
Supplementary information
1 Simulation parameters
All simulations were based on pytorch [5]. For the nonlinear neuroscience tasks, we applied the gradient
descent method “Adam” [4] to the recurrent weights W as well as to the input and output vectors mi,
wi. We checked that our results did not depend qualitatively on the choice of the “Adam” algorithm
over plain gradient descent; however, training converged more easily for this choice of algorithm. We
also checked that restricting training to W only (as for the simple model) did not alter our results
qualitatively (although, with this restriction, training on the Romo task for small values of g did not
converge). Code for reproducing our results can be found on https://github.com/frschu/neurips_
2020_interplay_randomness_structure/.
The network size for the results in Figures 1 and 2 was N = 256, and the learning rate η = 0.05/N . We

trained the networks for a maximum number of 1000, 2000, and 6000 epochs for the flip-flop, Mante, and
Romo task, respectively. Each epoch consisted of a batch of 32 independent task trials. For evaluation of
the loss after rank-truncation or shufflingW0, we used a single batch of 512 independent task trials. Note
that for “Adam”, the learning rate is scaled with N to obtain approximate invariance of the loss curve
for different network sizes N . Further note that Fig 1 does not always show the loss over all learning
epochs (so that the differences in the initial phase are more clearly visible).
For the simpler, linear model, we applied plain gradient descent and only adapted W . We trained all

models for 200 epochs, and the learning rate was adapted in order to obtain smooth convergence within
these 200 epochs. We set η = η0(1 − g2)2, with η0 = 0.015, 0.003 for ẑ = 0.5, 2.0, respectively. We
checked that our numerical results do not depend on this choice, as long as a sufficiently small learning
rate and large enough number of epochs is chosen.
The network dynamics are described by the continuous dynamics

ẋ(t) = −x(t) +Wφ(x(t)) +
√
N

Nin∑
i=1

miui(t) , (1)

with initial condition x(0) = 0. For the simulation, we discretized these using the Euler-forward scheme:

xk+1 = (1−∆t)xk + ∆t
[
Wφ(xk) +

√
N

Nin∑
i=1

miui,k

]
, (2)

with a discrete time step ∆t = 0.5 and x(t = k∆t) = xk. We checked that our results did not change
qualitatively for choosing a smaller ∆t or fully discrete dynamics (∆t = 1).
For the gradient-based updates, we defined the quadratic loss

l(t) = 1
Nout

Nout∑
i=1

1
2 [zi(t)− ẑi(t)]2 , (3)

with readout zi(t), target ẑi(t), and number of outputs Nout. Depending on the task, the loss was
defined only during specific times of the task (during decision or fixation periods, see task descriptions).
Accordingly, for each task we defined a boolean mask Mk, indicating the points k on the discrete time
grid were the loss was active. The full loss was the average over this mask:

L = 1
NM

kmax∑
k=1

Mk l(k∆t) , (4)

with NM =
∑kmax
k=0 Mk, kmax = T/∆t and trial time T .

1

https://github.com/frschu/neurips_2020_interplay_randomness_structure/
https://github.com/frschu/neurips_2020_interplay_randomness_structure/

Table S1: Task parameters
Parameter Symbol Flip-flop Mante Romo Simple task
inputs Nin 2 4 1 1
outputs Nout 2 1 2 1
Trial duration T 50 48 30 101
Fixation duration tfix 1 3 3 1
Stimulus duration tstim 1 20 1 -
Decision delay tdelay 5 5 5 -
Stimulus delay tsd U(5, 25) - U(2, 8) -
Decision duration tdec - 20 10 1
Input amplitude uamp 1 1 U(0.5, 1.5) 1
Target amplitude ẑamp 0.5 0.5 0.5 {0.5, 2.0}

2 Task details
All task share a broad overall structure: a trial of length T contains an initial “fixation” period without
input of length tfix, followed by the first input. During each input phase of duration tstim, all or some
of the inputs ui have a nonzero value with amplitude uamp. Finally, there are distinct decision periods
during which the target ẑ is nonzero, with amplitude ẑamp. The decision periods are preceded by a
decision delay, in which the loss is inactive, and which allows the output to converge to the target value.
For the flip-flop task and the simple task, the loss is inactive outside of the decision periods; for the
Mante and Romo tasks, all output channels are supposed to stay at zero until the beginning of the
decision delay (the corresponding target is ẑi = 0 for all channels i). Below, we describe further details
for each task. The parameters and their numerical values used in the simulations reported in the main
text are summarized in Table S1.

