Supplementary Material

A Omitted Proofs from Section 3

A. 1 Proof of Lemma 3.3

We prove the lemma for the random variable A. The proof for B is similar. From the definition of f, we have that $\mathbf{E}_{z \sim \mathcal{N}(0,1)}[f(z)]=0$, thus

$$
\underset{z \sim \mathcal{N}(0,1)}{\mathbf{E}}[\mathbb{1}\{f(z)=1\}]=\underset{z \sim \mathcal{N}(0,1)}{\mathbf{E}}[\mathbb{1}\{f(z)=-1\}]
$$

or equivalently

$$
\begin{equation*}
\underset{z \sim \mathcal{N}(0,1)}{\mathbf{E}}[\mathbb{1}\{f(z)=1\}]=\frac{1}{2} . \tag{5}
\end{equation*}
$$

Similarly, from $\mathbf{E}_{z \sim \mathcal{N}(0,1)}\left[f(z) z^{t}\right]=0$, we have

$$
\begin{equation*}
\underset{z \sim \mathcal{N}(0,1)}{\mathbf{E}}\left[z^{t} \mathbb{1}\{f(z)=1\}\right]=\underset{z \sim \mathcal{N}(0,1)}{\mathbf{E}}\left[z^{t} \mathbb{1}\{f(z)=-1\}\right] . \tag{6}
\end{equation*}
$$

Let $\phi(z \mid f(z)=1)$ be the probability distribution of z conditional that $f(z)=1$. We have that

$$
\begin{aligned}
\underset{z \sim A}{\mathbf{E}}\left[z^{t}\right] & =\int_{-\infty}^{\infty} z^{t} \phi(z \mid f(z)=1) \mathrm{d} z=\int_{-\infty}^{\infty} z^{t} \frac{\phi(z)}{\operatorname{Pr}_{z^{\prime} \sim \mathcal{N}(0,1)}\left[f\left(z^{\prime}\right)=1\right]} \mathbb{1}\{f(z)=1\} \mathrm{d} z \\
& =2 \int_{-\infty}^{\infty} z^{t} \phi(z) \mathbb{1}\{f(z)=1\} \mathrm{d} z=\int_{-\infty}^{\infty} z^{t} \phi(z) \mathbb{1}\{f(z)=1\} \mathrm{d} z+\int_{-\infty}^{\infty} z^{t} \phi(z) \mathbb{1}\{f(z)=-1\} \mathrm{d} z \\
& =\int_{-\infty}^{\infty} z^{t} \phi(z) \mathrm{d} z=\underset{z \sim \mathcal{N}(0,1)}{\mathbf{E}}\left[z^{t}\right],
\end{aligned}
$$

where we used Equations (5], 6).

A. 2 Proof of Lemma 3.7

We start by noting that each $F \in \mathcal{F}_{k}$ is of the form $F_{\mathbf{v}}(\mathbf{x})=f(\langle\mathbf{v}, \mathbf{x}\rangle)$, where f is the function from Proposition 3.2 and $\mathbf{v} \in S$. We will take σ to be $\sigma(\mathbf{x})=\operatorname{sign}(\langle\mathbf{v}, \mathbf{x}\rangle+\beta)$. Let z_{1}, \ldots, z_{k} be the breakpoints of $f(z)$. We will show that if we set the value of β to a breakpoint, then the result follows.

Let $a_{i+1}=\int_{z_{i}}^{z_{i+1}} \phi(z) \mathrm{d} z$ for $0<i<k+1, a_{1}=\int_{-\infty}^{z_{1}} \phi(z) \mathrm{d} z$ and $a_{k+1}=\int_{z_{k}}^{\infty} \phi(z) \mathrm{d} z$. Let $\beta=z_{l}$, for a breakpoint z_{l}, and $b=\operatorname{sign}\left(f\left(\left(z_{l}+z_{l+1}\right) / 2\right)\right)$. Then we have that

$$
\underset{\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})}{\mathbf{E}}\left[F_{\mathbf{v}}(\mathbf{x}) \sigma(\mathbf{x})\right]=2 \int_{z_{l}}^{\infty} f(z) \phi(z) \mathrm{d} z=2 b \sum_{j=l}^{k+1}(-1)^{j-l} a_{j}
$$

where the first equality holds because

$$
\underset{\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})}{\mathbf{E}}\left[F_{\mathbf{v}}(\mathbf{x}) \mathbb{1}\{\mathbf{x} \in A\}\right]=-\underset{\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})}{\mathbf{E}}\left[F_{\mathbf{v}}(\mathbf{x}) \mathbb{1}\left\{\mathbf{x} \in A^{c}\right\}\right],
$$

for any $A \subseteq \mathbb{R}^{d}$. From the fact that $\sum_{i=1}^{k+1} a_{i}=1$, it follows that there exists an index i such that $a_{i} \geq 1 /(k+1)$. Assume, for the sake of contradiction, that for all $l>i$ we have that $\left|\sum_{j=l}^{k+1}(-1)^{l-j} a_{j}\right| \leq(1 / 4 k)$, since otherwise there exists a breakpoint that satisfies the equation. Then, for $b=\operatorname{sign}\left(f\left(\left(z_{i}+z_{i+1}\right) / 2\right)\right)$, we have that either $2 b\left(\sum_{j=i+1}^{k+1}(-1)^{j-i} a_{j}+a_{i}\right) \geq(1 / 2 k)$ or $2 b\left(\sum_{j=i+1}^{k+1}(-1)^{j-i} a_{j}+a_{i}\right) \leq-(1 / 2 k)$. In the former case, we are done. In the latter case, the halfspace $-\sigma(\mathbf{x})$ satisfies the desired correlation property.

