h=1

E⇡?

⇥⌦
Qt

h
(xh, ·),⇡?h(· |xh)� ⇡t

h
(· |xh)

↵
A

��x1 = xt

1

⇤

| {z }
(iii)

, (E.4)

where ⇣1
t,h

and ⇣2
t,h

are defined in (E.2) and (E.3), respectively.
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Proof. See Appendix §H.1 for a detailed proof.

Returning to the main proof, notice that ⇡t

h
is the greedy policy with respect to Qt

h
for all (t, h) 2

[T ]⇥ [H]. We have⌦
Qt

h
(xh, ·),⇡?h(· |xh)� ⇡t

h
(· |xh)

↵
A
=
⌦
Qt

h
(xh, ·),⇡?h(· |xh)

↵
A
�max

a2A

Qt

h
(xh, a)  0,

for all xh 2 S . Thus, Term (iii) in (E.4) is non-positive. Then, by Lemma E.1, we can upper bound
the regret by

Regret(T ) 
⇢ TX

t=1

HX

h=1

⇥
E⇡? [�t

h
(xh, ah) |x1 = xt

1]� �th(xt

h
, at

h
)
⇤�

| {z }
(i)

+

 TX

t=1

HX

h=1

(⇣1
t,h

+ ⇣2
t,h

)

�

| {z }
(ii)

.

(E.5)
For Term (i), since we do not observe trajectories from ⇡⇤, which is unknown, it appears that
E⇡⇤ [�t

h
(xh, ah) |x1 = xt

1] cannot be estimated. Fortunately, however, by adding the bonus term in
Algorithm 2, we ensure that the temporal-difference error �t

h
is a non-positive function, as shown in

the following lemma.

Lemma E.2 (Optimism). Let � = 1 + 1/T and � = BT in Algorithm 2, where BT satisfies (4.5).
Under Assumptions 4.1, with probability at least 1� (2T 2H2

)
�1, we have that the following holds

for all (t, h) 2 [T ]⇥ [H] and (x, a) 2 S ⇥A:
�2� · bt

h
(x, a)  �t

h
(x, a)  0.

Proof. See Appendix §H.2 for a detailed proof.

Applying Lemma E.2 to Term (i) in (E.5), we obtain that

Term (i) 
 TX

t=1

HX

h=1

��t
h
(xt

h
, at

h
)

�
 2� ·

 TX

t=1

HX

h=1

bt
h
(xt

h
, at

h
)

�
(E.6)

holds with probability at least 1� (2T 2H2
)
�1, where � is equal to BT as specified in (4.5).

Finally, it remains to bound the sum of bonus terms in (E.6). As we show in (H.17), using the feature
representation of H, we can write each bt

h
(xt

h
, at

h
) as

bt
h
(xt

h
, at

h
) =

⇥
�(xt

h
, at

h
)
>
(⇤

t

h
)
�1�(xt

h
, at

h
)
⇤1/2

,

where ⇤
t

h
= � · IH +

P
t�1
⌧=1 �(x

t

h
, at

h
)�(xt

h
, at

h
)
> is a self-adjoint and positive-definite operator

on H and IH is the identity mapping on H. Thus, combining the Cauchy-Schwarz inequality and
Lemma J.3, we have, for any h 2 [H], with probability at least 1� (2T 2H2

)
�1 the following:

Term (i)  2� ·
p
T ·

HX

h=1

 TX

t=1

�(xt

h
, at

h
)
>
(⇤

t

h
)
�1�(xt

h
, at

h
)

�1/2

 2� ·
HX

h=1

⇥
2T · logdet(I +KT

h
/�)

⇤1/2
= 4�H ·

p
T · �K(T,�), (E.7)

where �K(T,�) is the maximal information gain defined in (4.2) with parameter �.

It remains to bound Term (ii) in (E.5), which is the purpose of the following lemma.

Lemma E.3. For ⇣1
t,h

and ⇣2
t,h

defined respectively in (E.2) and (E.3) and for any ⇣ 2 (0, 1), with
probability at least 1� ⇣, we have

TX

t=1

HX

h=1

(⇣1
t,h

+ ⇣2
t,h

) 
p
16TH3 · log(2/⇣).

Proof. See Appendix §H.3 for a detailed proof.

22



Setting ⇣ = (2T 2H2
)
�1 in Lemma E.3 we obtain that

Term (ii) =
TX

t=1

HX

h=1

(⇣1
t,h

+ ⇣2
t,h

) 
p

16TH3 · log(4T 2H2) =
p

32TH3 · log(2TH) (E.8)

holds with probability at least 1� (2TH)
�1.

Therefore, combining (4.5), (E.5), and (E.8), we conclude that, with probability at least 1�(T 2H2
)
�1,

the regret is bounded by
Regret(T )  4�H ·

p
T · �K(T,�) +

p
32TH3 · log(2TH)  5�H ·

p
T · �K(T,�),

where the last inequality follows from the choice of � = BT , which implies that
� � H ·

p
16 log(TH) �

p
32H · log(2TH).

This concludes the proof of Theorem 4.2.

E.2 Proof of Theorem D.2

Proof. The proof of Theorem D.2 is similar to that of Theorem 4.2. Recall that we let Z denote S⇥A
for simplicity. Recall also that for all (t, h) 2 [T ] ⇥ [H], we define the temporal-difference (TD)
error �t

h
: Z ! R in (E.1) and define random variables ⇣1

t,h
and ⇣2

t,h
in (E.2) and (E.3), respectively.

Then, combining Lemma E.1 and the fact that ⇡t is the greedy policy with respect to {Qt

h
}h2[H], we

bound the regret by

Regret(T ) 
⇢ TX

t=1

HX

h=1

⇥
E⇡? [�t

h
(xh, ah) |x1 = xt

1]� �th(xt

h
, at

h
)
⇤�

| {z }
(i)

+

 TX

t=1

HX

h=1

(⇣1
t,h

+ ⇣2
t,h

)

�

| {z }
(ii)

.

(E.9)
Here, Term (ii) is a sum of a martingale difference sequence. By setting ⇣ = (4T 2H2

)
�1 in Lemma

E.3, with probability at least 1� (4T 2H2
)
�1, we have

Term (ii) =
TX

t=1

HX

h=1

(⇣1
t,h

+ ⇣2
t,h

) 
p
16TH3 · log(8T 2H2)  H ·

p
32TH log(2TH). (E.10)

It remains to bound Term (i) in (E.9). To this end, we aim to establish a counterpart of Lemma
E.2 for neural value functions, which shows that, by adding a bonus term � · bt

h
, the TD error �t

h
is

always a non-positive function approximately. This implies that bounding Term (i) in (E.9) reduces
to controlling

P
T

t=1

P
H

h=1 b
t

h
(xt

h
, at

h
).

Note that the bonus functions bt
h

are constructed based on the neural tangent features '(·;cW t

h
) and

the matrix ⇤
t

h
. In order to relate

P
T

t=1

P
H

h=1 b
t

h
(xt

h
, at

h
) to the maximal information gain of the

empirical NTK Km, we define ⇤
t

h
and b

t

h
, by analogy with ⇤

t

h
and bt

h
, as follows:

⇤
t

h
= � · I2md +

t�1X

⌧=1

'(x⌧
h
, a⌧

h
;W (0)

)'(x⌧
h
, a⌧

h
;W (0)

)
>, b
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h
(z) =

⇥
'(z;W (0)

)
>
(⇤

t

h
)
�1'(z;W (0)

)
⇤1/2

.

In the following lemma, we bound the TD error �t
h

using b
t

h
and show that bt

h
and b

t

h
are close in the

`1-norm on Z when m is sufficiently large.

Lemma E.4 (Optimism). Let � be an absolute constant and let � = BT in Algorithm 4, where
BT satisfies (D.3). Under the assumptions made in Theorem D.2, with probability at least 1 �
(2T 2H2

)
�1 �m2, it holds for all (t, h) 2 [T ]⇥ [H] and (x, a) 2 S ⇥A that

� 5� · ◆� 2� · bt
h
(x, a)  �t

h
(x, a)  5� · ◆, sup

(x,a)2Z

��bt
h
(x, a)� b

t

h
(x, a)

��  2◆, (E.11)

where we define ◆ = T 7/12 ·H1/12 ·m�1/12 · (logm)
1/4.

Proof. See Appendix §H.4 for a detailed proof.
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Applying Lemma E.2 to Term (i) in (E.5), we obtain that

Term (i) 
 TX

t=1

HX

h=1

��t
h
(xt

h
, at

h
)

�
+ 5TH · ◆  2� ·

 TX
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HX

h=1

b
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h
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h
, at

h
)

�
+ 10�TH · ◆ (E.12)

holds with probability at least 1� (2T 2H2
)
�1 �m�2, where � = BT . Moreover, combining the

Cauchy-Schwarz inequality and Lemma J.3, we have
TX

t=1

HX

h=1

b
t

h
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h
, at

h
) 
p
T ·

HX

h=1

 TX

t=1

'(xt
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, at

h
;W (0)

)
>
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t

h
)
�1'(xt

h
, at

h
;W (0)

)

�1/2

 2H ·
p

T · �Km(T,�), (E.13)
where �K(T,�) is the maximal information gain defined in (4.2) for kernel Km.

Notice that (2T 2H2
)
�1

+m�2
+(4T 2H2

)
�1  (T 2H2

)
�1. Thus, combining (E.9), (E.10), (E.12),

and (E.13), we obtain that
Regret(T )  4�H ·

p
T · �Km(T,�) + 10�TH · ◆+H ·

p
32TH log(2TH)

 5�H ·
p
T · �Km(T,�) + 10�TH · ◆

holds with probability at least 1� (2T 2H2
)
�1. Here the last inequality follows from the fact that

� � H ·
p
32 log(TH) �

p
32H log(2TH).

This concludes the proof of Theorem D.2.

F Neural Optimistic Least-Squares Value Iteration

In this section, we provide the pseudocode for NOVI, which was omitted in the main text for brevity.
We remark that the loss function Lt

h
in Line 7 is given in (C.1) and its global minimizer cW t

h
can be

efficiently obtained by first-order optimization methods.

Algorithm 4 Neural Optimistic Least-Squares Value Iteration (NOVI)
1: Input: Parameters � and �.
2: Initialize the network weights (b(0),W (0)

) via the symmetric initialization scheme.
3: for episode t = 1, . . . , T do
4: Receive the initial state xt

1.
5: Set V t

H+1 as the zero function.
6: for step h = H, . . . , 1 do
7: Solve the neural network optimization problem cW t

h
= argmin

W
Lt

h
(W ).

8: Update ⇤
t

h
= ⇤

t�1
h

+ '(xt�1
h

, at�1
h

;cW t

h
)'(xt�1

h
, at�1

h
;cW t

h
)
>.

9: Obtain the bonus function bt
h

defined in (C.4).
10: Obtain value functions

Qt

h
(·, ·) min

�
f
�
·, ·;cW t

h

�
+ � · bt

h
(·, ·), H � h+ 1

 +
, V t

h
(·) = max

a

Qt

h
(·, a).

11: end for
12: for step h = 1, . . . , H do
13: Take action at

h
 argmax

a2A
Qt

h
(xt

h
, a).

14: Observe the reward rh(xt

h
, at

h
) and the next state xt

h+1.
15: end for
16: end for

G Proofs of the Corollaries

In this section, we prove Corollaries 4.4 and D.4, which establish the regret for KOVI and NOVI under
each specific eigenvalue decay condition. in Appendix §G.3 we provide concrete examples of neural
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tangent kernels that satisfy Assumption 4.3 and show how to apply Corollaries 4.4 and D.4 to these
examples.

G.1 Proof of Corollary 4.4

Proof. To prove this corollary, it suffices to verify that for each eigenvalue decay condition specified
in Assumption 4.3, BT defined in (4.8) satisfies the condition in (4.5). Recall that we set � = 1+1/T
in Algorithm 2 and denote RT = 2H

p
�K(T,�), ✏⇤ = H/T . Also recall that we let N1(✏, h, B)

denote the ✏-covering number of Qucb(h,RT , B) with respect to the `1-norm. In the sequel, we
consider the two cases separately.

Case (i): �-Finite Spectrum. When H has at most � nonzero eigenvalues, by Lemma I.5, we have
�K(T,�)  CK · � log T , where CK is an absolute constant. Moreover, by Lemma I.1, for any
h 2 [H], we have

logN1(✏⇤, h, BT )  CN · � ·
�
1 + log

⇥
2

p
�(T,�) · T

⇤ 
+ CN · �2 ·

⇥
1 + log(BT · T/H)

⇤

 2CN · �2 + C 0 · � · log(�T ) + CN · �2 · log(BT · T/H), (G.1)
where CN > 0 is the absolute constant given in Lemma I.1 and C 0 is an absolute constant that
depends on CN and CK . Thus, setting BT = Cb · �H ·

p
log(dTH) in (G.1), the left-hand side

(LHS) of (4.5) is bounded by
LHS of (4.5)  8CK · � log T + 16CN · �2 + 8C 0 · � · log(�T )+

8CN · �2 · log(Cb · �T ·
p

log(dTH)) + 16 · log(TH) + 22 + 2R2
Q

 �2 ·
⇥
C1 · log(�TH) + 8CN · log(Cb)

⇤
, (G.2)

where C1 is an absolute constant that depends on C 0, CN , CK , and RQ. Thus, setting Cb as a
sufficiently large constant, by (G.2), we have

LHS of (4.5)  C2
b
· �2 · log(dTH) = (BT /H)

2,

which establishes (4.5) for the first case. Thus, applying Theorem 4.2 we obtain that
Regret(T )  8BT ·H ·

p
T · �K(T,�)  Cr,1 ·H2 ·

p
�3T · log(�TH) = eO(H2

p
�3T )

holds with probability at least 1� (T 2H2
)
�1, where Cr,1 is an absolute constant and eO(·) omits the

logarithmic factor. Therefore, we conclude the first case.