Flip-flop task During each trial, the network receives a number of short pulses of duration tstim. During
such a pulse, one input channel is set to ui(t) = s uamp, the others remain zero. The channel and sign
s ∈ {±1} are chosen at random. After each pulse and a following delay period tdelay, a decision period
starts (the loss is activated). During the decision period, the target value is set to ẑi(t) = s ẑamp. The
other channel is supposed to remain silent, ẑj(t) = 0 for j 6= i. The decision period ends with the next
pulse. The delays between stimuli tsd are drawn randomly. Note that the plotted trial time in Fig. 1 in
the main text is T = 100, while training was done for T = 50.

Mante task Each trial for the Mante task contains only a single, longer input period of duration tstim.
Half of the input channels correspond to the signal ui(t), the other half to a context variable uNs+i(t),
with number of signals Ns = Nin/2. The signals each consist of a constant mean and random noise
part: ui(t) = uamp[si + anoiseηi(t)] with random sign si ∈ {±1} and Gaussian white noise ηi(t). For our
simulations, we chose the relative noise amplitude anoise = 0.05. For the discretization, the white noise
at time step k is ηi,k = ni,k/

√
η with standard normal variable ni,k ∼ N (0, 1). During each trial, only

a single context is active, uNs+i = uampδi,j , where j is chosen randomly from the number of inputs Ns.
Outside of the input period, all mean values of ui are set to zero (the noise terms remain active). The
input period is followed by a decision phase of length tdec, with a delay tdelay in between. During the
decision period, the output is supposed to communicate the sign sj of the relevant input j. The target
is constant: ẑ(t) = ẑampsj , and ẑi(t) = 0 for all i 6= j.

Romo task For the Romo task, the RNN model has only one input channel, and each trial contains two
input pulses of length tstim each. During the input pulses, the input is u(t) = uamp,1 and u(t) = uamp,2,
with amplitudes drawn from a uniform distribution. Both input amplitudes are redrawn if their difference
|uamp,1−uamp,2| is below a minimal difference umin diff = 0.2. The two pulses are separated by a random
delay tsd. The end of the second pulse is followed by a delay tdelay and a decision period of length tdec.

2

During the decision period, the output should indicate which input pulse was larger: ẑj(t) = ẑamp for
j = arg maxi(uamp,i). The other output should remain at zero.

Simple task The simple task only has a single input and output channel. The input is constant starting
from the end of the fixation period: u(t) = uamp for t > tfix. The decision period is a short interval at
the end of the trial, [T − tdec, T]. The target value during the decision period is ẑ(t) = ẑamp. There is
no decision delay, and the input remains constant during the decision period. Hence, this task does not
contain a memory element like the other three tasks.

3 Supplementary figures

0

200

400

C
on

v
.

ti
m

e

(a)
Flip-flop task

g
0.0 0.9 1.8

0

300

600

(b)
Mante task

g
0.0 0.9 1.8

0

2000

4000
(c)

Romo task

g
0.0 0.9 1.8

0

1

2

||∆
W
||

(d)

0

1

2

(e)

0

2

4
(f)

0

25

50

||W
||

(g)

0

25

50

(h)

0

25

50

(i)

64 128 256 512 1024
Network size N

1

6

11

F
u

n
c.

ra
n

k

(j)

64 128 256 512 1024
Network size N

1

4

7

(k)

64 128 256 512 1024
Network size N

1

5

9
(l)

Fig. S1: Scaling of learning dynamics with network size N for all three nonlinear tasks and three different
values of initial connectivity g (indicated by line colors). Lines indicate average over 5 indepen-
dent simulations, shades the standard deviation. Note the log-scale for networks size (x-axes).
(a-c) Number of epochs until loss reached 5% of its initial value. (d-f) Frobenius norm of final
connectivity changes ∆W . (g-i) Frobenius norm of total connectivity W = W0 + ∆W . (j-l)
Functional rank as defined in the main text (the rank at which truncation loss falls below 5%
of the initial loss).