A. 3 Proof of Fact 3.9

We define f to take alternative values ± 1 in intervals of length s. Let us denote $I_{i}=(i s,(i+1) s)$ for $-1 /\left(s \epsilon^{k}\right) \leq i \leq 1 /\left(s \epsilon^{k}\right)$ for an integer i. If $f(z)=1$ for $z \in I_{i}$, then we have $f(z)=-1$ for
$z \in I_{i+1}$. Moreover, we will have that $f(z)=1$ for $z \leq-1 / \epsilon^{k}$ and $f(z)=-1$ for $z>1 / \epsilon^{k}$. We assume that the number of constant pieces is even for simplicity. To prove that for all $0 \leq t<k$, $\mathbf{E}_{z \sim \mathcal{N}(0,1)}\left[f(z) z^{t}\right]<4 \epsilon$, observe that for all even moments the expectation is equal to zero. So it suffices to prove the desired statement for odd moments. Note that $\mathbf{E}_{z \sim \mathcal{N}(0,1)}\left[z^{t} f(z) \mathbb{1}\{z \geq 0\}\right]=$ $\mathbf{E}_{z \sim \mathcal{N}(0,1)}\left[\left|z^{t}\right| f(z) \mathbb{1}\{z<0\}\right]$ for odd moments. Thus, we will prove that $\mathbf{E}_{z \sim \mathcal{N}(0,1)}\left[z^{t} f(z) \mathbb{1}\{z \geq\right.$ $0\}] \leq 2 \epsilon$. We have that

$$
\int_{1 / \epsilon^{k}}^{\infty} z^{t} \phi(z) \mathrm{d} z \leq \epsilon^{k / t}
$$

where we used the inequality $\operatorname{Pr}_{z \sim \mathcal{N}(0,1)}\left[|z|^{t} \geq y\right] \leq \frac{1}{\sqrt{2 \pi} y^{1 / t}} e^{-y^{2 / t}} \leq 1 / y^{1 / t}$. Moreover, we bound from above the absolute ratio between two subsequent regions, i.e., $\left|\frac{\mathbf{E}_{z \sim \mathcal{N}(0,1)}\left[z^{t} f(z) \mathbb{1}\left\{z \in I_{i}\right\}\right]}{\mathbf{E}_{z \sim \mathcal{N}(0,1)}\left[z^{t} f(z) \mathbb{1}\left\{z \in I_{i+1}\right\}\right]}\right|$. For $i \geq 0$, we have that

$$
\begin{equation*}
\frac{\int_{i s}^{(i+1) s} z^{t} \phi(z) \mathrm{d} z}{\int_{(i+1) s}^{(i+2) s} z^{t} \phi(z) \mathrm{d} z} \leq \frac{s((i+1) s)^{t} \phi(i s)}{s((i+1) s)^{t} \phi((i+2) s)}=e^{2 i s^{2}+2 s^{2}} \leq 1+3 i s^{2}+9 i^{2} s^{4} \tag{7}
\end{equation*}
$$

where in the first inequality we used the maximum value and the minimum of the integral, and in the second one we used that $e^{x} \leq 1+x+x^{2}$ for $x \leq 1$, which holds for $s<\epsilon^{k}$. Thus, for two subsequent intervals we have

$$
\int_{i s}^{(i+1) s} z^{t} \phi(z) \mathrm{d} z-\int_{(i+1) s}^{(i+2) s} z^{t} \phi(z) \mathrm{d} z \leq 4 i s^{2} \int_{(i+1) s}^{(i+2) s} z^{t} \phi(z) \mathrm{d} z \leq 4 k s^{2} \int_{(i+1) s}^{(i+2) s} z^{t} \phi(z) \mathrm{d} z
$$

On the other direction, from Equation (7) we have that
$-\int_{i s}^{(i+1) s} z^{t} \phi(z) \mathrm{d} z+\int_{(i+1) s}^{(i+2) s} z^{t} \phi(z) \mathrm{d} z \geq-4 i s^{2} \int_{(i+1) s}^{(i+2) s} z^{t} \phi(z) \mathrm{d} z \geq-4 k s^{2} \int_{(i+1) s}^{(i+2) s} z^{t} \phi(z) \mathrm{d} z$.
Thus, we have

$$
-4 k s^{2}(t-1)!!\leq \sum_{i=0}^{1 /\left(s \epsilon^{k}\right)}(-1)^{i} \int_{i s}^{(i+1) s} z^{t} \phi(z) \mathrm{d} z \leq 4 k s^{2} \int_{-\infty}^{\infty} z^{t} \phi(z)=4 k s^{2}(t-1)!!
$$

Choosing $s=\epsilon^{(k+1) / 2} / k^{k}$ and setting $\epsilon=\epsilon / 2$, the proof follows.

B Omitted Proofs from Section 4

B. 1 Proof of Proposition 4.1

To prove Proposition 4.1, we first need to prove that there exists a function that has non-trivial correlation with the ReLU and whose first k moments are zero.
We have the following crucial proposition.
Proposition B.1. Let k be a positive integer. There exists a function $f: \mathbb{R} \mapsto[-1,1]$ such that $\mathbf{E}_{z \sim \mathcal{N}(0,1)}\left[f(z) z^{t}\right]=0$, for $0 \leq t \leq k$, and $\mathbf{E}_{z \sim \mathcal{N}(0,1)}[f(z) \operatorname{ReLU}(z)]>1 / \operatorname{poly}(k)$.

The proof of Proposition B.1 requires analytic properties of the Legendre poynomials and is deferred to Section B. 2
In the main part of this subsection, we prove Proposition 4.1, assuming Proposition B. 1 .
In the following lemma, we show that there exists a piecewise constant Boolean-valued function with near-vanishing moments of degree at most k and non-trivial correlation with the ReLU.
Lemma B.2. For any $\epsilon>0$ and any non-negative integer k, there exists a piecewise constant function $G: \mathbb{R} \mapsto\{ \pm 1\}$ such that $\left|\mathbf{E}_{z \sim \mathcal{N}(0,1)}\left[G(z) z^{t}\right]\right| \leq \epsilon$, for $0 \leq t \leq k$, and $\mathbf{E}_{z \sim \mathcal{N}(0,1)}[G(z) \operatorname{ReLU}(z)]>1 / \operatorname{poly}(k)+O(\epsilon)$.

