
Supplementary Material

A Proof of Theorm 1

Theorem 1 states: If in the generative story ρ = 0, and we have a uniform distribution for the prior
and variational topic posterior approximation

(
p(θ) = q(θ|w, l) = 1/K

)
, then VRTM reduces to a

Recurrent Neural Network to just reconstruct the words given previous words.

Following is the proof.

Proof. If ρ = 0 then for every token t, lt = 0. Therefore, the reconstruction term simplifies to Lw =∑T
t=1 log p(wt;ht). We proceed to analyze the other remaining terms as following. The first terms

on the right-hand side of Lz and Lφ are over thematic word, and simply we have Lz +Lφ = 0. Since
all the tokens are forced to have the same label, the classifier term is Ll =

∑T
t=1 log p(lt;ht) = 0.

Also Lθ = 0, since it is the KL divergence between two equal distributions. Overall, L reduces to∑T
t=1 log p(wt;ht), indicating that the model is just maximizing the log-model evidence based on

the RNN output.

B Dataset Details

Table A1 provides details on the different datasets we use. Note that these are the same datasets as
have been used by others [49].

C Implementation Details

For an RNN we used a single-layer LSTM with 600 units in the hidden layer, set the size of
embedding to be 400, and had a fixed/maximum sequence length of 45. We also present experiments
demonstrating the performance of basic RNN and GRU cells in Table 1a. Note that although our
embedding size is higher, we are use an end-to-end training manner without using pre-trained word
embeddings. However, as shown in Table 1a, we also examined the impact of using lower dimension
embeddings and found our results to be fairly consistent. We found that using pretrained word
embeddings such as word2vec could result in slight degradations in perplexity, and so we opted to
learn the embeddings from scratch. We used a single Monte Carlo sample of θ per document and
epoch. We used a dropout rate of 0.4. In all experiments, α is fixed to 0.5 based on the validation set
metrics. We optimized our parameters using the Adam optimizer with initial learning rate 10−3 and
early stopping (lack of validation performance improvement for three iterations). We implemented
the VRTM with Tensorflow v1.13 and CUDA v8.0. Models were trained using a single Titan GPU.
With a batch size of 200 documents, full training and evaluation runs typically took between 3 and 5
hours (depending on the number of topics).

D Perplexity Calculation

Following previous efforts we calculate perplexity across D documents with N tokens total as

perplexity = exp

(
−
∑D
d=1 log p(wd)

N

)
, (6)

Dataset Vocab Training Development Testing
Docs # Sents # Tokens # Docs # Sents # Tokens # Docs # Sents # Tokens

APNEWS 7, 788 50K 0.7M 15M 2K 27.4K 0.6M 2K 26.3K 0.6M

IMDB 8, 734 75K 0.9M 20M 12.5K 0.2M 0.3M 12.5K 0.2M 0.3M

BNC 9, 769 15K 0.8M 18M 1K 44K 1M 1K 52K 1M

Table A1: A summary of the datasets used in our experiments. We use the same datasets and splits as
in previous work [49].

14

where log p(wd) factorizes according to eq. 1. We approximate the marginal probability of each
token p(wt;β, ht) within d as

p(wt;β, ht) =

∫
p(θ)

K∑
k=1

1∑
lt=0

p(wt|zt = k, lt;ht, β)p(zt|lt, θ)p(lt;ht) dθ.

≈ 1

S

S∑
s=1

K∑
k=1

1∑
lt=0

p(wt|zt = k, lt;ht, β)p(zt = k|lt, θ(s))p(lt;ht)

=
1

S

S∑
s=1

K∑
k=1

θ
(s)
k p(wt|zt = k;ht, β)p(lt = 1;ht) + p(wt;ht)p(lt = 0;ht), (7)

Each θ(s) ∼ q(θ|w1:T , γ) is sampled from the computed posterior approximation, and we draw S
samples per document.

E Text Generation

The overall generating document procedure is illustrated in Algorithm 1. We use <SEP> as a special
symbol that we silently prepend to sentences during training.