Case (ii): �-Exponential Decay. For the second case, by Lemma I.5 we have
�K(T,�)  CK · (log T )1+1/� , (G.3)

where CK is an absolute constant. Thus, by the choice of BT in (4.8), when Cb is sufficiently large,
it holds that RT = 2H

p
�K(T,�)  BT . Then by Lemma I.1 we have

logN1(h, ✏⇤, BT )  CN ·
⇥
1 + log(RT /✏

⇤
)
⇤1+1/�

+ CN ·
⇥
1 + log(BT /✏

⇤
)
⇤1+2/�

 2CN ·
⇥
1 + log(BT /✏

⇤
)
⇤1+2/�

= 2CN ·
�
1 + log

⇥
CbT ·

p
log(TH) · (log T )1/�

⇤ 1+2/�
,

where the absolute constant CN is given by Lemma I.1. By direct computation, there exists an
absolute constant C2 such that

logN1(h, ✏⇤, BT )  2CN ·
⇥
1 + log(Cb) + C2 · log T + 1/2 · log logH

⇤1+2/�
. (G.4)

Thus, combining (G.3) and (G.4), the left-hand side of (4.5) is bounded by

LHS of (4.5)  8CK · (log T )1+1/�
+ 16C ·

⇥
1 + log(Cb) + C2 · log T + 1/2 · log logH

⇤1+2/�

+ 16 · log(TH) + 22 + 2R2
Q

 C3 ·
⇥
(log T )1+2/�

+ (log logH)
1+2/�

+ log(Cb)
⇤
, (G.5)

where C3 is an absolute constant that does not depend on Cb. Thus, when Cb is sufficiently large,
(G.5) implies that
LHS of (4.5)  C3 ·

⇥
(log T )1+2/�

+ (log logH)
1+2/�

+ log(Cb)
⇤
 C2

b
· (log T )2/� · log(TH) = (BT /H)

2.

Thus, for the case of �-exponential eigenvalue decay, (4.5) holds true for BT defined in (4.8).
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Finally, applying Theorem 4.2 and combining (4.8) and (G.3), we obtain that

Regret(T )  Cr,2 ·H2 · log(TH) ·
q
(log T )3/� · T ,

where Cr,2 is an absolute constant. Thus we conclude the second case. Therefore, we conclude the
proof of Corollary 4.4.

G.2 Proof of Corollary D.4

Proof. By Theorem D.2, we have
Regret(T ) = 5�H ·

p
T · �Km(T,�) + 10�TH · ◆, (G.6)

where � = BT satisfies (D.3) and ◆ = T 7/12 ·H1/6 ·m�1/12 · (logm)
1/4. When Assumption D.3

holds, thanks to the similarity between (4.5) and (D.3), it can be similarly shown that BT defined in
(4.8) satisfies the inequality in (D.3) when Cb is sufficiently large. Moreover, Lemma I.5 provides
upper bounds on �Km(T,�) for the two eigenvalue decay conditions. Finally, combining (4.8), (G.6),
and Lemma I.5, we conclude the proof of Corollary D.4.

G.3 Examples of Kernels Satisfying Assumption 4.3

In the following, we introduce concrete kernels and neural tangent kernels that satisfy Assumption
4.3. We consider each eigenvalue decay condition separately.

Case (i): �-Finite Spectrum. Consider the polynomial kernel K(z, z0) = (1 + hz, z0i)n defined on
the unit ball {z 2 Rd

: kzk2  1}, where n is a fixed number. By direct computation, the kernel
function can be written as

K(z, z0) =
X

↵ : k↵k1n

z↵ · z0↵,

where ↵ = (↵1, . . . ,↵d) 2 Nd is a multi-index and z↵ is a monomial with degree ↵. It can be shown
that all monomials in Rd with degree no more than n are linearly independent. Thus, the dimension
of such an RKHS is

�
n+d

d

�
; i.e., it satisfies the �-finite spectrum condition with � =

�
n+d

d

�
.

Furthermore, for a finite-dimensional NTK, we consider the quadratic activation function act(u) = u2.
Note that we assume Z = Sd�1 for the neural network setting. Moreover, in (B.3), instead of sampling
Wj ⇠ N(0, Id/d) for all j 2 [d], we draw Wj uniformly over the unit sphere Sd�1. Then it holds
that |W>

j
z|  1 for all j 2 [2m] and z 2 Sd�1. Here we let the distribution be Unif(Sd�1

) in order
to ensure that the act

0 is Lipschitz continuous on {W>

j
z : z 2 Sd�1} ✓ [�1, 1] for any Wj sampled

from the initial distribution, which is required when utilizing Proposition C.1 in [30] in the proof of
Lemma E.4. Note that the covariance of Wj is still Id/d. Then by (B.7), the NTK is given by

Kntk(z, z
0
) = Ew⇠Unif(Sd�1)[2(w

>z) · 2(w>z0) · (z>z0)] = 4/d · (z>z0)2, 8z, z0 2 Sd�1.
(G.7)

Thus, Kntk(z, z0) can be written as a univariate function of the inner product hz, z0i. To characterize
the spectral property Kntk, we first introduce some background on spherical harmonic functions on
Sd�1, which are closely related to inner product kernels on Sd�1 ⇥ Sd�1.

Let µ be the uniform measure on Sd�1. For any j � 0, let Yj(d) be the set of all homogeneous
harmonics of degree j on Sd�1, which is a finite-dimensional subspace of L2

µ
(Sd�1

), the space of
square-integrable functions on Sd�1 with respect to µ. It can be shown that the dimensionality of
Yj(d) is given by N(d, j), which is defined as

N(d, j) =
(2j + d� 2)(d+ j � 3)!

j!(d� 2)!
. (G.8)

In addition, let {Yj,`}`2[N(d,j)] be an orthonormal basis of Yj(d), then {Yj,`}`2[N(d,j)],j2N form an
orthonormal basis of L2

µ
(Sd�1

). In the next lemma, we present the Funk-Hecke formula [48, page
30], which relates spherical harmonics to inner product kernels.
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Lemma G.1 (Funk-Hecke formula). Let k : [�1, 1]! R be a continuous function, which gives rise
to an inner product kernel K(z, z0) = k(hz, z0i) on Sd�1 ⇥ Sd�1. For any ` � 2, let |S`�1| be the
Lebesgue measure of S`�1, which is given by |S`�1| = 2⇡`/2/�(`/2), where �(·) is the Gamma
function. Moreover, for any j � 0, let Yj : Sd�1 ! R be any function in Yj(d). Then for any
z 2 Sd�1, we haveZ

Sd�1

K(z, z0)Yj(z
0
) dµ(z0) =


|Sd�2|
|Sd�1| ·

Z 1

�1
k(u) · Pj(u; d) · (1� u2

)
(d�3)/2

du

�
· Yj(z),

(G.9)
where Pj(·; d) is the j-th Legendre polynomial in dimension d, which is given by

Pj(u; d) =
(�1/2)j · �(d�1

2 )

�(
2j+d�1

2 )
· (1� u2

)
(3�d)/2 ·

✓
d

du

◆j⇥
(1� u2

)
j+(d�3)/2

⇤
.

Thus, by the Funk-Hecke formula, for any inner product kernel K, its integral operator
TK : L2

µ
(Sd�1

)! L2
µ
(Sd�1

) has eigenvalues

%j =
|Sd�2|
|Sd�1| ·

Z 1

�1
k(u) · Pj(u; d) · (1� u2

)
(d�3)/2

du, 8j � 1, (G.10)

each with multiplicity N(d, j). Moreover, for each eigenvalue %j , the corresponding eigenfunctions
are spherical harmonics {Yj,`}`2[N(d,j)]. Furthermore, to compute the eigenvalues in (G.10), we can
use Rodrigues’ rule [48, page 23], as follows.

Lemma G.2 (Rodrigues’ Rule). For any j � 0, let f : [�1, 1] ! R be any j-th continuously
differentiable function. Then we haveZ 1

�1
f(t) · Pj(u; d) · (1� u2

)
(d�3)/2

du = Rj(d) ·
Z 1

�1
f (j)

(u) · (1� u2
)
(2j+d�3)/2

dt,

where f (j) is the j-th order derivative of f and Rj(d) = 2
�j · �((d� 1)/2) · [�((2j + d� 1)/2)]�1

is the j-th Rodrigues constant.

Now we consider the NTK given in (G.7), which is the inner product kernel induced by the univariate
function k1(u) = 4/d · u2. Note that k(3)1 is a zero function. Combining Lemma G.2 and (G.10), we
observe that %j = 0 for all j � 3. In addition, by direct computation, we have that

%1 = R1(d) · (8/d) ·
Z 1

�1
u · (1� u2

)
(d�1)/2

du = 0,

and %0, %2 > 0. Thus, Kntk given in (G.7) has N(d, 0)+N(d, 2) = d(d+1)/2 nonzero eigenvalues,
each with value %2. This implies that the NTK induced by neural networks with quadratic activation
satisfies the �-finite spectrum condition with � = d(d+ 1)/2. For such a class of neural networks,
Corollary D.4 asserts that the regret of NOVI is eO(H2d3 ·

p
T + �TH · ◆).

Case (ii): �-exponential Decay. Now we consider the squared exponential kernel
K(z, z0) = exp(�kz � z0k22 · ��2

) = k2(hz, z0i), 8z, z0 2 Sd�1, (G.11)
where � > 0 is an absolute constant and we define k2(u) = exp[�2��2 · (1 � u)]. Note that d is
regarded as a fixed number. Applying Lemmas G.1 and G.2, we obtain the following lemma that
bounds the eigenvalues of TK .

Lemma G.3 (Theorem 2 in [47]). For the squared quadratic kernel in (G.11), the corresponding
integral operator has eigenvalues {⇢j}j�0, where each ⇢j is defined in (G.10) with k replaced by k2.
Moreover, each %j has multiplicity N(d, j) and the corresponding eigenfunctions are {Yj,`}`2[N(d,j)].
Finally, when � in (G.11) satisfy �2 � 2/d, {%j}j�0 form a decreasing sequence that satisfy

A1 · (2e/�2
)
j · (2j + d� 2)

�(2j+d�1)/2 < %j < A2 · (2e/�2
)
j · (2j + d� 2)

�(2j+d�1)/2

(G.12)
for all j � 0, where A1, A2 are absolute constants that only depend on d and �.

The `1-norm of each eigenfunction Yj,` is given by the following lemma.
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Lemma G.4 (Lemma 3 in [47]). For any d � 2, j � 0, and any ` 2 [N(d, j)], we have

kYj,`k1 = sup

z2Sd�1

|Yj,`(z)| 
q
N(d, j)/|Sd�1|.

Now, let ⌧ > 0 be a sufficiently small constant. Combining Lemmas G.3 and G.4, we have

%⌧
j
· kYj,`k1  C ·

⇣
2e

�2 · (2j + d� 2)

⌘�j·⌧

·
q
N(d, j) · (2j + d� 2)�(d�1)·⌧ , (G.13)

where C is a constant depending on d and �. By the definition of N(d, j) in (G.8), when j is
sufficiently large, it holds that

N(d, j) ⇣ (2j + d� 2) ·
p
d+ j � 3 · [(d+ j � 3)/e]d+j�3

p
j · (j/e)j

⇣ jd�2, (G.14)

where we utilize the Stirling’s formula and neglect constants involving d. Then, combining (G.13)
and (G.14), we have

sup
j�0

sup

`2[N(d,j)]
%⌧
j
· kYj,`k1  C%, (G.15)

for some absolute constant C% > 0. Renaming the eigenvalues and eigenvectors as {�j , j}j�1 in
the descending order of the eigenvalues, (G.15) equivalently states that sup

j�1 �
⌧

j
· k jk1  C%.

Furthermore, to show that the squared exponential kernel satisfy the �-exponential decay condition,
we notice that

�j = %t for
t�1X

i=1

N(d, i)  j <
tX

i=1

N(d, i). (G.16)

Then by (G.14), this implies that �j ⇣ ⇢t for (t � 1)
d�1  j  td�1 when j is sufficiently large.

Thus, by Lemma G.3 we further obtain that

�j ⇣ (2e/�2
)
j

1
d�1 · (2j

1
d�1 + d� 2)

�j

1
d�1 �(d�1)/2

⇣ exp
�
c1 · j

1
d�1

�
· exp

�
c2 � j

1
d�1 · log j

�
 exp(�c · j1/d),

where c, c1, and c2 are constants depending on d. Therefore, we have shown that the squared
exponential kernel satisfies the �-exponential decay condition with � = 1/d. Combining this with
(G.15), we conclude that it satisfies Assumption 4.3.

In the sequel, we construct an NTK that satisfies Assumption 4.3. Specifically, we adopt the sine
activation function and slightly modify the neural network in (B.3) by employing an intercept for
each neuron. That is,

f(z; b,W, ✓) =
1p
m

mX

j=1

bj · sin(W>

j
z + ✓j).