Proof. The proof is similar to the proof of Fact 3.9 . The main difference here is that we need to construct a function that will also have non-trivial correlation with the ReLU. To do this, we use a probabilistic argument to show that there exists a function that is bounded in the range $[-1,1]$, that has non trivial correlation, and then we discretize the function as in Fact 3.9. Let f be the function from Proposition B.1. We split the interval $[-1,1]$ into subintervals of length δ and we define the random piecewise constant function G in each interval $\left[z_{0}, z_{0}+\delta\right]$ as $G(z)=1$ with probability $\left(1+\int_{z_{0}}^{z_{0}+\delta} f(z) \phi(z) \mathrm{d} z / \int_{z_{0}}^{z_{0}+\delta} \phi(z) \mathrm{d} z\right) / 2$ and $G(z)=-1$ with probability $\left(1-\int_{z_{0}}^{z_{0}+\delta} f(z) \phi(z) \mathrm{d} z / \int_{z_{0}}^{z_{0}+\delta} \phi(z) \mathrm{d} z\right) / 2$. Thus, in each interval, we have $\mathbf{E}[G(z)]=\int_{z_{0}}^{z_{0}+\delta} f(z) \phi(z) \mathrm{d} z / \int_{z_{0}}^{z_{0}+\delta} \phi(z) \mathrm{d} z$. Then, for any $\left|z_{0}\right| \leq 1-\delta$, we have that

$$
\begin{aligned}
\mathbf{E}\left[\int_{z_{0}}^{z_{0}+\delta} G(z) z^{t} \phi(z) \mathrm{d} z\right] & =\mathbf{E}\left[\int_{z_{0}}^{z_{0}+\delta} G(z)\left(z_{0}+O(\delta)\right)^{t} \phi(z) \mathrm{d} z\right]=\int_{z_{0}}^{z_{0}+\delta} f(z) \phi(z)\left(z_{0}+O(\delta)\right)^{t} \mathrm{~d} z \\
& =\int_{z_{0}}^{z_{0}+\delta} f(z) \phi(z) z^{t} \mathrm{~d} z+\int_{z_{0}}^{z_{0}+\delta} t \cdot O\left(\left(\left|z_{0}\right|+\delta\right)^{t-1} \delta\right) \mathrm{d} z \\
& =\int_{z_{0}}^{z_{0}+\delta} f(z) z^{t} \phi(z) \mathrm{d} z+t \cdot O\left(\left(\left|z_{0}\right|+\delta\right)^{t-1} \delta^{2}\right)
\end{aligned}
$$

where we used the Taylor series $z^{t}=\left(z_{0}+O(\delta)\right)^{t}+t \cdot O\left(\delta\left(\left|z_{0}\right|+\delta\right)^{t-1}\right)$. Thus, we obtain

$$
\mathbf{E}\left[\int_{-1}^{1} G(z) z^{t} \phi(z) \mathrm{d} z\right]=\int_{-1}^{1} f(z) z^{t} \phi(z) \mathrm{d} z+t \cdot O(\delta)=t \cdot O(\delta)
$$

where we used that all the moments of f with degree at most k are zero and that $\left|z_{0}\right|+\delta \leq 1$. Moreover, for $0 \leq z_{0} \leq 1$, it holds that

$$
\mathbf{E}\left[\int_{z_{0}}^{z_{0}+\delta} G(z) \operatorname{ReLU}(z) \phi(z) \mathrm{d} z\right]=\mathbf{E}\left[\int_{z_{0}}^{z_{0}+\delta} G(z) z \phi(z) \mathrm{d} z\right]=\int_{z_{0}}^{z_{0}+\delta} f(z) \operatorname{ReLU}(z) \phi(z) \mathrm{d} z+t \cdot O\left(\left(\left|z_{0}\right|+\delta\right)^{t-1} \delta^{2}\right)
$$

where we used the same method as before. Thus, it follows that

$$
\mathbf{E}\left[\int_{0}^{1} G(z) \operatorname{ReLU}(z) \phi(z) \mathrm{d} z\right]=\int_{0}^{1} f(z) \operatorname{ReLU}(z) \phi(z) \mathrm{d} z+t \cdot O(\delta)>1 / \operatorname{poly}(k)+t \cdot O(\delta)
$$

Define the random variable $X_{i, t}=\int_{i \cdot \delta}^{i \cdot \delta+\delta} G(z) z^{t} \phi(z) \mathrm{d} z$ and $X_{t}=\sum_{i=-1 / \delta}^{1 / \delta} X_{i, t}$. Using Hoeffding bounds, we have that

$$
\operatorname{Pr}\left[\left|X_{t}-\mathbf{E}\left[X_{t}\right]\right|>\sqrt{\delta} \log (4 /(t+1))\right] \leq 1 /(2(t+1))
$$

where we used that $\left|X_{i, t}\right| \leq \delta$. By the union bound, we get that there is positive probability that all X_{t} are within $\pm \sqrt{\delta} \log (4 /(t+1))$ from the mean value, and thus, from the probabilistic method there is a function with this property. Furthermore, we round the rest of the values of $G(z)$ as in the proof of Fact 3.9 (because $\operatorname{ReLU}(z)=z$ for $z>0$). Choosing the correct constant value of δ, the result follows.