3

0

1

S
V

(∆
W

)

Flip-flop task
(a) g

0.0
0.9
1.8

0 20 40
Rank

0

2

S
V

(W
)

−2

0

2

g
=

0.
0

(d)

−2

0

2

g
=

0.
9

(g)

−2 0 2
∆W

−2

0

2

g
=

1.
8

(j)

−2 0 2
W

0

1

Mante task
(b) g

0.0
0.9
1.8

0 20 40
Rank

0

2

(e)

(h)

−2 0 2
∆W

(k)

−2 0 2
W

0

2

Romo task
(c) g

0.0
0.9
1.8

0 20 40
Rank

0

2

(f)

(i)

−2 0 2
∆W

(l)

−2 0 2
W

Fig. S2: Singular values (SVs) and eigenvalues (EVs) of RNNs trained for all three tasks with different
initial connectivity strength g ∈ {0.0, 0.9, 1.8}. (a-c) First 40 SVs of the weight changes ∆W
(top) and the final weight matrix W = W0 + ∆W (bottom). Note the different y-scales: For
g = 0 (darkest lines), the SVs in both plots are the same. For larger g, the SVs of ∆W tend
to become smaller, while those of W increase. (d-l) Eigenvalue spectra for ∆W (left) and W
(right). The x- and y-coordinates are the real and imaginary part, respectively. For g = 0, (d-f),
the EVs of ∆W andW are the same. For g > 0, we plot the circles with radius g for comparison.
Inside this radius, the eigenvalues ofW0 are distributed uniformly [1]. Note that most EVs ofW
still remain with in this circle. Parameters as in Fig. 1 of the main text, specifically N = 256.

4

0.0

0.1

L
os

s

(a) ẑ = 0.5

g = 0.0
g = 0.6
Sim.
Theory

0

1

2
(b) ẑ = 2.0

g = 0.0
g = 0.6

10−7

10−3

S
V

(∆
W

)

s1

s2

s3,4,5

(c)
s1
s2

s3,4,5

(d)

0 1 2
Learning time τ

10−6

10−3

S
V

(∆
W

)

s1

s2

s3
s4s5

(e)

0.0 0.3 0.6
Learning time τ

s1
s2

s3

s4
s5

(f)

Fig. S3: Evolution of SVs on log scale for the simple task, as a supplement to Fig. 3 of the main text.
There, the SVs are shown on a linear scale, which does not allow to observe the evolution of
any but the largest SVs. Our theory predicts only the first two SVs (dashed lines); any higher
SVs are zero at order O(τ3). (a,b) Loss curves as a reference for the learning process. (c,d)
First five SVs for g = 0. Note that the curves of s3, s4, and s5 overlap. (e,f) First five SVs for
g = 0.6.

5

0

1

2

L
os

s

(a)
ẑ = 2.0

g = 0.6
g = 0.8

0

4

8
(b)

ẑ = 4.0

g = 0.6
g = 0.8

0.6

1.0

<λ
(W

) λ1

λ2 λ3

λ4 λ5

g = 0.6
(c)

0.6

1.0
λ1

λ2
λ3 λ4
λ5

g = 0.6
(d)

0 100 200
Epochs

0.8

1.0

<λ
(W

) λ1

λ2 λ3

λ4 λ5

g = 0.8
(e)

0 100 200
Epochs

0.8

1.0 λ1

λ2

λ3 λ4

λ5

g = 0.8
(f)

Fig. S4: Exploding gradient when the real part of the largest eigenvalue λ1 of W crosses 1. For infinitely
small learning rate η, the readout z crosses the target value ẑ before λ1 crosses 1, so that learning
stops. However, for a finite learning time, z may become larger than an ẑ, and the divergent
gradient may induce oscillations and failure of learning. This failure happens for large target
values ẑ and initial connectivity strength g, which promote the growth of λ1. (a,b) Loss curves
for two different target values and initial connectivity strengths. For ẑ = 4 and g = 0.8, the
gradient diverges and learning stops. (c-f) Real parts of first five EVs λi (order by decreasing
real parts). Symbols at the end of each trajectory indicate the eigenvalues. In case of complex
conjugates, the two corresponding λi are written next to each other. The dashed grey line
indicates the critical value <λ = 1 for which the gradients diverge. Parameters: N = 256,
η = η0(1 − g2)2 with η0 = 0.002, 0.001 for ẑ = 2, 4, respectively. Task parameters as in the
main text but with longer trial time, T = 201 (so that the network still converges to the fixed
point despite the slower time scales).