To initialize the network weights (b,W, ✓), we set bj = �bj�m, Wj = Wj�m, and ✓j = ✓j�m

for any j 2 {m + 1, . . . , 2m}. For any j 2 [m], we independently sample bj ⇠ Unif({�1, 1}),
Wj ⇠ N(0, Id), and ✓j ⇠ Unif([0, 2⇡]). Only W is updated during training.

For such a neural network, the corresponding NTK is given by
Kntk(z, z

0
) = 2E

⇥
(z>z0) · cos(w>z + ✓) · cos(w>z0 + ✓)

⇤

= (z>z0) · exp(�kz � z0k22/2) = (z>z0) · exp[(z>z0)� 1] = k3(hz, z0i), (G.17)
where we define k3(u) = u ·exp(u�1). Here the second equality follows from [54]. By construction,
such an NTK is closely related to the squared quadratic kernel in (G.11). To see that it satisfy the
�-exponential decay condition, let {%j}j�0 and {e%j}j�0 denote the eigenvalues of the NTK in (G.17)
and the inner product kernel induced by k2(u) = exp(u� 1), respectively. By Lemma G.1, we have

⇢j = C1 ·
Z 1

�1
k3(u) · Pj(u; d) · (1� u2

)
(d�3)/2

du = C1 ·
Z 1

�1
k2(u) · u · Pj(u; d) · (1� u2

)
(d�3)/2

du

= C2 · j/(2j + d� 2) · e%j�1 + C2 · (j + d� 2)/(2j + d� 2) · e%j+1  C2(e⇢j�1 + e⇢j+1),
(G.18)
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where C1 and C2 are constants and in the second equality, we utilize the following recurrence relation
of Legendre polynomials:

u · Pj(u; d) = j/(2j + d� 2) · Pj�1(u; d) + (j + d� 2)/(2j + d� 2) · Pj+1(u; d).

Notice that {e%j}j�0 satisfy (G.12). Thus, combining (G.12) and (G.18), we obtain (G.15). Moreover,
when ordering all the eigenvalues of Kntk in the descending order and renaming them as {�j}j�1,
similar to (G.16), we have

�j  C2 · (e⇢t�1 + e⇢t+1) for
t�1X

i=1

N(d, i)  j <
tX

i=1

N(d, i). (G.19)

Using a similar analysis, we can show that {�j}j�1 satisfy the �-exponential eigenvalue decay condi-
tion with � = 1/d. Therefore, we have shown that the NTK given in (G.17) satisfy Assumption 4.3.

H Proofs of the Supporting Lemmas

H.1 Proof of Lemma E.1

Proof. For ease of presentation, before presenting the proof, we first define two operators J?
h

and Jt,h
respectively by letting

(J?
h
f)(x) = hf(x, ·),⇡?

h
(· |x)iA, (Jt,hf)(x) = hf(x, ·),⇡t

h
(· |x)iA, (H.1)

for any (t, h) 2 [T ]⇥ [H] and any function f : S ⇥A! R. Moreover, for any (t, h) 2 [T ]⇥ [H]

and any state x 2 S , we define
⇠t
h
(x) = (JhQt

h
)(x)� (Jt,hQt

h
)(x) = hQt

h
(x, ·),⇡?

h
(· |x)� ⇡t

h
(· |x)iA. (H.2)

After introducing this notation, to prove (E.4) we decompose the instantaneous regret at the t-th
episode into the following two terms,

V ?

1 (x
t

1)� V ⇡
t

1 (xt

1) = V ?

1 (x
t

1)� V t

1 (x
t

1)| {z }
(i)

+V t

1 (x
t

1)� V ⇡
t

1 (xt

1)| {z }
(ii)

. (H.3)

In the sequel, we consider the two terms in (H.3) separately.

Term (i). By the definitions of the value function V ?

h
in (2.2) and the operator J?

h
in (H.1), we have

V ?

h
= J?

h
Q?

h
. Similarly, for all the algorithms, we have V t

h
(x) = hQt

h
(x, ·),⇡t

h
(· |x)i for all x 2 S.

Thus, by the definition of Jt,h in (H.1), we have V t

h
= Jt,hQt

h
. Thus, using ⇠t

h
defined in (H.2), for

any (t, h) 2 [T ]⇥ [H], we have
V ?

h
� V t

h
= J?

h
Q?

h
� Jt,hQt

h
=
�
J?
h
Q?

h
� J?

h
Qt

h

�
+
�
J?
h
Qt

h
� Jt,hQt

h

�

= J?
h
(Q?

h
�Qt

h
) + ⇠t

h
, (H.4)

where the last equality follows from the definition of ⇠t
h

in (H.2) and the fact that J?
h

is a linear
operator. Moreover, by the definition of the temporal-difference error �t

h
in (E.1) and the Bellman

optimality condition, we have
Q?

h
�Qt

h
=
�
rh + PhV

?

h+1

�
�
�
rh + PhV

t

h+1 � �th
�
= Ph(V

?

h+1 � V t

h+1) + �t
h
. (H.5)

Thus, combining (H.4) and (H.5), we obtain that
V ?

h
� V t

h
= J?

h
Ph(V

?

h+1 � V t

h+1) + J?
h
�t
h
+ ⇠t

h
, 8(t, h) 2 [T ]⇥ [H]. (H.6)

Equivalently, for all x 2 S , and all (t, h) 2 [T ]⇥ [H], we have
V ?

h
(x)� V t

h
(x) =Ea⇠⇡

?
h(· | x)

�
E
⇥
V ?

h+1(xh+1)� V t

h+1(xh+1)
��xh = x, ah = a

⇤ 

+ Ea⇠⇡
?
h(· | x)

⇥
�t
h
(x, a)

⇤
+ ⇠t

h
(x).

Then, by recursively applying (H.6) for all h 2 [H], we have

V ?

1 � V t

1 =

⇣ HY

h=1

J?
h
Ph

⌘
(V ?

H+1 � V k

H+1) +

HX

h=1

⇣h�1Y

i=1

J?
i
Pi

⌘
J?
h
�t
h
+

HX

h=1

⇣h�1Y

i=1

J?
i
Pi

⌘
⇠t
h
. (H.7)
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Furthermore, notice that we have V ?

H+1 = V k

H+1 = 0. Thus, (H.7) can be equivalently written as

V ?

1 (x)� V t

1 (x) =E⇡?

 HX

h=1

⌦
Qt

h
(xh, ·),⇡?h(· |xh)� ⇡t

h
(· |xh)

↵
A
+ �t

h
(xh, ah)

����x1 = x

�
,

where we utilize the definition of ⇠t
h

given in (H.2). Thus, we can write Term (i) on the right-hand
side of (H.3) as

V ?

1 (x
t

t
)� V t

1 (x
t

t
) =

HX

h=1

E⇡?

⇥
hQt
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⇤

+

HX

h=1

E⇡? [�t
h
(xh, ah) |x1 = xt

t
], 8t 2 [T ]. (H.8)

Term (ii). It remains to bound the second term on the right-hand side of (H.3). By the definition of
the temporal-difference error �t

h
in (E.1), for any (t, h) 2 [T ]⇥ [H], we have

�t
h
(xt

h
, at

h
) = rh(x

t

h
, at

h
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), (H.9)

where the last equality follows from the Bellman equation (2.1). Morerover, recall that we define ⇣1
t,h

and ⇣2
t,h

in (E.2) and (E.3), respectively. Thus, from (H.9) we obtain that
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, at

h
).

Thus, recursively applying (H.10) for all h 2 [H], we obtain that
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1 (xt
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where the last equality follows from the fact that V t

H+1(x
t

H+1) = V ⇡
t

H+1(x
t

H+1) = 0. Thus, we have
simplified Term (ii) defined in (H.3).

Thus, combining (H.3), (H.8), and (H.11), we obtain that
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Therefore, we conclude the proof of this lemma.

H.2 Proof of Lemma E.2

Proof. For ease of presentation, we utilize the feature representation induced by the kernel K. Let
� : Z ! H be the feature mapping such that K(z, z0) = h�(z),�(z0)iH. For simplicity, we formally
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view �(z) as a vector and write h�(z),�(z0)iH = �(z)>�(z0). Then, any function f : Z ! R in the
RKHS satisfies f(z) = h�(z), fiH = f>�(z). Using the feature representation, we can rewrite the
kernel ridge regression in (3.4) as

minimize
✓2H

L(✓) =
t�1X

⌧=1

⇥
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⌧

h
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h
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H
. (H.12)

We define the feature matrix �
t

h
: H! Rt�1 and “covariance matrix” ⇤

t

h
: H! H respectively as
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h
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(H.13)
where IH is the identity mapping on H. Thus, the Gram matrix Kt

h
in (3.7) is equal to �

t

h
(�

t

h
)
>.

More specifically, here ⇤
t

h
is a self-adjoint and positive-definite operator. For any f1, f2 2 H, we

denote

⇤
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h
f1 = � · f1 +

t�1X

⌧=1

�(z⌧
h
) · f1(x⌧h) 2 H, f>

1 ⇤
t

h
f2 = hf1,⇤t

h
fiH.

It is not hard to see that all the eigenvalues of ⇤t

h
are positive and at least �. Thus, the inverse operator

of ⇤t

h
, denoted by (⇤
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h
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�1 are all bounded in interval [0, 1/�].

In addition, using the feature matrix �
t

h
defined in (H.13) and yt

h
defined in (3.6), we can write

(H.12) as
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whose solution is given by b✓t
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.

In the sequel, to further simplify the notation, we let � denote �
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h
when its meaning is clear from the
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Here I is the identity matrix in R(t�1)⇥(t�1). Thus, by (H.14) we have
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Moreover, kt
h

defined in (3.7) can be written as kt
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(z) = ��(z), which, combined with (H.14),
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Thus, we can write k�(z)k2
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which implies that we can equivalently write the bonus bt
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defined in (3.8) as
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Combining (H.15) and (H.17), we equivalently write Qt

h
in (3.5) as
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Now we are ready to bound the temporal-difference error ⇠t
h

defined in (E.1). Noticing that V t

h
(x) =

maxa Qt

h
(x, a) for all (t, h) 2 [T ]⇥ [H], we have
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h
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h+1 �Qt

h
,

where T?
h

is the Bellman optimality operator. Under the Assumption 4.1, for all (t, h) 2 [T ]⇥ [H],
since Qt

h+1 2 [0, H], we have T?
h
Qt

h+1 2 Q?. Using the feature representation of RKHS, there
exists ✓

t

h
2 Q? such that (T?

h
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t

h
for all z 2 Z .

In the sequel, we consider the difference between �(z)>b✓t
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h
. To begin with, using
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Hence, combining (H.15) and (H.19), we have
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We bound Term (i) and Term (ii) on the right-hand side of (H.20) separately. For Term (ii), by the
Cauchy-Schwarz inequality, we have
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Here the first inequality follows from the Cauchy-Schwarz inequality and the second inequality
follows from the fact that ✓

t

h
2 Q?, which implies that k✓t

h
kH  RQH . Moreover, the last inequality

follows from the fact that ⇤t

h
� � · IH is a self-adjoint and positive-semidefinite operator, which

means that f>
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t

h
� � · IH)f � 0 for all f 2 H, and the last equality follows from (H.17).

Furthermore, for Term (i), by the Bellman equation in (2.2) and the definition of yt
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Thus, combining (H.14), (H.20), and (H.22) we have
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where the last inequality follows from the Cauchy-Schwarz inequality. In the following, we aim to
bound (H.23) by the concentration of self-normalized stochastic processes in the RKHS. However,
here V t

h+1 depends on the historical data in the first (t� 1) episodes and is thus not independent of
{(x⌧

h
, a⌧

h
, x⌧

h+1)}⌧2[t�1]. To bypass this challenge, in the sequel, we combine the concentration of
self-normalized processes and uniform convergence over the function classes that contain each V t

h+1.

Specifically, recall that we define function classes Qucb(h,R,B) in (4.4) for any h 2 [H], and any
R,B > 0. We define Vucb(h,R,B) as

Vucb(h,R,B) =
�
V : V (·) = max

a2A

Q(·, a) for some Q 2 Qucb(h,R,B)
 
. (H.24)

In the following, we find a parameter RT such that V t

h
2 Vucb(h,RT , BT ) holds for all h 2 [H] and

t 2 [T ], where BT is specified in (4.5). Here both RT and BT depend on T . By (4.4) and (H.18), it
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suffices to set RT as an upper bound of kb✓t
h
kH for all (t, h) 2 [T ]⇥ [H]. In the following lemma,

we bound the RKHS norm of each b✓t
h

.

Lemma H.1 (RKHS Norm of b✓t
h

). When � � 1, for any (t, h) 2 [T ] ⇥ [H], b✓t
h

defined in (H.15)
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/�)  2H

p
�K(T,�),

where Kt

h
is defined in (3.7) and �K(T,�) is defined in (I.16).

Proof. See §J.1 for a detailed proof.