Lemma B.3. Let m and k be positive integers such that $m>2 k+5$ and $\epsilon>0$. If there exists an m-piecewise constant function $f: \mathbb{R} \mapsto\{ \pm 1\}$ such that $\left|\mathbf{E}_{z \sim \mathcal{N}(0,1)}\left[f(z) z^{t}\right]\right|<\epsilon$ for all nonnegative integers $t \leq k$, and $\mathbf{E}_{z \sim \mathcal{N}(0,1)}[f(z) \operatorname{ReLU}(z)]>1 / \operatorname{poly}(k)+O(\epsilon)$, then there exists an at most $(2 k+5)$-piecewise constant function $g: \mathbb{R} \mapsto\{ \pm 1\}$ such that $\left|\mathbf{E}_{z \sim \mathcal{N}(0,1)}\left[g(z) z^{t}\right]\right|<\epsilon$ for all non-negative integers $t \leq k$ and $\mathbf{E}_{z \sim \mathcal{N}(0,1)}[g(z) \operatorname{ReLU}(z)]>1 / \operatorname{poly}(k)+O(\epsilon)$.

Proof. This proof is similar to the proof of Lemma 3.8. The only difference is that we have to keep also the correlation with the ReLU constant. For completeness, we provide a full proof.
Let $\left\{b_{1}, b_{2}, \ldots, b_{m-1}\right\}$ be the breakpoints of f. Let $F\left(z_{1}, z_{2}, \ldots, z_{m-1}, z\right): \overline{\mathbb{R}}^{m} \mapsto \mathbb{R}$ be an m-piecewise constant function with breakpoints on z_{1}, \ldots, z_{m-1}, where $z_{1}<z_{2}<\ldots<z_{m-1}$ and $F\left(b_{1}, b_{2}, \ldots, b_{m-1}, z\right)=f(z)$. For simplicity, let $\mathbf{z}=\left(z_{1}, \ldots, z_{m-1}\right)$ and define $M_{i}(\mathbf{z})=$
$\mathbf{E}_{z \sim \mathcal{N}(0,1)}\left[F(\mathbf{z}, z) z^{i}\right]$, for all $0 \leq i \leq k$ and $M_{c}(\mathbf{z})=\mathbf{E}_{z \sim \mathcal{N}(0,1)}[F(\mathbf{z}, z) \operatorname{ReLU}(z)]$. Finally, let $\mathbf{M}(\mathbf{z})=\left[M_{0}(\mathbf{z}), M_{1}(\mathbf{z}), \ldots, M_{k}(\mathbf{z}), \operatorname{ar} M_{c}(\mathbf{z})\right]^{T}$. It is clear that

$$
M_{i}(\mathbf{z})=\sum_{n=0}^{m-1} \int_{z_{n}}^{z_{n+1}} F(\mathbf{z}, z) z^{i} \phi(z) \mathrm{d} z=\sum_{n=0}^{m-1} a_{n} \int_{z_{n}}^{z_{n+1}} z^{i} \phi(z) \mathrm{d} z
$$

and

$$
M_{c}(\mathbf{z})=\sum_{n=0}^{m-1} \int_{z_{n}}^{z_{n+1}} F(\mathbf{z}, z) z \mathbb{1}\{z>0\} \phi(z) \mathrm{d} z=\sum_{n=0}^{m-1} a_{n} \int_{z_{n}}^{z_{n+1}} z \mathbb{1}\{z>0\} \phi(z) \mathrm{d} z
$$

where $z_{0}=-\infty, z_{m}=\infty$, and a_{n} is the sign of $F(\mathbf{z}, z)$ in the interval $\left(z_{n}, z_{n+1}\right)$. Note that $a_{n}=-a_{n+1}$ for every $0 \leq n<m$. By taking the derivative of M_{c} and M_{i} in z_{j}, for $0<j<m$, we get that

$$
\frac{\partial}{\partial z_{j}} M_{i}(\mathbf{z})=2 a_{j-1} z_{j}^{i} \phi\left(z_{j}\right) \quad \text { and } \quad \frac{\partial}{\partial z_{j}} M_{c}(\mathbf{z})=\left\{\begin{array}{l}
2 a_{j-1} z_{j} \phi\left(z_{j}\right), \quad \text { if } a_{j}>0 \\
0, \quad \text { if } \quad a_{j} \leq 0
\end{array}\right.
$$

Combining the above, we get

$$
\frac{\partial}{\partial z_{j}} \mathbf{M}(\mathbf{z})=\left\{\begin{array}{l}
2 a_{j-1} \phi\left(z_{j}\right)\left[1, z_{j}^{1}, \ldots, z_{j}^{k}, z_{j}\right]^{T}, \quad \text { if } \quad z_{j}>0 \\
2 a_{j-1} \phi\left(z_{j}\right)\left[1, z_{j}^{1}, \ldots, z_{j}^{k}, 0\right]^{T}, \quad \text { if } \quad z_{j} \leq 0
\end{array}\right.
$$