6

0 T = 20
Trial time t

−1

0

1

O
u

tp
u

t

(a)

g
0.0
0.4
0.8
ẑ

0

1

L
os

s

(b)

g
0.0
0.4
0.8

0

1
=(
λ

(1
))

(c)

0 500 1000
Epochs

0

1

<(
λ

(1
))

(d)

Fig. S5: Example of learning only in presence of initial connectivity. For linear RNNs without initial
connectivity, gradient descent-induced connectivity changes are always constructed from the
input- and output vectors. If the space of these vectors is too small, learning fails. Here, we
take the simple example of a linear network learning a cosine oscillation, starting from a fixed
initial condition [see (a)]. The initial condition is set by a delta pulse through the input vector;
otherwise, the input is zero. We set both input and output vector to w, so that there is only a
single vector available. However, creating the necessary complex conjugate eigenvalues needs a
rank-two connectivity and hence at least two different directions. Random initial connectivity
enlarges the pool of available directions. (a) Output of networks at the end of training for
three different values of g. Dashed line shows target ẑ(t) = cos(2πft) with frequency f = 0.2.
Learning failed for g = 0. For the other two values, the network finds a slightly unstable solution
(perfect marginal stability is not achieved because of the limited trial time T = 20). (b) Loss
over training epochs. (c) Imaginary part of largest eigenvalue λ(1), sorted by imaginary parts.
(d) Real part of λ(1). The dashed lines show the real part of the largest eigenvalue sorted
by real parts. For g = 0, no nonzero eigenvalue emerges throughout training. Parameters:
N = 256, η = (0.2, 0.15, 0.05) for g = (0.0, 0.4, 0.8), respectively (adapted heuristically for
smooth convergence); training for 1000 epochs (batch size = 1, since there is not stochastic
part). Simulation step size was reduced to ∆t = 0.1.

7

4 Expansion of linear learning
For the simple learning problem, the readout in the limit t→∞ is given by

z = wT (I −W)−1 m . (5)

The loss is quadratic: L = (ẑ− z)2/2. The weights change according to the gradient of the loss w.r.t. to
recurrent weights W , namely

dW (τ)
dτ = − dL

dW = [ẑ − z(τ)]
[
I −WT(τ)

]−1 wmT
[
I −WT(τ)

]−1
. (6)

We expand these dynamics in orders of τ . In the main text, we introduced the expansion

W (τ) =
∞∑
k=0

Wk
τk

k! , (7)

with coefficients Wk obtained from dkW/dτk at τ = 0.

4.1 First order
Because of the independence of W0, w, and m, the initial readout z0 is zero, and we directly obtain

W1 = ẑBTwmTBT , (8)

with B = (I −W0)−1. The weight changes linear in τ are

∆W (τ) = u1vT1 +O(τ2) , (9)

with
u1 = a1B

Tw , vT1 = a1mTBT , (10)

and the coefficient
a2

1 = τ ẑ . (11)

Note that we chose to split the norm of the rank-one matrix equally between the two vectors, which
simplifies notation later on. To compute the readout, we note that W1 is a rank-one matrix. This allows
us to apply the matrix inversion lemma (a.k.a. Sherman-Morrison formula; [2]): The matrix I −W0 is
invertible for g < 1, and subtracting a rank-one matrix uvT changes its inverse to(

I −W0 − uvT
)−1 = B + 1

1− vTBuBuvTB , (12)

To compute the readout at linear order, we first realize that the scalar product in the denominator in
Eq. (12) vanishes:

vT1Bu1 = a2
1mTBTBBTw = 0 . (13)

To show this, we note that m and w are independent of M = BTBBT , and therefore

E
[
mTMw

]
=

N∑
i=1

N∑
j=1

E[miwj]︸ ︷︷ ︸
=0

E[Mij] . (14)

8

The variance of mTMw is of order 1/N , so that in the limit of N →∞, the term self-averages to zero.
With this, we can compute the readout:

z = wT
(
I −W0 − u1vT1

)−1 m
= wTBm︸ ︷︷ ︸

=0

+wTBu1 vT1Bm

= τ ẑwTBBTw mTBTBm
= τ ẑβ2 +O(τ2) .

