The Potts-Ising model for discrete multivariate data: Supplementary material

Zahra S. Razaee and Arash A. Amini

6 1.5-step block coordinate descent

An alternative approach to optimizing the conditional log-likelihood (4) is to alternate between solving for $\beta_{i\oplus}$ and solving for γ_{i*} , that is, performing a form of block coordinate descent. Initializing $\gamma_{i*} = 0$ and optimizing over $(\beta_{ik})_{k\neq 0}$, we obtain the closed form solution

$$\beta_{ik}^0 = z_{ik}^+ / z_{i0}^+, \ k \neq 0.$$

We then fix $\beta_{ik} = \beta_{ik}^0$ and optimize $\ell_i(\beta^0; \gamma_{i*})$ over γ_{i*} . Let $u_0 = \log(\beta_{i\oplus}^0)$ where $\beta_{i\oplus}^0 = \sum_{k \neq 0} \beta_{ik}^0 = (n/z_{+i0}) - 1$. Then, the problem is equivalent to solving

$$\gamma_{i*}^0 = \operatorname*{argmin}_{\gamma_{i*}} \sum_t \left[z_{i\oplus}^t (2\langle \gamma_{i*}, \sigma_t \rangle - u_0) + \log(1 + e^{u_0 - 2\langle \gamma_{i*}, \sigma_t \rangle}) \right]$$

which is that of a logistic regression, with *fixed intercept* u_0 . After obtaining γ_{i*}^0 , we can maximize $\ell_i(\beta; \gamma_{i*}^0)$ over β , whose solution can be written as $\beta_{ik}^1 = z_{+ik}/x$ where x solves the nonlinear equation:

$$\sum_{t=1}^{n} \frac{e^{-2\langle \gamma_{i*}^{0}, \sigma_t \rangle}}{x + e^{-2\langle \gamma_{i*}^{0}, \sigma_t \rangle} z_{i\oplus}^{+}} = 1.$$

This equation can be solved efficiently by bisection. One can then repeat the iterations. However, we found in practice that terminating after obtaining $(\beta_{ik}^1, \gamma_{i*}^0)$ is good enough. In fact, this early termination seems to have an implicit regularization effect.

7 Empirical results continued

We have also applied the methods to the breast cancer toxicity and PRO data from the same clinical cancer trial discussed in the text. This toxicity data has dimensions 3070×45 with sparsity $\approx 95\%$ and its corresponding data is 9079×29 with sparsity 56%. Figure 5 shows the results. POIS outperforms all other methods except the Bootstrap on the breast cancer toxicity data. The corresponding PRO data is the only dataset on which POIS is slightly less competitive relative to say Copula Multinomial. This can be explained by noting that the breast cancer PRO data is quite dense (56% sparsity), making the POIS model less suitable due to the violation of its underlying sparsity assumption.

Figure 6 shows the results on the Amazon rating data ($n_{CV} = 2$) along with a larger plot of the Movie rating results presented in the text. Similar conclusions about the relative performance of the POIS model can be made as those discussed in the text. For completeness, Figure 7 provides larger plots for the colorectal cancer results, already presented in Figure 1 of the main text. Table 1 shows the abbreviations used for toxicities in Figure 2 of the text.

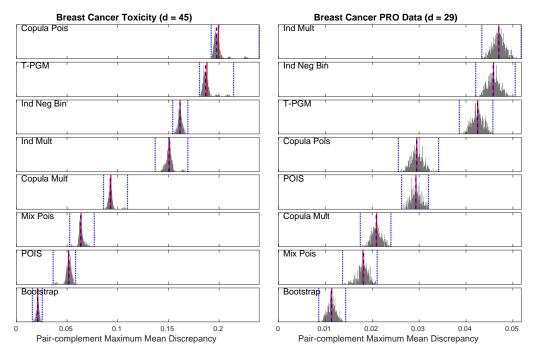


Figure 5: Pair-complement MMD histograms: Toxicity and PRO data (Breast Cancer).

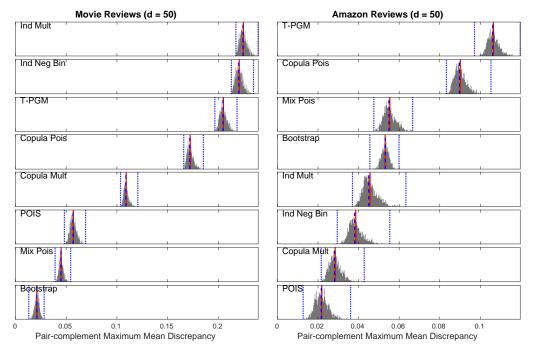


Figure 6: Pair-complement MMD histograms: Ratings data.

Anem	Anemia	Hypc	Hypocalcemia
Anrx	Anorexia	Mcso	Mucositis oral
Drrh	Diarrhea	Prsn	Peripheral sensory neuropathy
Fatg	Fatigue	P-es	Palmar-plantar erythrodysesthesia syndrome
Hypl	Hypoalbuminemia	Urti	Urinary tract infection
Lycd	Lymphocyte count decreased	Rctm	Rectal mucositis
Naus	Nausea	Cysn	Cystitis noninfective
Vmtn	Vomiting	Anlm	Anal mucositis
Wbcd	White blood cell decreased	Rmc-	Rash maculo-papular
Drmr	Dermatitis radiation	Ntcd	Neutrophil count decreased
Anlp	Anal pain	Insm	Insomnia
Dhyd	Dehydration	Rctp	Rectal pain
Cnst	Constipation	Bckp	Back pain
Abdp	Abdominal pain	Pain	Pain
Hypr	Hyperglycemia	Dzzn	Dizziness
Hypk	Hypokalemia	Prct	Proctitis
Wghl	Weight loss	Asai	Aspartate aminotransferase increased
Hypt	Hypotension	Alai	Alanine aminotransferase increased

Table 1: Abbreviations used for the toxicity data.

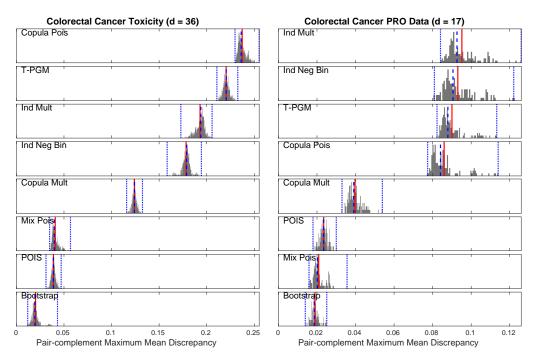


Figure 7: Pair-complement MMD histograms: Toxicity and PRO data (Colorectal Cancer).