We first work with the positive breakpoints. Let i_{0} be the index of the first positive breakpoint and assume that the positive breakpoints are $m^{\prime}>k+2$. We argue that there exists a vector $\mathbf{u} \in \mathbb{R}^{m-1}$ such that $\mathbf{u}=\left(0, \ldots, 0, \mathbf{u}_{i_{0}+1}, \ldots, \mathbf{u}_{i_{0}+k+2}, 0,0, \ldots, 0,1\right)$ and the directional derivative of \mathbf{M} in \mathbf{u} is zero. To prove this, we construct a system of linear equations, such that $\nabla_{\mathbf{u}} M_{i}(\mathbf{z})=0$ for all $0 \leq i \leq k$ and $\nabla_{\mathbf{u}} M_{c}(\mathbf{z})=0$. Indeed, we have $\sum_{j=1}^{k} \frac{\partial}{\partial z_{j}} M_{i}(\mathbf{z}) \mathbf{u}_{j}=-\frac{\partial}{\partial z_{m-1}} M_{i}(\mathbf{z})$ or $\sum_{j=1}^{k} a_{j-1} z_{j}^{i} \phi\left(z_{j}\right) \mathbf{u}_{j}=-a_{m-2} z_{m-1}^{i} \phi\left(z_{m-1}\right)$ and $\sum_{j=1}^{k} a_{j-1} z_{j} \phi\left(z_{j}\right) \mathbf{u}_{j} \mathbb{1}\left\{z_{j} \geq 0\right\}=-a_{m-2} z_{m-1} \phi\left(z_{m-1}\right) \mathbb{1}\left\{z_{m-1} \geq 0\right\}$, which is linear in the variables \mathbf{u}_{j}. Note that the last equation is the same equation as the $\nabla_{\mathbf{u}} M_{1}(\mathbf{z})=0$, because we have positive breakpoints only. Let $\hat{\mathbf{u}}$ be the vector with the variables from index $i_{0}+1$ to $i_{0}+k+2$, and let \mathbf{w} be the vector of the right hand side of the system, i.e., $\mathbf{w}_{i}=-a_{m-2} z_{m-1}^{i} \phi\left(z_{m-1}\right)$. Then this system can be written in matrix form as $\mathbf{V D} \hat{\mathbf{u}}=\mathbf{w}$, where \mathbf{V} is the Vandermonde matrix, i.e., the matrix that is $\mathbf{V}_{i, j}=\alpha_{i}^{j-1}$, for some values α_{i} and \mathbf{D} is a diagonal matrix. In our case, $\mathbf{V}_{i, j}=z_{i}^{j-1}$ and $\mathbf{D}_{j, j}=2 a_{j-1} \phi\left(z_{j}\right)$. It is known that the Vandermonde matrix has full rank iff for all $i \neq j$ we have $\alpha_{i} \neq \alpha_{j}$, which holds in our setting. Thus, the matrix VD is nonsingular and there exists a solution to the equation. Thus, there exists a vector \mathbf{u} with our desired properties and, moreover, any vector in this direction is a solution to this system of linear equations. Note that the vector \mathbf{u} depends on the value of \mathbf{z}, thus we consider $\mathbf{u}(\mathbf{z})$ be the (continuous) function that returns a vector \mathbf{u} given \mathbf{z}.
We define a differential equation for the function $\mathbf{v}: \overline{\mathbb{R}} \mapsto \overline{\mathbb{R}}^{m-1}$, as follows: $\mathbf{v}(0)=\mathbf{b}$, where $\mathbf{b}=\left(b_{1}, \ldots, b_{m-1}\right)$, and $\mathbf{v}^{\prime}(T)=\mathbf{u}(\mathbf{v}(T))$ for all $T \in \overline{\mathbb{R}}$. If \mathbf{v} is a solution to this differential equation, then we have:

$$
\frac{\mathrm{d}}{\mathrm{~d} T} \mathbf{M}(\mathbf{v}(T))=\frac{\mathrm{d}}{\mathrm{~d} \mathbf{v}(T)} \mathbf{M}(\mathbf{v}(T)) \frac{\mathrm{d}}{\mathrm{~d} T} \mathbf{v}(T)=\frac{\mathrm{d}}{\mathrm{~d} \mathbf{v}(T)} \mathbf{M}(\mathbf{v}(T)) \mathbf{u}(\mathbf{v}(T))=\mathbf{0}
$$

where we used the chain rule and that the directional derivative in the $\mathbf{u}(\mathbf{v}(T))$ direction is zero. This means that the function $\mathbf{M}(\mathbf{v}(t))$ is constant and, for all $0 \leq j<k$, we have $\left|M_{j}\right|<\epsilon$, because we have that $\left|\mathbf{E}_{z \sim \mathcal{N}(0,1)}\left[F\left(z_{1}, \ldots, z_{m-1}, z\right) z^{t}\right]\right|<\epsilon$. Furthermore, since $\mathbf{u}(\mathbf{v}(T))$ is continuous in $\mathbf{v}(T)$, this differential equation will be well founded and have a solution up until the point where either two of the z_{i} approach each other or one of the z_{i} approaches plus or to zero (the solution cannot oscillate, since $\mathbf{v}_{m-1}^{\prime}(T)=1$ for all T).
Running the differential equation until we reach such a limit, we find a limiting value \mathbf{v}^{*} of $\mathbf{v}(T)$ so that either:

1. There is an i such that $\mathbf{v}_{i}^{*}=\mathbf{v}_{i+1}^{*}$, which gives us a function that is at most $(m-2)$-piecewise constant, i.e., taking $F\left(\mathbf{v}^{*}, z\right)$.
2. $\mathbf{v}_{m-1}^{*}=\infty$, which gives us an at most $(m-1)$-piecewise constant function, i.e., taking $F\left(\mathbf{v}^{*}, z\right)$. Since when the $\mathbf{v}_{m-1}^{*}=\infty$, the last breakpoint becomes ∞, we have one less breakpoint.
3. $\mathbf{v}_{i_{0}+1}^{*}=0$, which gives us one less positive breakpoint.

By iterating this method, we can get a function f^{\prime} that has at most $k+2$ positive breakpoints. For the negative breakpoints, we work in a similar way, with the only difference that $\frac{\partial}{\partial z_{j}} M_{c}(\mathbf{z})=0$, for all the negative breakpoints, and that the direction we increase has the form $\mathbf{u}=\left(-1, \mathbf{u}_{1}, \ldots, 0, \mathbf{u}_{k+2}, 0, \ldots, 0\right)$. Thus, we get a function g that has at most $2 k+5$ breakpoints, where we can get an extra breakpoint if 0 is a breakpoint.