(15)

The term wTBBTw (and likewise mTBTBm) has expectation

E
[
wTBBTw

]
=

N∑
i=1

N∑
j=1

E[wiwj]︸ ︷︷ ︸
=δij/N

E[(BBT)ij] = 1
N

E[Tr(BBT)] = β . (16)

The expected trace β = 1/(1− g2) is computed in Section 5. Due to self-averaging in the limit N →∞,
we omit the expectation.
The singular values of W1 are the square roots of the eigenvalues of

W1W
T
1 = ẑ2BTwmTBTBmwTB . (17)

Since this is again a rank-one matrix, we compute the only nonzero eigenvalue via the trace:

s2 = Tr(W1W
T
1) = ẑ2wTBBTwmTBTBm = ẑ2β2 . (18)

The singular value, which is also the norm of W1, is therefore

s = ||W1|| = ẑβ . (19)

The learning time τ∗1 is the solution to the equation z(τ∗1) = ẑ, namely τ∗1 = 1/β2. The connectivity
changes at this learning time are ∆W = τ∗1W1, with norm ||∆W || = τ∗1 ||W1|| = ẑ/β.

4.2 Second order
We again make use of the matrix inversion lemma, Eq. (12), and compute

W2 = d2W

dτ2

∣∣∣∣
τ=0

= d
dτ

[
(ẑ − z)

(
I −W0 − u1vT1

)−T wmT
(
I −W0 − u1vT1

)−T] ∣∣∣∣
τ=0

= d
dτ
[
(ẑ − z)BT

(
I + v1uT1BT

)
wmT

(
I +BTv1uT1

)
BT
] ∣∣∣∣
τ=0

= d
dτ
[
(ẑ − τ ẑβ2)BT (w + τ ẑβBm)

(
mT + τ ẑβwTB

)
BT
] ∣∣∣∣
τ=0

= ẑβ BT
[
−βwmT + ẑ

(
wwTB +BmmT

)]
BT .

(20)

9

We notice that the weight changes up to order O(τ2) can be written as the outer product of two vectors
and is thus a rank-one matrix:

∆W = τW1 + τ2

2 W2 +O(τ3)

= BT
[(
τ ẑ − τ2

2 ẑβ
2
)

wmT + τ2

2 ẑ
2β
(
wwTB +BmmT

)]
BT +O(τ3)

= BT (a2w + b2Bm)
(
a2mT + b2wTBT

)
BT +O(τ3)

= u2vT2 +O(τ3) ,

(21)

with
u2 = BT (a2w + b2Bm) , vT2 =

(
a2mT + b2wTBT

)
BT . (22)

The coefficients are implicitly defined by

a2
2 = τ ẑ − τ2

2 ẑβ
2 , a2b2 = τ2

2 ẑ
2β . (23)

Note that the correction b22 from completing the square is of order O(τ3).
Similarly to the first order, we can compute the readout z:

z2 = wTBu2vT2Bm
1− vT2Bu2

= a2
2β

2 +O(τ3) , (24)

with
wTBu2 = vT2Bm = a2β . (25)

The denominator is of order O(τ2) and hence does not contribute to z2:

vT2Bu2 =
(
a2mT + b2wTBT

)
BTBBT (a2w + b2Bm)

= 2a2b2γ +O(τ3) .
(26)

The random matrix term γ = wTBBTBBTw = β4 is compute Section 5. Terms of the form mTMw,
with M constructed from B and BT are zero due to the independence of all three quantities.