By this lemma, in the sequel, we set RT = 2H
p

�K(T,�). To conclude the proof, we show that
the sum of the two terms in (H.20) is bounded by � · k�(z)k(⇤t

h)
�1 , where we set � = BT . To

this end, for any two value functions V, V 0
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(x)|. For any ✏ 2 (0, 1/e), any B > 0, and any h 2 [H], we let Ndist(✏;h,B) be

the ✏-covering number of Vucb(h,RT , B) with respect to distance dist(·, ·). Recall that we define
N1(✏;h,B) as the ✏-covering number of Qucb(h,RT , B) with respect to the `1-norm on Z . Note
that for any Q,Q0

: Z ! R, we have
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By (H.24) we have Ndist(✏;h,B)  N1(✏;h,B). Then, by applying Lemma J.2 with � =
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holds uniformly for all (t, h) 2 [T ]⇥ [H] with probability at least 1� (2T 2H2

)
�2, where we utilize

the fact that V t

h+1 2 Vucb(h + 1, RT , BT ). Note that we set � = 1 + 1/T . Then, setting ✏ as
✏⇤ = H/T , (H.25) is further reduced to
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Thus, combining (H.17), (H.20), (H.21), (H.23), and (H.26), we obtain that
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holds uniformly for all (t, h) 2 [T ]⇥ [H] with probability at least 1� (2T 2H2
)
�1, where the second

inequality follows from the elementary inequality
p
a+
p
b 

p
2(a2 + b2), and the last inequality

follows from the assumption on BT given in (4.5).

Finally, by (H.27) and the definition of the temporal-difference error �t
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in (E.1), we have
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In addition, since Qt
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Therefore, combining (H.28) and (H.29), we conclude the proof of Lemma E.2.

H.3 Proof of Lemma E.3

Proof. Following [12], we prove this lemma by showing that {⇣1
t,h

, ⇣2
t,h

}(t,h)2[T ]⇥[H] can be written
as a bounded martingale difference sequence with respect to a filtration. In particular, we construct
the filtration explicitly as follows. For any (t, h) 2 [T ]⇥ [H], we define �-algebras Ft,h,1 and Ft,h,2

as follows:
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(H.30)

where �(·) denotes the �-algebra generated by a finite set. Moreover, for any t 2 [T ], h 2 [H] and
m 2 [2], we define the timestep index ⌧(t, h,m) as

⌧(t, h,m) = (t� 1) · 2H + (h� 1) · 2 +m, (H.31)
which offers an partial ordering over the triplets (t, h,m) 2 [T ] ⇥ [H] ⇥ [2]. Moreover, by the
definitions in (H.30), for any (t, h,m) and (t0, h0,m0

) satisfying ⌧(k, h,m)  ⌧(k0, h0,m0
), it holds

that Fk,h,m ✓ Fk0,h0,m0 . Thus, the sequence of �-algebras {Ft,h,m}(t,h,m)2[T ]⇥[H]⇥[2] forms a
filtration.

Furthermore, for any (t, h) 2 [T ]⇥ [H], since both Qt

h
and V t

h
are obtained based on the trajectories

of the first (t � 1) episodes, they are both measurable with respect to Ft,1,1, which is a subset of
Ft,h,m for all h 2 [H] and m 2 [2]. Thus, by (H.30), ⇣1
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defined in (E.2) and ⇣2
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where we identify Ft,0,2 with Ft�1,H,2 for all t � 2 and let F1,0,2 be the empty set. Combining
(H.31) and (H.32), we can define a martingale {Mt,h,m}(t,h,m)2[T ]⇥[H]⇥[2] indexed by ⌧(t, k,m),
defined in (H.31), as follows. For any (t, h,m) 2 [T ]⇥ [H]⇥ [2], we define
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that is, Mt,h,m is the sum of all terms of the form ⇣`
s,g

defined in (E.2) or (E.3) such that its timestep
index ⌧(s, g, `) is no greater than ⌧(t, h,m). By definition, we have
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Moreover, since V t
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all takes values in [0, H], we have |⇣1
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2H for all (t, h) 2 [T ]⇥ [H]. This means that the martingale Mt,h,m defined in (H.33) has uniformly
bounded differences. Thus, applying the Azuma-Hoeffding inequality [7] to MT,H,2 in (H.34), we
obtain that
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holds for all t > 0. Finally, we set the right-hand side of (H.35) to ⇣ for some ⇣ 2 (0, 1), which
yields t =

p
16TH3 · log(2/⇣). Thus, we obtain that
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with probability at least 1� ⇣, which concludes the proof.
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H.4 Proof of Lemma E.4

Proof. The proof of this lemma utilizes the connection between overparameterized neural networks
and NTKs. Recall that we denote z = (x, a) and Z = S ⇥A. Also recall that (b(0),W (0)

) is the
initial value of the network parameters obtained by the symmetric initialization scheme introduced
in §B.2. Thus, f(·;W (0)

) is a zero function. For any (t, h) 2 [T ] ⇥ [H], since cW t

h
is the global

minimizer of loss function Lt

h
defined in (C.1), we have

Lt

h

�cW t

h

�
=

t�1X

⌧=1

⇥
rh(x

⌧

h
, a⌧

h
) + V t

h+1(x
⌧

h+1)� f(x⌧
h
, a⌧

h
;cW t

h
)
⇤2

+ � ·
��cW t

h
�W (0)

��2
2

 Lt

h

�
W (0)

�
=

t�1X

⌧=1

⇥
rh(x

⌧

h
, a⌧

h
) + V t

h+1(x
⌧

h+1)
⇤2  (H � h+ 1)

2 · (t� 1)  TH2,

(H.36)
where the second-to-last inequality follows from the facts that V t

h+1 is bounded by H � h and that
rh 2 [0, 1]. Thus, (H.36) implies that
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That is, each cW t

h
belongs to the Euclidean ball B = {W 2 R2md

: kW �W (0)k2  H
p

T/�}.
Here the regularization parameter � is does not depend on m and will be determined later. Notice
that the radius of B does not depend on m. When m is sufficiently large, it can be shown that
f(·,W ) is close to its linearization, bf(·;W ) = h'(·;W (0)

),W �W (0)i, for all W 2 B, where
'(·;W ) = rW f(·;W ).

Furthermore, recall that the temporal-difference error �t
h

is defined as
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Under Assumption D.1, we have T?
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Moreover, it holds that k↵t
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d.

Now we are ready to bound the temporal-difference error �t
h

defined in (E.1). Our proof is decomposed
into three steps.

Step I. In the first step, we show that, with high probability, T?
h
Qt

h+1 can be well-approximated by
the class of linear functions of '(·;W (0)

) with respect to the `1-norm.

Specifically, by Proposition C.1 in [30], with probability at least 1�m�2 over the randomness of
initialization, for any (t, h) 2 [T ]⇥ [H], there exists a function eQt
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}j2[2m] are the random weights generated in

the symmetric initialization scheme. Moreover, eQt
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Also, for any j 2 [2m], let W (0)
j

and b(0)
j

be the j-th component of b(0) and W (0), respectively.

Now we show that eQt
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Then, by the symmetric initialization scheme, we have
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(H.41)

Moreover, since k↵jk2  RQH/
p
dm, we have kfW t

h
�W (0)k2  RQH/

p
d.

Therefore, for all (t, h) 2 [T ]⇥ [H], we have constructed eQt

h
to be linear in '(·;W (0)

). Moreover,
with probability at least 1�m�2 over the randomness of initialization, eQt

h
is close to T?

h
Qt

h+1 in
the sense that (H.40) holds uniformly for all (t, h) 2 [T ]⇥ [H]. Thus, we conclude the first step.

Step II. In the second step, we show that Qt

h
used in Algorithm 4 can be well approximated by

functions based on the feature mapping '(·;W (0)
).

Recall that the bonus in Qt

h
utilizes matrix ⇤
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which adopts the same feature mapping '(·;W (0)
). To simplify the notation, hereafter, we use '(·)

to denote '(·;W (0)
) when its meaning is clear from the text. Moreover, for any (t, h) 2 [T ]⇥ [H],

we define the response vector yt
h
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Hence, by (H.42) and (H.44), we have ⇤
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Similar to Lt

h
defined in (C.1), we define another least-squares loss function L
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: R2md ! R as

L
t

h
(W ) =

t�1X

⌧=1

⇥
rh(x

⌧

h
, a⌧

h
) + V t

h+1(x
⌧

h+1)�
⌦
'(x⌧

h
, a⌧

h
),W �W (0)

↵⇤2
+ � · kW �W (0)k22

(H.46)

and let W
t

h
be its global minimizer. By direct computation, W
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can be written in closed form as
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where ⇤
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h
, �t

h
, and yt

h
are defined respectively in (H.42), (H.44), and (H.43). Similar to (H.36),
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Note that Q
t

h
share the same form as Q in (D.2). Thus, we have Q
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h
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B � �. Moreover, we define V
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In the following, we aim to show that Q
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is close to Qt
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when m is sufficiently large. When this is

true, V
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h
. To bound Qt
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, since the truncation operator is non-expansive, by

the triangle inequality we have
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Recall that we define B = {W 2 R2md
: kW �W (0)k2  H

p
T/�}. To bound the two terms

on the right-hand side of (H.49), we utilize the following lemma that quantifies the perturbation of
f(·;W ) and '(·;W ) within W 2 B.

Lemma H.2. When TH2
= O(m · log�6 m), with probability at least 1�m�2 with respect to the

randomness of initialization, for any W 2 B and any z 2 Z , we have��f(z,W )� '(z,W (0)
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Proof. See [3, 30, 13] for a detailed proof. More specifically, this lemma is obtained from Lemmas
F.1 and F.2 in [13], which are further based on results in [3, 30].

By Lemma H.2 and triangle inequality, Term (i) on the right-hand side of (H.49) is bounded by
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To bound
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, notice that cW t
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and W
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in (C.1) and L
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where [yt
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]⌧ is defined in (H.43) and z⌧
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Similarly, for (H.51), by direct computation we have
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Thus, applying Lemma H.2 to (H.55), we have��⌦'(z⌧
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where we utilize the fact that kcW t
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where in the last inequality we utilize the fact that [yt
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In the sequel, we set � as
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Thus, combining (H.50), (H.57), (H.58), and (H.59), we have
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where the inequality follows from the elementary inequality |
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Combining Hölder’s inequality and Lemma H.2, we bound the first term on the right-hand side of
(H.62) by
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For the second term, since both ⇤
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By direct computation, we have
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Hence, combining (H.65) and (H.66), the second term on the right-hand side of (H.62) can be
bounded by
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Notice that � defined in (H.59) satisfies that � � C
2
. Thus, combining (H.61)-(H.64), and (H.67),
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which establishes the second inequality in (E.11). Finally, combining (H.49), (H.60), and (H.68), we
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This concludes the second step.

Step III. In the last step, we establish optimism by comparing '(·)>(W t
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Thus, for any z 2 Z , by (H.70) we have
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For Term (iii) on the right-hand side of (H.71), by the Cauchy-Schwarz inequality, we have
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For Term (iv) in (H.71), recall that eQt
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Then, by the triangle inequality and (H.73), we have
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Recall that we have shown in Step II that, with probability at least 1 � m2 with respect to the
randomness of initialization, (H.69) holds for all (t, h) 2 [T ] ⇥ [H]. To simplify the notation, we
denote

Err = 4� · T 7/12 ·H1/6 ·m�1/12 · (logm)
1/4. (H.75)

Moreover, we define functions �V1 = V t
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h+1). Then (H.69)
implies that sup
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|�V2(z)|  Err. By the elementary inequality
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where the last inequality follows from the fact that
����
t�1X

⌧=1

'(x⌧
h
, a⌧

h
) ·
⇥
�V1(x

⌧

h+1)��V2(x
⌧

h
, a⌧

h
)
⇤����

2

(⇤
t
h)

�1

 4Err2 ·
����
t�1X

⌧=1

'(x⌧
h
, a⌧

h
)

����
2

(⇤
t
h)

�1

 4 · Err2 · (t� 1) · ��1 ·
t�1X

⌧=1

k'(x⌧
h
, a⌧

h
)k22  4 · Err2 · (t� 1)

2 · C2 · ��1  4 · Err2 · T 2.

Here the second-to-last inequality follows from Lemma H.2 and the definition of �.
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Recall that we define b
t

h
(z) = k'(z)k(⇤t

h)
�1 . Combining (H.73), (H.74), and (H.77), we have
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where we apply the elementary inequality
p
a+ b 

p
a+
p
b. Here in the last inequality we let m

be sufficiently large such that
10Cact ·RQH ·

p
log(mTH)/m+ 2

p
2 · Err · T  RQH.

In the following, we aim to bound Term (v) in (H.77) by combining the concentration of the self-
normalized stochastic process and uniform concentration. To characterize the function class that
contains each V

t

h
, we define e' : Z ! R by e'(z) = '(z)/C. Then, conditioning on the event where

the statements in Lemma H.2 are true, we have ke'(z)k2  1 for all z 2 Z . Furthermore, we define a
kernel function eK : Z ⇥ Z ! R by letting eK(z, z0) = e'(z)> e'(z0) for all z, z0 2 Z . That is, eK is
the normalized version of the empirical NTK Km. By construction, eK is a bounded kernel such that
sup

z2Z
eK(z, z)  1. We can also consider the maximal information gain in (4.2) for eK and Km.

These two quantities are linked via

� eK(T,�) = �Km

�
T,C

2
�
�
, 8� > 0. (H.78)

Furthermore, we define e� = �/C
2

and e⇤t

h
= ⇤

t

h
//C

2
for all (t, h) 2 [T ]⇥ [H]. By the definition

of � in (H.59), we have e� = 1 + 1/T 2 [1, 2]. Moreover, by (H.42) we have
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Since e� > 1, e⇤t

h
is an invertible matrix and the eigenvalues of (e⇤t

h
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�1 are all bounded above by one.