Proof of Proposition 4.1. For every $\epsilon>0$, using the function f^{\prime} from Lemma B. 2 in Lemma B. 3 . we can obtain a function f_{ϵ} such that $\left|\mathbf{E}_{z \sim \mathcal{N}(0,1)}\left[f_{\epsilon}(z) z^{t}\right]\right| \leq \epsilon$, for every non-negative integer $t \leq k$ and $\mathbf{E}_{z \sim \mathcal{N}(0,1)}\left[f_{\epsilon}(z) \operatorname{ReLU}(z)\right]>1 / \operatorname{poly}(k)+O(\epsilon)$. Moreover, the function f_{ϵ} is at most $(2 k+5)$-piecewise constant.
Let $\mathbf{M}: \overline{\mathbb{R}}^{2 k+5} \mapsto \mathbb{R}^{k+2}$, where $M_{i}(\mathbf{b})=\sum_{n=0}^{2 k+5}(-1)^{n+1} \int_{b_{n}}^{b_{n+1}} z^{i} \phi(z) \mathrm{d} z$, for $0 \leq i<k+2$, and $M_{k+2}(\mathbf{b})=\sum_{n=0}^{2 k+5}(-1)^{n+1} \int_{b_{n}}^{b_{n+1}} \operatorname{ReLU}(z) \phi(z) \mathrm{d} z$, where $b_{0} \leq b_{1} \ldots \leq b_{2 k+5}, b_{0}=-\infty$ and $b_{2 k+6}=\infty$. Here we assume without loss of generality that before the first breakpoint the function is negative, because we can always set the first breakpoint to be $-\infty$. It is clear that the function \mathbf{M} is a continuous map and $\overline{\mathbb{R}}^{2 k+5}$ is a compact set, thus $\mathbf{M}\left(\overline{\mathbb{R}}^{2 k+5}\right)$ is a compact set. We also have that for every $\epsilon>0$, there is a point $\mathbf{b} \in \overline{\mathbb{R}}^{2 k+5}$ such that $\left|\left\langle\mathbf{M}(\mathbf{b}), \mathbf{e}_{i}\right\rangle\right| \leq \epsilon$, for $0 \leq i<k+2$, and $\left\langle\mathbf{M}(\mathbf{b}), \mathbf{e}_{k+2}\right\rangle>1 / \operatorname{poly}(k)+O(\epsilon)$. Thus, from compactness, we have that there exists a point $\mathbf{b}^{*} \in \overline{\mathbb{R}}^{2 k+5}$ such that $\left|\left\langle\mathbf{M}\left(\mathbf{b}^{*}\right), \mathbf{e}_{i}\right\rangle\right|=0$ for $0 \leq i<k+2$, and $\left\langle\mathbf{M}\left(\mathbf{b}^{*}\right), \mathbf{e}_{k+2}\right\rangle>1 / \operatorname{poly}(k)$.

B. 2 Proof of Proposition B. 1

Below we state some important properties of the Legendre polynomials that we use in our proofs.
Fact B. 4 ([|Sze39]). The Legendre polynomials $P_{n}(z)$, for n non-negative integer, satisfy the following properties:
(i) $P_{n}(z)$ is a degree- n univariate polynomial, with $P_{0}(z)=1$ and $P_{1}(z)=z$.
(ii) $\int_{-1}^{1} P_{i}(z) P_{j}(z) \mathrm{d} z=\delta_{i j} \frac{2}{2 i+1}$, for all i, j non-negative integers (orthogonality).
(iii) $\left|P_{n}(z)\right| \leq 1$, for all $|z| \leq 1$ (bounded).
(iv) $P_{n}^{\prime}(z)=\sum_{t=0}^{n} \frac{2 t+1}{2} P_{t}(z)$ (closed form of derivative).

Using the Legendre polynomials, we can construct a function for which the first $k+1$ moments are zero and which has non-trivial correlation with the ReLU function.

Proof of Proposition B.1. Define $f(z)=c \frac{\operatorname{ReLU}(z)-p(z)}{\phi(z)} \mathbb{1}\{z \in[-1,1]\}$, for a degree- k polynomial $p(z)$ and a constant $c>0$. Then, we have

$$
\underset{z \sim \mathcal{N}(0,1)}{\mathbf{E}}\left[f(z) z^{t}\right]=c \int_{-1}^{1}(\operatorname{ReLU}(z)-p(z)) z^{t} \mathrm{~d} z
$$

We want $\mathbf{E}_{z \sim \mathcal{N}(0,1)}\left[f(z) z^{t}\right]=0$, thus we want to find a polynomial $p(z)$ such that

$$
\begin{equation*}
\int_{-1}^{1} \operatorname{ReLU}(z) z^{t} \mathrm{~d} z=\int_{-1}^{1} p(z) z^{t} \mathrm{~d} z \tag{8}
\end{equation*}
$$

Equation (8) is equivalent to saying that for all $0 \leq t<k$, it holds

$$
\begin{equation*}
\int_{-1}^{1} \operatorname{ReLU}(z) P_{t}(z) \mathrm{d} z=\int_{-1}^{1} p(z) P_{t}(z) \mathrm{d} z \tag{9}
\end{equation*}
$$

because the Legendre polynomials of degree at most k span the space of polynomials of degree at most k. Using Fact B.4 (ii) and a standard computation involving orthogonal polynomials, gives that for $p(z)=\sum_{t=0}^{k} \frac{2 t+1}{2} P_{t}(z) \int_{-1}^{1} \operatorname{ReLU}(z) P_{t}(z) \mathrm{d} z$, Equation (9) and Equation (8) hold. We want the function f to take values inside the interval $[-1,1]$. To achieve this, we bound from above the constant c. It holds that $\int_{-1}^{1} \operatorname{ReLU}(z) P_{t}(z) \mathrm{d} z \leq 2$, where we used Fact B.4 (iii) and $|\operatorname{ReLU}(z)| \leq 1$ for $|z| \leq 1$. Moreover, we get that

$$
|p(z)| \leq 2 \sum_{t=0}^{k} \frac{2 t+1}{2}\left|P_{t}(z)\right| \leq k^{2}+2 k \leq 2 k^{2}
$$

for all $|z| \leq 1$. Thus, it must hold that $c \leq g(1) /\left(2 k^{2}+1\right)$, and by taking $c=g(1) /\left(2 k^{2}+1\right)$, we get that $|f(z)| \leq 1$.