4.3 Third order
Since ∆W at order O(τ2) is a rank-1 matrix, we can use the same formalism as for the second order, cf.
Eq. (20). We now only keep terms with τ2:

W3 = d3W

dτ3

∣∣∣∣
τ=0

= d2

dτ2

[
(ẑ − z)

(
I −W0 − u2vT2

)−T wmT
(
I −W0 − u2vT2

)−T] ∣∣∣∣
τ=0

= d2

dτ2

[
(ẑ − z)BT

(
I + v2uT2BT

)
wmT

(
I +BTv2uT2

)
BT
] ∣∣∣∣
τ=0

= d2

dτ2

[
(ẑ − a2

2β
2)BT

[
w + βB

(
a2

2m + a2b2B
Tw
)] [

mT + β
(
a2

2wT + a2b2mTBT
)
B
]
BT
] ∣∣∣∣
τ=0

= ẑβ2BT
[
β2wmT− 3ẑβ

(
wwTB +BmmT

)
+ 2ẑ2BmwTB + ẑ2 (wmTBTB +BBTwmT

)]
BT .

(27)

10

The changes up to order O(τ2) are now of rank two:

∆W = τW1 + τ2

2 W2 + τ3

6 W2 +O(τ4)

= BT

[(
τ ẑ − τ2

2 ẑβ
2 + τ3

6 ẑβ
4
)

wmT +
(
τ2

2 ẑ
2β − τ3

2 ẑ
2β3
)(

wwTB +BmmT
)

+ τ3

3 ẑ
3β2BmwTB + τ3

6 ẑ
3β2 (wmTBTB +BBTwmT

)]
BT +O(τ4)

= BT
(
a3w + b3Bm + c3BB

Tw
) (
a3mT + b3wTBT + c3mTBTB

)
BT + b̂23B

TBmwTBBT +O(τ4)
= u3vT3 + û3v̂T3 +O(τ4) ,

(28)

with

u3 = BT
(
a3w + b3Bm + c3BB

Tw
)
, (29)

vT3 =
(
a3mT + b3wTB + c3mTBTB

)
BT , (30)

û3 = b̂3B
TBm , (31)

v̂T3 = b̂3wTBBT . (32)

The coefficients are implicitly defined by

a2
3 = τ ẑ − τ2

2 ẑβ
2 + τ3

6 ẑβ
4 , (33)

a3b3 = τ2

2 ẑ
2β − τ3

2 ẑ
2β3 , (34)

a3c3 = τ3

6 ẑ
3β2 , (35)

b23 = (a3b3)2

a2
3

= τ3

4 ẑ
3β2 , (36)

b̂23 = τ3

3 ẑ
3β2 − b23 = τ3

12 ẑ
3β2 . (37)

The remaining corrections b3c3 and c23 are of order O(τ4) or higher.
The changes ∆W can be written in a compact rank-two form:

∆W (τ) =
[
u3 û3

] [vT3
v̂T3

]
+O(τ4) = UV T +O(τ4) . (38)

With this, we compute the readout, using the matrix inversion lemma [2]:

z = wT
(
I −W0 − UV T

)−1 m +O(τ4)

= wT
[
B +BU

(
I2 − V TBU

)−1
V TB

]
m +O(τ4)

= wTBU
(
I2 − V TBU

)−1
V TBm +O(τ4) .

(39)

11

Here, I2 is the 2× 2 identity matrix. We compute the entries of V TBU up to O(τ3):

vT3Bu3 = 2a3b3γ , (40)
vT3Bû3 = a3b̂3γ , (41)
v̂T3Bu3 = a3b̂3γ , (42)
v̂T3Bû3 = 0 . (43)

The factor γ = β4 is computed in Section 5. Therefore,

I2 − V TBU =
[
1− x −y
−x 1

]
, (44)

with x = vT3Bu3 , and y = vT3Bû3. Since p and q are O(τ2), we have

(
I2 − V TBU

)−1 = 1
1− x− y2

[
1 y
y 1− x

]
=
[
1 + x y
y 1

]
+O(τ4) . (45)

To complete the evaluation of z, Eq. (39), we further compute wTBU and V TBm:

wTBu3 = vT3Bm = a3β + c3γ , (46)
wTBû3 = v̂T3Bm = 0 . (47)

Hence,

z =
[
wTBu3 wTBû3

] [1 + x y
y 1

] [
vT3Bm
v̂T3Bm

]
+O(τ4)