Using e' and e⇤t

h
, we rewrite each Q
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as follows. For W
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defined in (H.47), we have
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where C · kW t

h
�W (0)k2  C ·H

p
T/�  H

p
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2. Meanwhile, we also have
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Thus, combining (H.79) and (H.80), Q
t

h
defined in (H.48) can be written equivalently as

Q
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h
k2  H

p
T .

Let D be a finite subset of Z with no more than T elements. For any fixed D, we define
e⇤D = e� · I2dm +

X

z2D

e'(z)e'(z)> 2 R2md⇥2md. (H.81)

For any h 2 [H], R,B > 0, we let eQucb(h,R,B) consists of functions that take the form of

Q(·) = min
�
e'(·)>#+ � ·

��e'(·)
��
(e⇤D)�1 ;H � h+ 1

 +
,

for some # 2 R2md with k#k2  R and some D ✓ Z . Then eQucb(h,R,B) corresponds to the
function class in (4.4) with the kernel being eK. Moreover, we define eVucb(h,R,B) as

eVucb(h,R,B) =
�
V : V (·) = max

a

Q(·, a) for some Q 2 eQucb(h,R,B)
 
.

By definition, for all h 2 [H] and any R,B > 0, we have that Qucb(h,R,B) = eQucb(h,CR,B).
Meanwhile, since (C)

2  �  2(C)
2, for all R > 0, we have

Qucb(h,R,B) ✓ eQucb(h,R
p
�, B) ✓ Qucb(h,

p
2R,B). (H.82)

Recall that we define RT = H
p
2T/� and let N1(✏;h,B) denote the ✏-covering number of

Qucb(h,RT , B) with respect to the `1-norm on Z . Moreover, hereafter, we denote ✏⇤ = H/T
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and set B = BT which satisfy (D.3). Since we set � = BT in Algorithm 4, it holds for all
(t, h) 2 [T ]⇥ [H] that

Q
t

h
2 eQucb(h,H

p
T ,B) ✓ Qucb(h,RT , B), V

t

h
2 eVucb(h,H

p
T ,B).

Now, to bound Term (v) in (H.77), similar to the analysis the proof of Lemma E.2, we apply the con-
centration of self-normalized stochastic process and uniform concentration over eVucb(h,H

p
T ,BT ).

Specifically, similar to (H.25) and (H.26), with probability at least 1� (2T 2H2
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�1, we have
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Thus, combining (H.71), (H.72), (H.77), and (H.83), we obtain that
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holds simultaneously for all (t, h) 2 [T ]⇥ [H] and z 2 Z with probability at least 1� (2T 2H2
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Thus, combining this with (H.39) and (H.40), we have
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By the definition of Q
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in (H.48), we have
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Moreover, since T?
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T?
h
Qt

h+1(z)�Q
t

h
(z) = T?

h
Qt

h+1(z)�min
�
'(x, a)>

�
W

t

h
�W (0)

�
+ � · bt

h
(x, a), H � h+ 1

 +

= max
�
T?
h
Qt

h+1(z)� '(z)>
�
W

t

h
�W (0)

�
� � · bt

h
(z), 0

 +

 10Cact ·RQ ·
p
log(mTH)/m. (H.86)

Let ◆ denote T 7/12 ·H1/12 ·m�1/12 · (logm)
1/4. When m is sufficiently large, it holds that
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Meanwhile, combining the definition of the TD error �t
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Finally, combining (H.85), (H.86), and (H.87), we establish that, with probability at least 1 �
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hold for all (t, h) 2 [T ]⇥ [H] simultaneously. Finally, combining this with (H.68), we have
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which, together with (H.68), concludes the proof of Lemma E.4.

I Covering Number and Effective Dimension

In this section, we present results on the covering number of the class of value functions that we
study and the effective dimension of the corresponding RKHS. Both of these results play a key role
in establishing our regret bounds.

I.1 Covering Number of the Classes of Value Functions

For any R,B > 0, any h 2 [H], and fixed D, we define Qucb(h,R,B) as the function class that
contains functions on Z that take the following form:

Q(z) = min
�
✓(z) + � · ��1/2

⇥
K(z, z)� kt(z)

>
(Kt + �I)�1kt(z)

⇤1/2
, H � h+ 1

 +
, (I.1)

where ✓ 2 H satisfies k✓kH  R, � 2 [0, B], h 2 [H], and D = {z⌧ = (x⌧ , a⌧ ), }⌧2[t] is a finite
subset of Z with t elements, where t  T . Here T is the total number of the episodes. Moreover,
Kt 2 Rt⇥t and kt : Z ! Rt are defined similarly as in (3.7) based on state-action pairs in D, that is,

Kt = [K(z⌧ , z⌧
0
)]⌧,⌧ 02[t] 2 Rt⇥t, kt(z) =

⇥
K(z1, z), . . .K(zt, z)

⇤> 2 Rt.

By definition, Q in (I.1) is determined by Q0 2 H and a bonus term constructed using D. Thus,
the function Qt

h
constructed in Algorithm 2 belongs to Qucb(h,R,B) when �  B and k↵t

h
kH 

R. In the following, for any ✏ 2 (0, 1), we let C(Qucb(h,R,B), ✏) be the minimal ✏-cover of
Qucb(h,R,B) with respect to the `1-norm on Z . That is, for any Q 2 Qucb(h,R,B), there
exists Q0 2 C(Qucb(h,R,B), ✏) satisfying kQ�Q0k1  ✏. Moreover, among all function classes
that possess such a property, C(Qucb(h,R,B), ✏) has the smallest cardinality. Thus, by definition,
|C(Qucb(h,R,B), ✏)| is the ✏-covering number of Qucb(h,R,B) with respect to the `1-norm on Z .

In addition, based on Qucb(h,R,B), we define the function class Vucb(h,R,B) as
Vucb(h,R,B) =

�
V : V (·) = max

a

Q(·, a) for some Q 2 Qucb(h,R,B)
 
. (I.2)

For any two value functions V1, V2 : S ! R, we denote their supremum norm distance as
dist(V1, V2) = sup

x2S

��V1(x)� V2(x)
��. (I.3)

For any ✏ 2 (0, 1), we let C(Vucb(h,R,B), ✏) denote the minimal ✏-cover of Vucb(h,R,B) with
respect to dist(·, ·) defined in (I.3).

The main result of this section is a set of upper bounds on the size of C(Vucb(h,R,B), ✏) under the
two eigenvalue decay conditions specified in Assumption 4.3.

Lemma I.1. Let Assumption 4.3 hold and � be bounded in [c1, c2], where both c1 and c2 are absolute
constants. Then, for any h 2 [H], any R,B > 0, and any ✏ 2 (0, 1/e), there exists a positive constant
CN such that

log
��C
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���  log
��C
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��� (I.4)


(
CN · � ·
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1 + log(R/✏)

⇤
+ CN · �2 ·

⇥
1 + log(B/✏)

⇤
case (i),

CN ·
⇥
1 + log(R/✏)

⇤1+1/�
+ CN ·

⇥
1 + log(B/✏)]1+2/� case (ii),

(I.5)

where cases (i) and (ii) above correspond to the two eigenvalue decay conditions specified in
Assumption 4.3, respectively. Moreover, here CN in (I.4) is independent of T , H , R, and B, and
only depends on C , C1, C2, c1, c2, �, and ⌧ .
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Proof. For any fixed subset D = {z⌧}⌧2[t] of Z with size t 2 [T ], we define �D : H ! Rt and
⇤D : H! H respectively as

�D =
⇥
�(z1)>,�(z2)> . . . ,�(zt)>

⇤>
,

⇤D =

tX
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�D, (I.6)

where � : Z ! H is the feature mapping of H and IH is the identity mapping on H. Then, we can
equivalently write Q1 2 Qucb(h,R,B) as

Q1(z) = �(z)>✓1 + � ·
q
�(z)>⇤�1

D1
�(z), (I.7)

where ✓1 2 H has an RKHS norm bounded by R, �1 2 [0, B], and D1 is a finite subset of Z with size
t1  T . Let V1(·) = maxa2A Q1(·, a). Combining (I.2) and (I.7), we can write V1 2 Vucb(h,R,B)

as
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Similar to V1 in (I.8), consider any V2 : S ! R that can be written as

V2(·) = min
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, H � h+ 1

o+
, (I.9)

where Q2 = f1 + �2 · f2 for some f1, f2 : Z ! R and �2 2 [0, B]. Since both min{·, H � h+ 1}+
and maxa are contractive mappings, by (I.8) and (I.9) we have
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Moreover, by the triangle inequality, we have
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where we denote k�(x, a)
��2
⇤�1

D1

= �(x, a)>⇤�1
D1
�(x, a). Notice that by the reproducing property we

have �(x, a)>✓ = h✓,�(x, a)iH = ✓(x, a) for all ✓ 2 H and (x, a) 2 Z . Also note that
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Thus, by (I.10) we have
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Thus, by (I.11), to get the covering number of Qucb(h,R,B) with respect to dist(·, ·), it suffices to
bound the covering numbers of the RKHS norm ball {f 2 H : kfkH  R}, the interval [0, B], and
the set of functions that are of the form of k�(·)k⇤�1

D
, respectively.

Notice that, by the definition in (I.6), ⇤D : H! H is a self-adjoint operator on H with eigenvalues
bounded in [0, 1/�]. To simplify the notation, we define the function class F(�) as

F(�) =
�
k�(·)k⌥ =

⇥
�(·)>⌥�(·)

⇤1/2
: k⌥kop  1/�

 
, (I.12)

where ⌥ : H! H in (I.12) is a self-adjoint operator on H whose eigenvalues are all bounded by 1/�
in magnitude. Here, the operator norm of ⌥ is defined as

k⌥kop = sup
�
f>

⌥f : f 2 H, kfkH = 1
 
= sup

�
hf,⌥fiH : f 2 H, kfkH = 1

 
.

Thus, by definition, for any finite subset D of Z , k�(·)k⇤�1
D

belongs to F(�), where ⇤D is defined
in (I.6). For any ✏ 2 (0, 1), we let N1(✏,F ,�) denote the ✏-covering number of F(�) in (I.12)
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with respect to the `1-norm. Moreover, let N1(✏,H, R) denote the ✏-covering number of {f 2
H : kfkH  R} with respect to the `1-norm and let N(✏, B) denote the ✏-covering number of the
interval [0, B] with respect the Euclidean distance. Then, by (I.11) we obtain that��C

�
Qucb(h,R,B), ✏

���  N1(✏/3,H, R) ·N(✏ · �/3, B) ·N1

�
✏/(3B),F ,�

�
. (I.13)

As shown in [69, Corollary 4.2.13], it holds that
N(✏ · �/3, B)  1 + 6B/(✏ · �)  1 + 6B/✏, (I.14)

where the last inequality follows from the fact that � 2 [1, 2].

It remains to bound the first and the third terms on the right-hand side of (I.13) separately. We establish
the `1-covering of the RKHS norm ball and F (�) in the following two lemmas, respectively.

Lemma I.2 (`1-norm covering number of RKHS ball). For any ✏ 2 (0, 1), we let N1(✏,H, R)

denote the ✏-covering number of the RKHS norm ball {f 2 H : kfkH  R} with respect to the
`1-norm. Consider the two eigenvalue decay conditions given in Assumption 4.3. Then, under
Assumption 4.3, there exist absolute constants C3 and C4 such that

logN1(✏,H, R) 
(
C3 · � ·

⇥
log(R/✏) + C4

⇤
�-finite spectrum,

C3 ·
⇥
log(R/✏) + C4

⇤1+1/�
�-exponential decay,

where C3 and C4 are independent of T , H , R, and ✏, and only depend on absolute constants C , C1,
C2, �, and ⌧ specified in Assumption 4.3.

Proof. See §J.2 for a detailed proof.

Lemma I.3. For any ✏ 2 (0, 1/e), let N1(✏,F ,�) be the ✏-covering number of function class F(�)
with respect to the `1-norm, where F(�) is defined in (I.12). Here we assume that � is bounded
in [c1, c2], where both c1 and c2 are absolute constants. Then, under Assumption 4.3, there exist
absolute constants C5 and C6 such that

logN1(✏,F ,�) 
(
C5 · �2 ·

⇥
log(1/✏) + C6

⇤
�-finite spectrum,

C5 ·
⇥
log(1/✏) + C6]

1+2/� �-exponential decay
where C5 and C6 only depend on C , C1, C2, �, ⌧ , c1, and c2, and do not rely on T , H , or ✏.

Proof. See §J.3 for a detailed proof.

Finally, we conclude the proof by combining Lemmas I.2 and I.3. Specifically, by (I.13) and (I.14),
we have
log

��C
�
Qucb(h,R,B), ✏

���  logN1(✏/3,H, R) + logN(✏ · �/3, B) + logN1

�
✏/(3B),F ,�

�

(I.15)

 log
⇥
1 + 6B/(✏ · �)

⇤
+ logN1(✏/3,H, R) + logN1

�
✏/(3B),F ,�

�
.