Algorithm 1 Generating Text

Input: sequence length (l)
Output: generated sentence
i← 0
w0 ← <SEP>
w← [w0]
repeat
i← i+ 1
θ(s) ∼ q(θ|w)
wi ∼ p(wi|w)
w← [w, wi]

until i < l
return w

We limit the concatenation step (w← [w, wi]) to the previous 30 words.

F Generated Topics

See Table A2 for additional, randomly sampling topics from VRTM models learned on APNEWS,
IMDB, and BNC (50 topics).

G Generated Sentences

In this part we provide some sample, generated output explain how we can generate text using VRTM.
To this end, we begin with the start word and then we proceed to predict the next word given all the
previous words. It is worth mentioning that for this task, the labels of stop and non-stop words are
marginalized out and the model is predicting these labels best on RNN hidden states. This conditional
probability is

p(wt|w1:t−1) =

∫
p(θ)

K∑
k=1

1∑
lt=0

p(wt|zt, lt;ht, β)

p(zt|lt, θ)p(lt;ht) dθ. (8)

Computing Eq. 8 exactly is intractable in our context. We apply Monte Carlo sampling θ(s) ∼
q(θ|w1:T , α). It is too expensive to recompute θ with each word generated. To alleviate this problem,

15

Dataset #1 #2 #3 #4 #5 #6 #7 #8 #9

APNEWS

dead washington soldiers fund police state car republican city
killed american officers million death voted road u.s. residents

hunting california army bill killed voters line president st.
deaths texas weapons finance accusing democrats rail campaign downtown

kill residents blaze billion trial case trail candidates visitors

IMDB

films horror pretty friends script comedy funny hate writing
directed murder beautiful series line starring jim cold wrote

story strange masterpiece dvd point fun amazed sad fan
imdb killing intense channel describe talking naked monster question

spoilers crazy feeling shown attention talk laughing dawn terribly

BNC

king house research today letter system married financial children
london st published ago page data live price played

northern street report life books bit love poor class
conservative town reported years bible runs gentleman thousands 12

prince club title earlier writing supply dance commission age

Table A2: Nine random topics extracted from a 50 topic VRTM learned on the APNEWS, IMDB and
BNC corpora.

1 2 3 4 5 6 7 8 9

Epoch

1.6

1.8

2.0

2.2

H
(θ

)

α = 10.0

α = 1.0

α = 0.5

α = 0.1

1 2 3 4 5 6 7 8 9

Epoch

0.7

1.2

1.7

2.2

H
(φ

)
α = 10.0

α = 1.0

α = 0.5

α = 0.1

Figure A1: We examine the impact α has on the induced variational approximations q from a 10 topic
VRTM (selected due to dev perplexity performance). Left: effect of α on H(θ) , Right: Appropriate
choice of α also reduces H(φ).

we can use a “sliding window” of previous words rather than the whole sequence to periodically
resample θ [28, 8]. In this, we maintain a buffer of generated words and resample θ when the buffer
is full (at which point we empty it and continue generating). We found that splitting each training
document into blocks of 10 sentences generated more coherent sentence. Table 4 illustrates the
quality of some generated sentences.

G.1 The Effect of Hyperparameters on Topic Selectivity

Following previous work in language modeling that take the sparsity into consideration [1, 32],
we sought for a selective token topic assignment with low entropy. First, we slightly overload the
notation of entropy to define an average of non stop word-topics entropy and similarly document

entropy: H(φ) = − 1

Tn

∑
t:lt=1

∑K
k=1 φ

k
t log φ

k
t , and H(θ) = − 1

Td

∑K
k=1 θ

k log θk, where Tn and

Td are the total number of non-stop words in the document and the total number of documents,
respectively. Second, the Dirichlet distribution can easily be parameterized to generate sparse
samples. Now we provide some intuitive explanation. In our setting, the equality Lz + Lφ =

1

S

∑S
s=1

∑
t:lt=1

∑K
k=1 φ

k
t log

θ
(s)
k

φkt
holds, which is the (negative) KL-divergence between φ and θ

parameters. Moreover, on the Lθ side, θ(s) samples are controlled by the prior distribution. Overall,
selectivity of φ strongly depends on the choice of prior parameters. As shown in Fig. A1, not only we
can control the value of H(θ), but also we can reduce H(φ) by tuning the prior parameters without
the need of any other regularizer.

16