= (1 + x)wTBu3 vT3Bm +O(τ4)
= (1 + 2a3b3γ) (a3β + c3γ)2 +O(τ4)

=
(

1 + 2a3b3γ︸ ︷︷ ︸
O(τ2)

)(
a2

3β
2︸︷︷︸

O(τ)

+ 2a3c3βγ︸ ︷︷ ︸
O(τ3)

+ c23γ
2︸︷︷︸

O(τ4)

)
+O(τ4)

= a2
3β

2 + 2a3c3βγ + 2a2
3a3b3β

2γ +O(τ4)

= ẑ

[
β2τ − (β2τ)2

2 + (1 + 8ẑ2β) (β2τ)3

6

]
+O(τ4) .

(48)

The last lines are based on the implicit definitions of the coefficients a3, b3, and c3 in Eqs. (33) to (35)
and γ = β4.
We end this section with looking at the special case g = 0. With B = I and β = 1, the weight changes

Eq. (28) simplify to

∆W =
(
τ ẑ − τ2

2 ẑ + τ3

2 ẑ
)

wmT +
(
τ2

2 ẑ
2 − τ3

2 ẑ
2
)(

wwT + mmT
)

+ τ3

3 ẑ
3mwT +O(τ4)

=
[
w m

] [A11 A12
A21 A22

] [
wT

mT

]
,

(49)

with

A11 = ẑ2

2
(
τ2 − τ3)+O(τ4) , (50)

A12 = ẑ

(
τ − τ2

2 + τ3

6 (1 + 2ẑ2)
)

+O(τ4) , (51)

A21 = ẑ3τ3

3 +O(τ4) , (52)

12

and A22 = A11. Note that for g = 0, one can write the entire gradient descent dynamics in terms of the
matrix 2× 2 matrix A:

dA
dτ = (ẑ − z)

[
I + CT

] [1
0

] [
0 1

] [
I + CT

]
, (53)

with
z =

[
1 0

]
[I + C]

[
0
1

]
= C12 , (54)

and
C = A(I −A)−1 . (55)

With the symmetry A11 = A22, this equation still has three degrees of freedom, and we were not able to
find a closed form solution.

4.4 Singular values of weight changes
The singular values of ∆W are determined by the eigenvalues of ∆WT∆W up to order O(τ3). For the
rank-two matrix ∆W = UV T , these are the eigenvalues of the matrix

P = V TV UTU =
[
p q
q r

]2
=
[
p2 + q2 q(p+ r)
q(p+ r) q2 + r2

]2
. (56)

As before, we compute the coefficients up to order O(τ3):

p = uT3u3 = vT3v3 = a2β + (b2 + 2ac)γ , (57)
q = uT3û3 = vT3v̂3 = bb̂γ , (58)
r = ûT3û3 = v̂T3v̂3 = b̂2γ . (59)

The squared singular values are therefore

s2
± = 1

2

(
TrP ±

√
(TrP)2 − 4|P |

)
. (60)

The terms are of order p = O(τ) and q, r = O(τ3), so that

Tr = p2 + 2q2 + r2 = O(τ2) , (61)
|P | = (pr − q2)2 = O(τ8) . (62)

This means that the solutions have different orders:

s2
+ = TrP − |P |TrP , (63)

s2
− = |P |

TrP . (64)

Taking the square roots and sorting out the orders yields a linear first singular value,

s+ = ẑ

β

[
β2τ − (β2τ)2

2 +
(

1 + 7
2 ẑ

2β

)
(β2τ)3

6

]
. (65)

The second singular value is cubic in learning time:

s− = b̂2(3)γ = ẑ3 (β2τ)3

12 . (66)

13

4.5 Effect of shuffling
Shuffling W0 at the end of training destroys any correlation between W0 and W1, while keeping the same
statistics. We denote that shuffled W0 by W s

0 , and the corresponding inverse by Bs = (1−W s
0)−1.

At first order, the shuffled readout is

zs(τ) = wT (I −W s
0 − τ∗1W1)−1 m

= wT
[
Bs + 1

1− vT1Bsu1︸ ︷︷ ︸
=0

Bsu1vT1Bs
]
m

= wTBsm︸ ︷︷ ︸
=0

+wTBsu1 vT1Bsm

= τ ẑwTBsBTw mTBTBsm
= τ ẑ +O(τ2) .