We consider the two eigenvalue decay conditions separately. For the �-finite spectrum case, by
Lemmas I.2 and I.3 and (I.15) we have

log
��C
�
Qucb(h,R,B), ✏

���

 log
⇥
1 + 6B/(✏ · �)

⇤
+ C3 · � ·

⇥
log(3R/✏) + C4

⇤
+ C5 · �2 ·

⇥
log(3B/✏) + C6

⇤

 CN · � ·
⇥
1 + log(R/✏)

⇤
+ CN · �2 ·

⇥
1 + log(B/✏)

⇤
,

where CN is an absolute constant. Similarly, for the case where the eigenvalues satisfy the �-
exponential decay condition, by Lemmas I.2 and I.3 we have

log
��C
�
Qucb(h,R,B), ✏

���

 log
⇥
1 + 6B/(✏ · �)

⇤
+ C3 ·

⇥
log(3R/✏) + C4

⇤1+1/�
+ C5 ·

⇥
log(3B/✏) + C6]

1+2/�

 CN ·
⇥
1 + log(R/✏)

⇤1+1/�
+ CN ·

⇥
1 + log(B/✏)

⇤1+2/�

for some absolute constant CN > 0. Therefore, we conclude the proof.
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I.2 Effective Dimension of RKHS

Definition I.4 (Maximal information gain). For any fixed integer T and any � > 0, we define the
maximal information gain associated with the RKHS H as

�K(T,�2
) = sup

D✓Z

�
1/2 · logdet(I + ��2 ·KD)

 
, (I.16)

where the supremum is taken over all discrete subsets of Z with cardinality no more than T , and KD

is the Gram matrix induced by D ✓ Z , which is defined similarly as in (3.7). Here the subscript K
in �K(T,�2

) denotes the kernel function of H.

The maximal information gain naturally arises in Gaussian process regression. Specifically, let
f ⇠ GP(0,K) be draw from the Gaussian process with covariance kernel K. Let D = {z1, . . . , z|D|}
be a subset of Z with |D|  T elements. Suppose that we observe noisy observations of f at points
in D. That is, for any zi 2 D, we have yi = f(zi) + ✏i, where ✏i ⇠ N(0,�2

) is a random Gaussian
noise. We let yD denote the vector whose entries are yi. Then, the information gain of yD is defined
as the mutual information between f and the observations yD, denoted by I(f, yD). By direct
computation, we have

I(f, yD) = 1/2 · logdet(I + ��2 ·KD).

The mutual information I(f, yD) quantifies the reduction of the uncertainty about f when we observe
yD. Thus, the maximal mutual information �K(T,�2

) characterizes the maximal possible reduction
of the uncertainty of f when having no more than T observations.

Moreover, we note that, when �2 is a constant, �K(T,�2
) depends on the eigenvalue decay of the

RKHS and thus can be viewed as an effective dimension of the RKHS. Specifically, as shown in
[62], when the kernel is the d-dimensional linear kernel, �K(T,�2

) = O(d log T ). Moreover, for
the squared exponential kernel that satisfies the exponential eigenvalue decay condition, the maximal
information gain is O

�
(log T )d+1

�
. In the following lemma, similar to Theorem 5 in [62], we

establish upper bounds on the maximal information gain of the RKHS under the eigenvalue decay
conditions specified in Assumption 4.3.

Lemma I.5 (Theorem 5 in [62]). Let Z be a compact subset of Rd and K : Z ⇥ Z ! R be the
RKHS kernel of H. We assume that K is a bounded kernel in the sense that sup

z2Z
K(z, z)  1, and

K is continuously differentiable on Z ⇥ Z . Moreover, let TK be the integral operator induced by K
and the Lebesgue measure on Z , whose definition is given in (B.1). Let {�j}j�1 be the eigenvalues
of TK in the descending order. We assume that {�j}j�1 satisfy either one of the following three
eigenvalue decay conditions:

(i) �-finite spectrum: We have �j = 0 for all j � � + 1, where � is a positive integer.

(ii) �-exponential eigenvalue decay: There exist constants C1, C2 > 0 such that �j 
C1 exp(�C2 · j�) for all j � 1, where � > 0 is positive constant.

Let � be bounded in interval [c1, c2] with c1 and c2 being absolute constants. Then, for conditions
(i)–(iii) respectively, we have

�K(T,�2
) 

(
CK · � · log T �-finite spectrum,
CK · (log T )1+1/� �-exponential decay,

where CK is an absolute constant that depends on d, �, C1, C2, C, c1, and c2.

We note that Lemma I.5 is a generalization of Theorem 5 in [62], which establishes the maximal
information gain for the linear, squared exponential, and Matérn kernels, respectively. Specifically,
the squared exponential kernel satisfies the �-exponential eigenvalue decay condition with � = 1/d.
Lemma I.5 implies that the �K(T,�2

) = O((log T )d+1
), which matches Theorem 5 in [62].

Proof. The proof of this lemma is based on a modification of that of Theorem 5 in [62]. To begin
with, for any j 2 N, we define BK(j) =

P
s>j

�s, i.e., the sum of eigenvalues with indices larger
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than j. Then, we use the following lemma obtained from [62] to bound �K(T,�2
) using function

BK .

Lemma I.6 (Theorem 8 in [62]). Under the same condition as in Lemma I.5, for any fixed ⌧ > 0,
we denote C⌧ = 2µ(Z) · (2⌧ + 1) where µ(Z) is the Lebesgue measure of Z . Let nT denote
C⌧ · T ⌧ · log T . Then, for any T? 2 {1, . . . , nT }, we have

�K(T,�2
)  T? · log(T · nT /�

2
) + C⌧ · ��2 · log T ·

⇥
T ⌧+1 ·BK(T?) + 1

⇤
+O(T 1�⌧/d

).

Proof. See [62] for a detailed proof.

In the following, we choose proper ⌧ and T? in Lemma I.6 for the two eigenvalue decay conditions
separately.

Case (i): �-Finite Spectrum. When �j = 0 for all j � � + 1, we set ⌧ = d and T? = � in Lemma
I.6. Then we have BK(T?) = 0 and nT = Cd · T d · log T . When T is sufficiently large, it holds that
T? < nT . Then Lemma I.6 implies that

�K(T,�2
)  � · log

�
Cd · T d+1 · log T/�2

�
+ Cd · ��2 · log T +O(1)  CK · � · log T,

for some absolute constant CK > 0. Thus, we conclude the proof for the first case.

Case (ii): �-Exponential Decay. When {�j}j�1 satisfies the �-exponential eigenvalue decay
condition, for any T? 2 N, we have

BK(T?) =
X

j>T?

�j  C1 ·
X

j>T?

exp(�C2 · j�)  C1 ·
Z

1

T?

exp(�C2 · u�) du. (I.17)

In a manner similar to the derivation of (J.16), by direct computation we have
Z

1

T?

exp(�C2 · u�) du 
(
C�1

2 · exp(�C2 · T �? ), if � � 1,

2 · (� · C2)
�1 · exp(�C2 · T �? ) · T 1��

? , if � 2 (0, 1).
(I.18)

In the following, we set ⌧ = d. Then we have nT = Cd · T d · log T where Cd = 2µ(Z) · (2d+ 1).
Then we have

log(T · nT ) = log(Cd) + log ·(T d+1 · log T
�
 log(Cd) + 2(d+ 1) · log T, (I.19)

when T is sufficiently large. Moreover, combining Lemma I.6 and (I.19), when � is sandwiched by
absolute constants c1 and c2, we have

�K(T,�2
)  eC1 · T? · log T + eC2 · log T ·

⇥
T d+1 ·BK(T?) + 1

⇤
+ eC3, (I.20)

where eC1, eC2, and eC3 are absolute constants that depend on d, �, c1, c2, C1, and C2. Now we choose
T? such that

exp(C2 · T �? ) ⇣ T · nT = Cd · T d+1 · log T, (I.21)

that is, T? = eC4 · (log T )1/� where eC4 is an absolute constant. Notice that T? < nT when T is
sufficiently large.

Thus, combining (I.17), (I.18), and (I.21), for � � 1, we have
log T ·

⇥
T d+1 ·BK(T?) + 1

⇤

 C1 · C�1
2 log T · T d+1 · exp(�C2 · T �? ) + log T  2 log T, (I.22)

where the last inequality follows from (I.21). Similarly, for � 2 (0, 1), by (I.17), (I.18), and (I.21),
we have
log T ·

⇥
T d+1 ·BK(T?) + 1

⇤

 2C1 · (� · C2)
�1 · exp(�C2 · T �? ) · log T · T d+1 · T 1��

?
+ log T ⇣ (log T )1/��1

+ log T.
(I.23)

Thus, combining (I.20), (I.22), (I.23), we conclude that
�K(T,�2

)  CK · log(T )1+1/�

for any � � 0, where CK is an absolute constant that depends on d, �, c1, c2, C1, and C2. Thus, we
conclude the proof for the second case. Therefore, we conclude the proof of Lemma I.5.
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J Proofs of Auxiliary Results

In this section, we provide the proofs of the auxiliary results.

J.1 Proof of Lemma H.1

Proof. For any function f 2 H, using the feature representation induced by the kernel K, we have��hf, b✓t
h
iH
�� =

��f>b✓t
h

�� 
��f>

(⇤
t

h
)
�1

�
>yt

h

��

=

����f
>
(⇤

t

h
)
�1

t�1X

⌧=1

�(x⌧
h
, a⌧

h
) · [rh(x⌧h, a⌧h) + V t

h+1(x
⌧

h+1)]

����, (J.1)

where we let � denote �
t

h
defined in (H.13) for simplicity. Since |rh(x⌧h, a⌧h)|  1 and

|V t

h+1(x
⌧

h+1)|  H � h, we have |[rh(x⌧h, a⌧h) + V t

h+1(x
⌧

h+1)]|  H for all h 2 [H] and ⌧ 2 [t� 1].
Then, by (J.1) and the Cauchy-Schwarz inequality, we have

��hf, b✓t
h
iH
��  H ·

t�1X

⌧=1

��f>
(⇤

t

h
)
�1�(x⌧

h
, a⌧

h
)
��

 H ·
t�1X

⌧=1

f>
(⇤

t

h
)
�1f

�1/2
·
 t�1X

⌧=1

�(x⌧
h
, a⌧

h
)
>
(⇤

t

h
)
�1�(x⌧

h
, a⌧

h
)

�1/2

 H/
p
� · kfkH ·

 t�1X

⌧=1

�(x⌧
h
, a⌧

h
)
>
(⇤

t

h
)
�1�(x⌧

h
, a⌧

h
)

�1/2
, (J.2)

where the last inequality follows from the fact that (⇤t

h
)
�1

: H! H is a self-adjoint and positive-
definite operator whose eigenvalues are bounded by 1/�. Furthermore, by Lemma J.3, we have

 t�1X

⌧=1

�(x⌧
h
, a⌧

h
)
>
(⇤

t

h
)
�1�(x⌧

h
, a⌧

h
)

�
 2logdet(I +Kt

h
/�). (J.3)

Thus, combining (J.2), (J.3), and the fact that � � 1, we obtain that
��hf, b✓t

h
iH
��  H · kfkH ·

q
2/� · logdet(I +Kt

h
/�)  H · kfkH ·

q
2 · logdet(I +Kt

h
/�).

Finally, utilizing the definition of �K(T,�) in (I.16), we conclude the proof of this lemma.

J.2 Proof of Lemma I.2

Proof. Recall that we have defined the integral operator TK : L2
(Z) ! L2

(Z) defined in (B.1),
which has eigenvalues {�j}j�0 and eigenvectors { j}j�0. Moreover, { j} and {p�j ·  j}j�0 are
orthonormal bases of L2(Z) and H, respectively. Then, any 2 H with kfkH  R can be written as

f =

1X

j=1

wj ·
p
�j ·  j , (J.4)

where {wj}j�0 satisfy
P

1

j=1 w
2
j
= kfk2

H
 R2. Let m be any positive integer and let ⇧m : H! H

denote the projection onto the subspace spanned by { j}j2[m], i.e., ⇧m(f) =
P

m

j=1 wj ·
p
�j ·  j

for any f 2 H written as in (J.4). Then we have

kf �⇧m(f)k1 =

1X

j=m+1

|wj | ·
p
�j · sup

z2Z

| j(z)|. (J.5)

In the following, we consider the two eigenvalue decay conditions specified in Assumption 4.3
separately.

Case (i): �-Finite Spectrum. Consider the case where �j = 0 for all j > �. Then, by the definition
of ⇧m, we have f = ⇧�(f) for all f 2 H. That is, (J.4) is reduced to

f =

�X

j=1

wj ·
p
�j ·  j ,
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where {wj}j2[�] satisfies
P
�

j=1 w
2
j
 R2. Let C�(✏, R) be the minimal ✏-cover of the �-dimensional

Euclidean ball {w 2 R� : kwk2  R} with respect to the Euclidean norm. Then, by construction,
there exists ew 2 R� such that

P
�

j=1(wj � ewj)
2  ✏2. Then, by the Cauchy-Schwarz inequality, we

have����f �
�X

j=1

ewj ·
p
�j ·  j

����
1

= sup
z2Z

����
�X

j=1

(wj � ewj) ·
p
�j ·  j(z)

���� (J.6)

=

 �X

j=1

(wj � ewj)
2

�1/2
· sup
z2Z

⇢ �X

j=1

�j · | j(z)|2
�1/2�

 ✏ · sup
z

p
K(z, z)  ✏,

where the last equality follows from the fact that K(z, z) =
P
�

j=1 �j · | j(z)|2. Thus, the ✏-covering
of {f 2 H : kfkH  R} is bounded by the cardinality of C�(✏, R). As shown in [69, Corollary
4.2.13], we have ��C�(✏, R)

��  (1 + 2R/✏)� . (J.7)
Thus, combining (J.6) and (J.7), we have

logN1(✏,H, R)  � · log(1 + 2R/✏)  C3 · � ·
⇥
log(R/✏) + C4

⇤
,

where both C3 and C4 are absolute constants. Thus, we conclude the proof for the first case.