Next we prove that $\mathbf{E}_{z \sim \mathcal{N}(0,1)}[f(z) \operatorname{ReLU}(z)]>1 / \operatorname{poly}(k)$. We have that

$$
\underset{z \sim \mathcal{N}(0,1)}{\mathbf{E}}[f(z) \operatorname{ReLU}(z)]=c \int_{-1}^{1} \operatorname{ReLU}(z)(\operatorname{ReLU}(z)-p(z)) \mathrm{d} z=c \int_{-1}^{1}(\operatorname{ReLU}(z)-p(z))^{2} \mathrm{~d} z
$$

where we used that $\int_{-1}^{1} q(z)(\operatorname{ReLU}(z)-p(z)) \mathrm{d} z=0$, for any polynomial q of degree at most k, and thus it holds for $q(z)=p(z)$. Note that $\left|p^{\prime}(z)\right| \leq 5 k^{4}$ and $\left|p^{\prime \prime}(z)\right| \leq 7 k^{6}=: N$, because from Fact $\bar{B} .4$ (iv), we have that $\left|P_{n}^{\prime}(z)\right| \leq 2 n^{2}$ and $\left|P_{n}^{\prime \prime}(z)\right| \leq 4 n^{4}$, for all $|z| \leq 1$. For $\epsilon>0$ sufficiently small, we then have

$$
\int_{-1}^{1}(\operatorname{ReLU}(z)-p(z))^{2} \mathrm{~d} z \geq \int_{-\epsilon}^{\epsilon}(\operatorname{ReLU}(z)-p(z))^{2} \mathrm{~d} z
$$

Using the Taylor expansion of p, we get that there exists a linear function L, such that $p(z)=$ $L(z)+O\left(N \epsilon^{2}\right)$, for $|z| \leq \epsilon$. We thus have that

$$
\int_{-\epsilon}^{\epsilon}(\operatorname{ReLU}(z)-p(z))^{2} \mathrm{~d} z=\int_{-\epsilon}^{\epsilon}\left(\operatorname{ReLU}(z)-L(z)+O\left(N \epsilon^{2}\right)\right)^{2} \mathrm{~d} z
$$

Note that every function can be written as $G(z)=G_{\text {even }}(z)+G_{\text {odd }}(z)$, where $G_{\text {even }}(z)$ is the even part of G and $G_{\text {odd }}(z)$ is the odd part. For $\ell>0$, it holds that

$$
\int_{-\ell}^{\ell} G^{2}(z) \mathrm{d} z=\int_{-\ell}^{\ell}\left(G_{\text {even }}^{2}(z)+G_{\text {odd }}^{2}(z)+2 G_{\text {even }}(z) G_{\text {odd }}(z)\right) \mathrm{d} z \geq \int_{-\ell}^{\ell} G_{\text {even }}^{2}(z) \mathrm{d} z
$$

where we used that $\int_{-\ell}^{\ell} G_{\text {even }}(z) G_{\text {odd }}(z)=0$. Using that $\operatorname{ReLU}(z)=|z| / 2+z / 2$, it holds

$$
\int_{-\epsilon}^{\epsilon}\left(\operatorname{ReLU}(z)-L(z)+O\left(N \epsilon^{2}\right)\right)^{2} \mathrm{~d} z \geq \int_{-\epsilon}^{\epsilon}\left(|z| / 2-L(0)+O\left(N \epsilon^{2}\right)\right)^{2} \mathrm{~d} z
$$

where we used that L is linear, thus the even part is $L(0)$. Choosing ϵ such that $N<\epsilon^{-1} / C$ for a large enough $C>0$, we have that $||z| / 2-L(0)| \geq \epsilon / 8$ for at least half of the interval $[-\epsilon, \epsilon]$. To prove this, note that we have two cases. First, if $L(0)>\epsilon / 2$ or $L(0) \leq 0$, this holds trivially. Again in the other case trivially in half the points we have $||z| / 2-L(0)| \geq \epsilon / 4$. Moreover, from the choice of ϵ, we have that $N \epsilon^{2} \leq \epsilon / C$, thus $\left||z| / 2-L(0)+O\left(N \epsilon^{2}\right)\right| \geq\left|||z| / 2-L(0)|-\left|O\left(N \epsilon^{2}\right)\right|\right| \geq \epsilon / 8$ for at least half of the interval. Therefore, we have

$$
\int_{-\epsilon}^{\epsilon}\left(|z| / 2-L(0)+O\left(N \epsilon^{2}\right)\right)^{2} \mathrm{~d} z \geq \Omega\left(\epsilon^{3}\right)
$$

By our choice of ϵ, we have

$$
c \int_{-1}^{1}(\operatorname{ReLU}(z)-p(z))^{2} \mathrm{~d} z \geq c \cdot \Omega\left(\epsilon^{3}\right) \geq c \cdot \Omega\left(N^{-3}\right) \geq \Omega\left(1 / k^{20}\right) .
$$

This completes the proof.