Case (ii): �-Exponential Decay. In the following, we assume the eigenvalues {�j}j�1 satisfy the
�-exponential decay condition and k jk1  C · ��⌧

j
for all j � 1. Thus, by (J.5) we have

kf �⇧m(f)k1 
1X

j=m+1

C · |wj | · �1/2�⌧
j


1X

j=m+1

C · C1/2�⌧
1 · |wj | · exp

⇥
�C2 · (1/2� ⌧) · j�

⇤
. (J.8)

To simplify the notation, we define C1,⌧ = C · C1/2�⌧
1 and C2,⌧ = C2 · (1� 2⌧). Then, applying

the Cauchy-Schwarz inequality to (J.8), we have

kf �⇧m(f)k1  C1,⌧ ·
✓ 1X

j=m+1

|wj |2
◆1/2

·
 1X

j=m+1

exp(�C2,⌧ · j�)
�1/2

 C1,⌧ ·R ·
 1X

j=m+1

exp(�C2,⌧ · j�)
�1/2

, (J.9)

where the second inequality follows from the fact that
P

j�1 w
2
j
 R2. Since � > 0, exp(�u�) is

monotonically decreasing in u. Thus, we have
1X

j=m+1

exp(�C2,⌧ · j�) 
Z

1

m

exp(�C2,⌧ · u�) du. (J.10)

In the following, we bound the integral in (J.10) by considering the cases where � � 1 and � 2 (0, 1)
separately. First, when � � 1, since d � 1, we have u��1 � 1 for all u � d. Hence, we haveZ

1

m

exp(�C2,⌧ · u�) du 
Z

1

m

u��1 · exp(�C2,⌧ · u�) du


Z

1

m�

exp(�C2,⌧ · v) dv = C�1
2,⌧ · exp(�C2,⌧ ·m�

), (J.11)

where the second inequality follows from the change of variable v = u� and the fact that � � 1.
Second, when � < 1, by letting v = u� , we haveZ

1

m

exp(�C2,⌧ · u�) du =
1

�
·
Z

1

m�

exp(�C2,⌧ · v) · v1/��1
dv =

1

� · C2,⌧

Z
1

m�

v1/��1
d[� exp(�C2,⌧ · v)]

=
1

� · C2,⌧
· exp(�C2,⌧ ·m�

) ·m1��
+

(1� �)
�2 · C2,⌧

Z
1

m�

exp(�C2,⌧ · v) · v1/��2
dv, (J.12)
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where the last equality follows from integration by parts. Moreover, by direct calculation, we have
1

�

Z
1

m�

exp(�C2,⌧ · v) · v1/��2
dv  1

m�
· 1
�

Z
1

m�

exp(�C2,⌧ · v) · v1/��1
dv

=
1

m�

Z
1

m

exp(�C2,⌧ · u�) du, (J.13)

where the first inequality follows from the fact that v � m� in the integral and the second equality
follows from letting u = v1/� . Then, combining (J.12) and (J.13), we haveZ

1

m

exp(�C2,⌧ · u�) du

 1

� · C2,⌧
· exp(�C2,⌧ ·m�

) ·m1��
+

1/� � 1

C2,⌧ ·m�
·
Z

1

m

exp(�C2,⌧ · u�) du. (J.14)

Thus, when m is sufficiently large such that m� · C2,⌧ > 2/� � 2, by (J.14) we have
Z

1

m

exp(�C2,⌧ · u�) du 
✓
1� 1/� � 1

C2,⌧m�

◆�1

· 1

� · C2,⌧
exp(�C2,⌧ ·m�

) ·m1��

 2

� · C2,⌧
exp(�C2,⌧ ·m�

) ·m1�� . (J.15)

Therefore, combining (J.10), (J.11), and (J.15), we obtain that
Z

1

m

exp(�C2,⌧ · u�) du 
(
C�1

2,⌧ · exp(�C2,⌧ ·m�
), if � � 1,

2 · (� · C2,⌧ )
�1 · exp(�C2,⌧ ·m�

) ·m1�� , if � 2 (0, 1).

(J.16)

In the sequel, we let m⇤ be the smallest integer such that
Z

1

m

exp(�C2,⌧ · u�) du 
✓

✏

2C1,⌧ ·R

◆2

, 8m � m⇤. (J.17)

Hence, combining (J.9), (J.10), and (J.17), we have kf � ⇧m⇤(f)k1  ✏/2 for any f 2 H with
kfkH  R. Note, moreover, that C1,⌧ , C2,⌧ , and � are all absolute constants. By (J.16) and (J.17),
there exist absolute constants C1,m and C2,m such that

m⇤  C1,m ·
⇥
log(R/✏) + C2,m

⇤1/�
. (J.18)

Finally, it remains to approximate ⇧m⇤(f) up to error ✏/2 for m⇤ specified in (J.17). By the expansion
of f in (J.4), we have ⇧m⇤(f) =

P
m

⇤

j=1 wj ·
p
�j ·  j . For any m⇤ real numbers { ewj}j2[m⇤], by the

Cauchy-Schwarz inequality, we have
����
⇥
⇧m⇤(f)

⇤
(z)�

m
⇤X

j=1

ewj ·
p
�j ·  j(z)

���� =
����
m

⇤X

j=1

(wj � ewj) ·
p
�j ·  j(z)

����


m

⇤X

j=1

(wj � ewj)
2

�1/2
·
⇢m

⇤X

j=1

�j · [ j(z)]
2

�1/2


p

K(z, z) ·
m

⇤X

j=1

(wj � ewj)
2

�1/2
,

(J.19)
where the last inequality follows from the fact that K(z, z) =

P
1

j=1 �j · [ j(z)]2. Under Assump-
tion 4.3, we have sup

z2Z
K(z, z)  1. Notice that

P
m

⇤

j=1 !
2
j
 kfk2

H
 R2. Let Cm⇤(✏/2, R) be

the minimal ✏/2-cover of {w 2 Rm
⇤
: kwk2  R} with respect to the Euclidean norm. By definition,

for any f 2 H with kfkH  R, there exist ew 2 Cm⇤(✏/2, R) such that
P

m
⇤

j=1(wj � ewj)
2  ✏2/4.

Therefore, by (J.19) we have
����f �

m
⇤X

j=1

ewj ·
p
�j ·  j

����
1

 kf �⇧m⇤(f)k1 +

����⇧m⇤(f)�
m

⇤X

j=1

ewj ·
p
�j ·  j

����
1

 ✏, (J.20)

which implies that the ✏-covering number of the RKHS norm ball {f 2 H : kfkH  R} is bounded
by the cardinality of Cm⇤(✏/2, R), i.e., N1(✏,H, R)  |Cm⇤(✏/2, R)

��. As shown in [69, Corollary
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4.2.13], we have ��Cm⇤(✏/2, R)
��  (1 + 4R/✏)m

⇤
. (J.21)

Therefore, combining (J.18) and (J.21), we have

logN1(✏,H, R)  m⇤ · log(1 + 4R/✏)  C1,m ·
⇥
log(R/✏) + C2,m

⇤1/� · [log(1 + 4R/✏)]

 C3 ·
⇥
log(R/✏) + C4]

1+1/� ,

where C3 and C4 are absolute constants that only depend on C , C1, C2, �, and ⌧ , which are
specified in Assumption 4.3. Thus we conclude the proof of this lemma.

J.3 Proof of Lemma I.3

Proof. As shown in §B.1, the feature mapping � : Z ! H satisfies

�(z) =
1X

j=1

�j ·  j(z) ·  j =

1X

j=1

p
�j ·  j(z) · (

p
�j ·  j). (J.22)

That is, when expanding �(z) 2 H in the basis {p�j · j}j�0 as in (J.4), the j-th coefficient is equal
to p�j ·  j(z) for all j � 1. Similar to the proof of Lemma I.2, in the following, we consider the
two eigenvalue decay conditions separately.

Case (i): �-Finite Spectrum. When H has only � nonzero eigenvalues, for any z 2 Z , we define a
vector wz 2 R� by letting its j-th entry bep�j ·  j(z) for all j 2 [�]. Moreover, for any self-adjoint
operator ⌥ : H! H satisfying k⌥kop  1/�, we define a matrix A⌥ 2 R�⇥� as follows. For any
j, k 2 [�], we define the (j, k)-th entry of A⌥ as

[A⌥]j,k =
⌦p

�j ·  j ,
p
�k ·⌥ k

↵
H
.

By (J.22) and the definition of A⌥, we have

k�(z)k2⌥ =

�X

j,k=1

p
�j ·  j(z) ·

p
�k ·  k(z) · [A⌥]j,k = w>

z
A⌥wz. (J.23)

With a slight abuse of notation, we define C�(✏,�) denote the minimal ✏2-cover of�
A 2 R�⇥� : kAkfro 

p
�/�

 

with respect to the Frobenius norm. Then by definition, there exists eA⌥ 2 C�(✏,�) such that
kA⌥ � eA⌥kfro  ✏2, which implies that��w>

z
A⌥wz � w>

z
eA⌥wz

��  kwzk22 · kA⌥ � eA⌥kop  kA⌥ � eA⌥kfro  ✏2, (J.24)
where we use the fact that

kwzk22 =

�X

j=1

|wj |2 =

�X

j=1

�j · | j(z)|2 = K(z, z)  1.

Thus, combining (J.23) and (J.24), and utilizing Corollary 4.2.13 in [69], we have
logN1(✏,F ,�)  log

��C�(✏,�)
��  �2 · log

⇥
1 + 8

p
�/(� · ✏2)

⇤
 C5 · �2 ·

⇥
log(1/✏) + C6

⇤
,

where C5 and C6 are absolute constants that depend solely on � and �. Thus, we conclude the proof
for the first case.

Case (ii): �-Exponential Decay. In the following, we focus on the second case where the eigenvalues
satisfy the �-exponential decay condition. For any m 2 N, we define ⇧m : H! H as the projection
operator onto the subspace spanned by { j}j2[m]. Then, by the Cauchy-Schwarz inequality and
Assumption 4.3, for any z 2 Z , by (J.22) we have

���(z)�⇧m

⇥
�(z)

⇤��
H

=

����
1X

j=m+1

p
�j ·  j(z) ·

p
�j ·  j

����
H

=

⇢ 1X

j=m+1

�j · [ j(z)]
2

�1/2


✓ 1X

j=m+1

�j · k jk21
◆1/2

 C ·
✓ 1X

j=m+1

�1�2⌧
j

◆1/2

, (J.25)
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where the second equality follows from the fact that {p�j ·  j}j�0 form an orthonormal basis of H,
the first inequality follows from taking a supremum over z 2 Z , and the last inequality follows from
the assumption that k jk1  C · ��⌧

j
. Then, for any self-adjoint operator ⌥ : H! H satisfying

k⌥kop  1/� and any z 2 Z , by (J.25) and the triangle inequality we have
���k�(z)k⌥ �

��⇧m

⇥
�(z)

⇤��
⌥

��� 
���(z)�⇧m

⇥
�(z)

⇤��
⌥
 C /

p
� ·

✓ 1X

j=m+1

�1�2⌧
j

◆1/2

. (J.26)

Note that the eigenvalues {�j}j�0 admit �-exponential decay under Assumption 4.3. We now upper
bound the right-hand side of (J.26) by

sup
z2Z

���k�(z)k⌥ �
��⇧m

⇥
�(z)

⇤��
⌥

���  C /
p
� ·

⇢ 1X

j=m+1

C1�2⌧
1 · exp

⇥
�C2 · (1� 2⌧) · j�

⇤�1/2

.

(J.27)

To simplify the notation, we define C3,⌧ = C · C1/2�⌧
1 /

p
� and C4,⌧ = C2 · (1� 2⌧), which are

both absolute constants. Then, by (J.27) and the monotonicity of exp(�u�), we further obtain

sup
z2Z

���k�(z)k⌥ �
��⇧m

⇥
�(z)

⇤��
⌥

���  C3,⌧ ·
 Z

1

m

exp(�C4,⌧ · u�) du
�1/2

. (J.28)

Here we can take the supremum over Z because the right-hand side of (J.27) does not depend on z.
Note that we have shown in (J.16) that
Z

1

m

exp(�C4,⌧ · u�) du 
(
C�1

4,⌧ · exp(�C4,⌧ ·m�
), if � � 1,

2 · (� · C4,⌧ )
�1 · exp(�C4,⌧ ·m�

) ·m1/��1, if � 2 (0, 1),

(J.29)
where for the case of � 2 (0, 1), (J.29) holds for sufficient large m such that m� · C4,⌧ > 2/� � 2.

We now define m⇤ as the smallest integer such thatZ
1

m⇤
exp(�C4,⌧ · u�) du 

⇥
✏/(2C3,⌧ )

⇤2
. (J.30)

By (J.29), since both C3,⌧ , C4,⌧ and � are absolute constants, there exist absolute constants C3,m

and C4,m such that

m⇤  C3,m ·
⇥
log(1/✏) + C4,m

⇤1/�
. (J.31)

It is worth noting that the choice of m⇤ in (J.31) is uniform over all z 2 Z . Moreover, by (J.28), for
such an m⇤, it holds that

sup
z2Z

���k�(z)k⌥ �
��⇧m⇤

⇥
�(z)

⇤��
⌥

���  ✏/2. (J.32)

Thus, it remains to approximate k⇧m⇤ [�(z)]k⌥ up to accuracy ✏/2. Note that the subspace spanned
by { j}j2[m⇤] is m⇤-dimensional. When restricted to such a subspace, ⌥ can be expressed using a
matrix A⌥ 2 Rm

⇤
⇥m

⇤
. Specifically, for any j, k 2 [m⇤

], we define the (j, k)-th entry of A⌥ as
[A⌥]j,k =

⌦p
�j ·  j ,

p
�k ·⌥ k

↵
H
. (J.33)

Moreover, let wz 2 Rm
⇤

be a vector whose j-th entry is given byp�j ·  j(z), 8j 2 [m⇤
]. Then, by

(J.33) it holds that��⇧m⇤
⇥
�(z)

⇤��2
⌥
=
⌦
⇧m⇤

⇥
�(z)

⇤
,⌥⇧m⇤

⇥
�(z)

⇤↵
H

= w>

z
A⌥wz. (J.34)

Also, since k⌥kop  1/�, the matrix operator norm of A⌥ is bounded by 1/�; i.e., kA⌥kop  1/�.
This means that the Frobenius norm of A⌥ is bounded by

p
m⇤/�. Let Cm⇤(✏/2,�) denote the

minimal ✏2/4-cover of {A 2 Rm
⇤
⇥m

⇤
: kAkfro 

p
m⇤/�} with respect to the Frobenius norm. By

definition, there exists eA⌥ 2 Cm⇤(✏/2,�) such that kA⌥ � eA⌥kfro  ✏2/4. Hence, we have��w>

z
A⌥wz � w>

z
eA⌥wz

��  kwzk22 · kA⌥ � eA⌥kop  kA⌥ � eA⌥kfro  ✏2/4. (J.35)
Finally, for any z 2 Z , we define

f⌥(z) = w>

z
eA⌥wz =

m
⇤X

j,k=1

p
�j · �k ·  j(z) ·  k(z) ·

⇥ eA⌥
⇤
jk
, (J.36)
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where [ eA⌥]jk is the (j, k)-th entry of eA⌥ and m⇤ is specified in (J.30). We remark that f⌥ : Z ! R
is well defined since m⇤ does not depend on z.

Finally, combining (J.32), (J.34), (J.35), and (J.36), we obtain��k�(z)k⌥ � f⌥
��
1

= sup
z2Z

��k�(z)k⌥ � f⌥(z)
��

 sup
z2Z

���k�(z)k⌥ �
��⇧m⇤

⇥
�(z)

⇤��
⌥

���+ sup
z2Z

���
��⇧m⇤

⇥
�(z)

⇤��
⌥
� f⌥(z)

���

 ✏/2 + sup
z2Z

���
q
w>

z
A⌥wz �

q
w>

z
eA⌥wz

���  ✏/2 + sup
z2Z

q��w>
z
A⌥wz � w>

z
eA⌥wz

��  ✏.

This implies that {f⌥ : ⌥ 2 Cm⇤(✏,�)} forms an ✏-cover of F(�) in (I.12). Hence, we have that
N1(✏,F ,�) 

��Cm⇤(✏/2,�)
��. (J.37)

Furthermore, using Corollary 4.2.13 in [69], we have
��Cm⇤(✏/2,�)

�� 
⇥
1 + 8

p
m⇤/(� · ✏2)

⇤m⇤2

. (J.38)
Combining (J.31), (J.37), and (J.38), we finally have
logN1(✏,F ,�)  m⇤2 · log

⇥
1 + 8

p
m⇤/(� · ✏2)

⇤

 C2
3,m ·

⇥
log(1/✏) + C4,m

⇤2/� · log
n
1 + 8C1/2

3,m ·
⇥
log(1/✏) + C4,m

⇤1/(2�)
/(� · ✏2)

o

 C5 · [log(1/✏) + C6]
1+2/� ,

where C5 and C6 are absolute constants that depend on C , C1, C2, ⌧ , �, and �, but are independent
of T , H , and ✏. Here in the last inequality we use the fact that log(1/✏)  1/✏, which holds when
✏  1/e. Therefore, we conclude the proof for the second case and thus conclude the proof of the
lemma.

J.4 Technical Lemmas

Next, we present a few concentration inequalities. The first one provides concentration for standard
self-normalized processes.

Lemma J.1 (Concentration of Self-Normalized Processes in RKHS [18]). Let H be an RKHS
defined over X ✓ Rd with kernel function K(·, ·) : X ⇥ X ! R. Let {x⌧}1⌧=1 ✓ X be a discrete
time stochastic process that is adapted to the filtration {Ft}1t=0. That is, x⌧ is F⌧�1 measurable
for all ⌧ � 1. Let {✏t}1⌧=1 be a real-valued stochastic process such that (i) ✏⌧ 2 F⌧ and (ii) ✏⌧ is
zero-mean and �-sub-Gaussian conditioning on F⌧�1:

E[✏⌧ |F⌧�1] = 0, E[e�✏⌧ |F⌧�1]  e�
2
�
2
/2, 8� 2 R.

Moreover, for any t � 2, let Et = (✏1, . . . , ✏t�1)
> 2 Rt�1 and Kt 2 R(t�1)⇥(t�1) be the Gram

matrix of {x⌧}⌧2[t�1]. Then, for any ⌘ > 0 and any � 2 (0, 1), with probability at least 1 � �,
simultaneously for all t � 1, we have

E>

t

⇥
(Kt + ⌘ · I)�1

+ I
⇤�1

Et  �2 · logdet
⇥
(1 + ⌘) · I +Kt

⇤
+ 2�2 · log(1/�). (J.39)

Moreover, if Kt is positive definite for all t � 2 with probability one, then the inequality in (J.39)
also holds with ⌘ = 0.

Proof. See Theorem 1 in [18] for a detailed proof.

Lemma J.2 (Lemma D.4 of [35]). Let {x⌧}1⌧=1 and {�⌧}1⌧=1 be S-valued and H-valued stochastic
processes adapted to filtration {F⌧}1⌧=0, respectively, where we assume that k�⌧kH  1 for all
⌧ � 1. Moreover, for any t � 1, we let Kt 2 Rt⇥t be the Gram matrix of {�⌧}⌧2[t] and define an
operator ⇤t : H ! H as ⇤t = � · IH +

P
t

⌧=1 �⌧�
>

⌧
with � > 1. Let V ✓ {V : S ! [0, H]} be a

class of bounded functions on S. Then for any � 2 (0, 1), with probability at least 1� �, we have
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simultaneously for all t � 1 that

sup
V 2V

����
tX

⌧=1

�⌧
�
V (x⌧ )� E[V (x⌧ )|F⌧�1]

 ����
2

⇤�1
t

(J.40)

 2H2 · logdet(I +Kt/�) + 2H2t(�� 1) + 4H2
log(N✏/�) + 8t2✏2/�,

where N✏ is the ✏-covering number of V with respect to the distance dist(·, ·).

Proof. Let V✏ ✓ {V : S ! [0, H]} be the minimal ✏-cover of V such that N✏ = |V✏|. Then for any
V 2 V , there exists a value function V 0

: S ! R in N✏ such that dist(V, V 0
)  ✏. Let �V = V �V 0.

By the inequality (a+ b)2  2a2 + 2b2, we have
����

tX

⌧=1

�⌧
�
V (x⌧ )� E[V (x⌧ )|F⌧�1]

 ����
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⇤�1
t

(J.41)

 2 ·
����

tX
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�⌧
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V 0

(x⌧ )� E[V 0
(x⌧ )|F⌧�1]

 ����
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⇤�1
t

+ 2 ·
����

tX

⌧=1

�⌧
�
�V (x⌧ )� E[�V (x⌧ )|F⌧�1]

 ����
2

⇤�1
t

.

To bound the first term on the right-hand side of (J.41), we apply Lemma J.1 to V 0 and take a union
bound over V 0 2 V✏. While for the second term, since sup

x2S
|�V (x)|  ✏, we have

����
tX

⌧=1

�⌧
�
�V (x⌧ )� E[�V (x⌧ )|F⌧�1]

 ����
2

⇤�1
t

 t2 · (2✏)2/� = 4t2✏2/�. (J.42)

Thus, combining (J.41) and (J.42), we have
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����
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⌧=1
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V (x⌧ )� E[V (x⌧ )|F⌧�1]
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(x⌧ )|F⌧�1]
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⇤�1
t

+ 8t2✏2/�. (J.43)

Now we fix V 0 2 V✏ and define "t 2 Rt by letting ["t]⌧ = V 0
(x⌧ )� E[V 0

(x⌧ )|F⌧�1] for any ⌧ � 1.
We define an operator � : H! Rt as � =

⇥
�>1 , . . . ,�

>

t

⇤> and let Kt = �t�
>

t
2 Rt⇥t. Using this

notation, we have ⇤t = � · IH + �
>

t
�t and

����
tX

⌧=1

�⌧
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(x⌧ )� E[V 0
(x⌧ )|F⌧�1]
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⇤�1
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t
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t
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t
�t�

>

t
(Kt + � · I)�1"t = ">

t
Kt(Kt + � · I)�1"t, (J.44)

where the third inequality follows from (H.14). Setting � = 1 + ⌘ for some ⌘ > 0, we have
(Kt + ⌘ · I)

⇥
Kt + (1 + ⌘) · I

⇤�1
= (Kt + ⌘ · I)

⇥
I + (Kt + ⌘ · I)

⇤�1
=
⇥
(Kt + ⌘ · I)�1

+ I
⇤�1

,

which implies that
">
t
Kt(Kt + � · I)�1"t  ">t (Kt + ⌘ · I)

⇥
I + (Kt + ⌘ · I)

⇤�1
"t

= ">
t

⇥
(Kt + ⌘ · I)�1

+ I
⇤�1

"t. (J.45)
Notice that each entry of "t is bounded by H in absolute value since V 0 is bounded in [0, H]. By
combining (J.43), (J.44), (J.45), Lemma J.1, and taking a union bound over V✏, for any � 2 (0, 1),
we obtain that, with probability at least 1� �,

sup
V 02V✏

����
tX

⌧=1

�⌧
�
V 0

(x⌧ )� E[V 0
(x⌧ )|F⌧�1]

 ����
2

⇤�1
t

 H2 · logdet[(1 + ⌘) · I +Kt] + 2H2 · log(N✏/�) (J.46)
holds simultaneously for all t � 1. Moreover, notice that (1 + ⌘) · I +Kt = [I + (1 + ⌘)�1 ·Kt] ·
[(1 + ⌘) · I], which implies that

logdet
⇥
(1 + ⌘) · I +Kt

⇤
= logdet

⇥
I + (1 + ⌘)�1 ·Kt

⇤
+ t ln(1 + ⌘)

 logdet
⇥
I + (1 + ⌘)�1 ·Kt

⇤
+ ⌘t. (J.47)
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Finally, combining (J.43), (J.46), and (J.47), we conclude that, simultaneously for all t � 1, (J.40)
holds with probability at least 1� �, which concludes the proof.

Lemma J.3 ([1]). Let {�t}t�1 be a sequence in the RKHS H. Let ⇤0 : H! H be defined as � · IH
where � � 1 and IH is the identity mapping on H. For any t � 1, we define a self-adjoint and
positive-definite operator ⇤t by letting ⇤t = ⇤0 +

P
t

j=1 �j�
>

j
. Then, for any t � 1, we have

tX

j=1

min
�
1,�>

j
⇤
�1
j�1�j

 
 2logdet(I +Kt/�),

where Kt 2 Rt⇥t is the Gram matrix obtained from {�j}j2[t], i.e., for any j, j0 2 [t], the (j, j0)-th
entry of Kt is h�j ,�j0iH. Moreover, if we further have sup

t�0{k�tkH}  1, then it holds that

logdet(I +Kt/�) 
tX

j=1

�>
j
⇤
�1
j�1�j  2logdet(I +Kt/�).

Proof. Note that we have log(1+x)  x  2 log(1+x) for all x 2 [0, 1]. Since ⇤�1
t

is a self-adjoint
and positive-definite operator, this implies that
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�
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(J.48)
Moreover, when additionally it is the case that sup

j�1 k�jkH  1 for all j � 0, we have
�>
j
⇤
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j�1�j =

⌦
�j ,⇤

�1
j�1�jiH  k�jkH ·

��⇤�1
j�1�jkH  [�min(⇤0)]

�1 · k�jk2H  1. (J.49)
Hence, applying the basic inequality log(1 + x)  x  2 log(1 + x) to (J.49), we have
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�
. (J.50)

For any j � 1, let ⇤1/2
j�1 : H ! H be the self-adjoint and positive-definite operator that is the

square-root operator of ⇤j�1. Specifically, let {�`}`�1 be the eigenvalues of ⇤j�1 and let {v`}`�1

be the corresponding eigenfunctions. Then ⇤
1/2
j�1 =

P
`�1 �

1/2
`

· v`v>` . Using this notation, for any
j � 1, by the definition of ⇤j , we have
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which implies that
logdet(⇤j) = logdet(⇤j�1) + logdet

�
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j
⇤
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j�1�j

�
(J.51)

Moreover, by direct computation, for any t � 1, we have
det(⇤t⇤

�1
0 ) = det(I +Kt/�). (J.52)

Hence, combining (J.51), and (J.52), we obtain that
tX

j=1

log
�
1 + �>

j
⇤
�1
j�1�j

�
= logdet(⇤t⇤

�1
0 ) = logdet(I +Kt/�). (J.53)

Finally, combining (J.48), (J.50) and (J.53), we conclude the proof of this lemma.
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