B. 3 Proof of Theorem 1.5

The proof follows using the same construction as in Theorem 1.4, but using the $O(k)$-piecewise constant function f from Proposition 4.1. Let $C(k)$ be a constant that depends on k and \mathcal{F}_{k} be the family of $O(k)$-decision lists of halfspaces, where each $F_{\mathbf{v}} \in \mathcal{F}_{k}$ has the form $F_{\mathbf{v}}(\mathbf{x})=$ $C(k) \cdot f(\langle\mathbf{v}, \mathbf{x}\rangle)$, for a unit vector $\mathbf{v} \in S$, where we use the set S from Lemma 3.4. Let \mathcal{A} be an agnostic SQ learner for ReLUs under Gaussian marginals. We feed \mathcal{A} a set of i.i.d. labeled examples from an arbitrary function $F_{\mathbf{v}} \in \mathcal{F}_{k}$. By definition, algorithm \mathcal{A} computes a hypothesis $h: \mathbb{R}^{d} \mapsto \mathbb{R}$ such that

$$
\underset{\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})}{\mathbf{E}}\left[\left(h(\mathbf{x})-F_{\mathbf{v}}(\mathbf{x})\right)^{2}\right] \leq \inf _{f \in \mathcal{C}_{\mathrm{ReLU}}} \underset{\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})}{\mathbf{E}}\left[\left(f(\mathbf{x})-F_{\mathbf{v}}(\mathbf{x})\right)^{2}\right]+\epsilon
$$

We denote $\|g\|_{2}^{2}=\mathbf{E}_{\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})}\left[g(\mathbf{x})^{2}\right]$ for a function $g: \mathbb{R}^{d} \mapsto \mathbb{R}$. Let $C(k)=$ $\frac{\|\operatorname{ReLU}\|_{2}^{2}}{\mathbf{E}_{\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})}[f(\langle\mathbf{x}, \mathbf{v}\rangle) \operatorname{ReLU}(\langle\mathbf{x}, \mathbf{v}\rangle)]}$. Then we have that

$$
\begin{aligned}
\underset{\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})}{\mathbf{E}}\left[\left(\operatorname{ReLU}(\langle\mathbf{x}, \mathbf{v}\rangle)-F_{\mathbf{v}}(\mathbf{x})\right)^{2}\right] & =\left\|F_{\mathbf{v}}\right\|_{2}^{2}+\|\operatorname{ReLU}\|_{2}^{2}-2 \underset{\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})}{\mathbf{E}}\left[F_{\mathbf{v}}(\mathbf{x}) \operatorname{ReLU}(\langle\mathbf{x}, \mathbf{v}\rangle)\right] \\
& =C^{2}(k)\|f\|_{2}^{2}-\|\operatorname{ReLU}\|_{2}^{2}
\end{aligned}
$$

Furthermore, using that $\|f\|_{2}^{2}=1$ and $\|\operatorname{ReLU}\|_{2}^{2}=1 / 2$, if we choose $\epsilon=o\left(1 / C^{2}(k)\right)$, the algorithm returns a hypothesis such that

$$
\underset{\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})}{\mathbf{E}}\left[\left(h(\mathbf{x})-F_{\mathbf{v}}(\mathbf{x})\right)^{2}\right] \leq C^{2}(k)\left(1-\Omega\left(1 / C^{2}(k)\right)\right)
$$

Thus, from the triangle inequality, we have that $\|h / C(k)\|_{2}^{2} \leq 2\|f\|_{2}^{2}$, and also

$$
2 \underset{\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})}{\mathbf{E}}\left[\frac{h(\mathbf{x})}{C(k)} \frac{F_{\mathbf{v}}(\mathbf{x})}{C(k)}\right] \geq \Omega\left(1 / C^{2}(k)\right)+\|h\|_{2}^{2} / C^{2}(k) \geq \Omega\left(1 / C^{2}(k)\right)
$$

Finally,

$$
\underset{\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})}{\mathbf{E}}\left[\frac{h(\mathbf{x})}{\|h\|_{2}} \frac{F_{\mathbf{v}}(\mathbf{x})}{\left\|F_{\mathbf{v}}\right\|_{2}}\right] \geq \frac{1}{2} \underset{\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})}{\mathbf{E}}\left[\frac{h(\mathbf{x})}{C(k)} \frac{F_{\mathbf{v}}(\mathbf{x})}{C(k)}\right] \geq \Omega\left(1 / C^{2}(k)\right)
$$

Let $h^{*}(\mathbf{x})=\frac{h(\mathbf{x})}{\|h\|_{2}}$ and $F_{\mathbf{v}}^{*}(\mathbf{x})=\frac{F_{\mathbf{v}}(\mathbf{x})}{\left\|F_{\mathbf{v}}\right\|_{2}}$. Then we have that $\mathbf{E}_{\mathbf{x} \sim \mathcal{N}(0, I)}\left[h^{*}(\mathbf{x}) F_{\mathbf{v}}^{*}(\mathbf{x})\right] \geq \Omega\left(1 / C^{2}(k)\right)$. Thus, using Proposition 4.1 to bound $C(k)$, we get that

$$
\underset{\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})}{\mathbf{E}}\left[h^{*}(\mathbf{x}) F_{\mathbf{v}}^{*}(\mathbf{x})\right] \geq \Omega(1 / \operatorname{poly}(k))
$$

Since the function $F_{\mathbf{v}}$ is an $O(k)$-decision list of halfspaces, we can apply Proposition 3.1 to get that any SQ algorithm needs $d^{\Omega(k)}$ queries to $\operatorname{STAT}\left(d^{-\Omega(k)}\right)$ to get $\mathbf{E}_{\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})}\left[h^{*}(\mathbf{x}) F_{\mathbf{v}}^{*}(\mathbf{x})\right] \geq d^{-\Omega(k)}$. Thus, in order to learn with error OPT $+\epsilon$, for $\epsilon=o(1 / \operatorname{poly}(k))$, the algorithm \mathcal{A} needs to use $d^{\Omega\left((1 / \epsilon)^{c}\right)}$ queries to $\operatorname{STAT}\left(d^{-\Omega\left((1 / \epsilon)^{c}\right)}\right)$, for a constant $c>0$.