(67)

The factor β vanishes because

E
[
wTBsBTw

]
=

N∑
i=1

N∑
j=1

N∑
k=1

E[wiwk]︸ ︷︷ ︸
=δik/N

E[Bsij]E[BTjk] = 1
N

N∑
i=1

N∑
j=1

E[Bsij]︸ ︷︷ ︸
=δij(1+ 1

N)

E[BTji]︸ ︷︷ ︸
=δji(1+ 1

N)

= 1 +O(1/N) .

(68)
Inserting τ∗1 = 1/β2 into Eq. (67) yields zs(τ∗1) = ẑ/β2. The corresponding loss is

Ls = 1
2(ẑ − zs(τ∗1))2 = 1

2 ẑ
2
(

1− 1
β2

)2
= L0g

4(2− g2)2 , (69)

with initial loss L0 = ẑ2/2.
For the third order, not all amplification is lost: Replacing B with Bs in the evaluation of z, Eq. (39)

yields

zs = wT
(
I −W s

0 − UV T
)−1 m +O(τ4)

= wTBsU
(
I2 − V TBsU

)−1
V TBsm +O(τ4) .

(70)

We compute
xs = vT3Bsu3 = a3b3

(
mTBTBsBTBm + wTBBTBsBTw

)
= 2a3b3β

2 . (71)

This is based on

E
[
wTBBTBsBTw

]
=

N∑
i=1

N∑
j=1

E[wiwj]︸ ︷︷ ︸
=δij/N

E[(BBTBsBT)ij]

= 1
N

∑
i,j,k,l

E[BijBTjkBTli] E[Bskl]︸ ︷︷ ︸
=δkl(1+ 1

N)

= 1
N

∑
i,j,k,l

E[BijBTjkBTki] E[Bskl]︸ ︷︷ ︸
=δkl(1+ 1

N)

= 1
N

E[Tr(BBTBT)] = β2 .

(72)

Similarly,
ys = vT3Bsû3 = v̂T3Bsu3 = a3b̂3β

2 , v̂T3Bsû3 = 0 , (73)

14

and

wTBsu3 = vT3Bsm = a3 + c3β
2 , (74)

wTBsû3 = v̂T3Bsm = 0 . (75)

The remaining parts of the calculation of z are similar to the case without shuffling, and the corresponding
result to Eq. (48) is:

zs =
[
wTBsu3 wTBsû3

] [1 + xs ys

ys 1

] [
vT3Bsm
v̂T3Bsm

]
+O(τ4)

= (1 + xs)wTBsu3 vT3Bsm +O(τ4)
= (1 + 2a3b3β

2) (a3 + c3β
2)2 +O(τ4)

=
(

1 + 2a3b3β
2︸ ︷︷ ︸

O(τ2)

)(
a2

3︸︷︷︸
O(τ)

+ 2a3c3β
2︸ ︷︷ ︸

O(τ3)

+ c23β
4︸︷︷︸

O(τ4)

)
+O(τ4)

= a2
3 + 2a3c3β

2 + 2a2
3a3b3β

2 +O(τ4)

= ẑ

β2

[
β2τ − (β2τ)2

2 +
(

1 + 2ẑ2
(

1 + 3
β

))
(β2τ)3

6

]
+O(τ4) .

(76)

A comparison with Eq. (48) shows that the first and second order terms are decreased by 1/β2. However,
the third order term has a correction to this, similar to the learning time τ∗.

5 Traces
Here we compute traces appearing in our learning problem:

1
N

Tr(B) = 1 , (77)
1
N

Tr(BBT) = β , (78)
1
N

Tr(BBBT) = β2 , (79)
1
N

Tr(BBTBBT) = γ = β4 , (80)

with B = (I − J)−1 and β = 1
1−g2 . The matrix J is a Gaussian random matrix whose entries are drawn

independently from N (0, g2/N). We denote W0 = J in order to avoid the extra index.
The traces generally stem from scalar products of the form aTMa, where the entries of the random

vector a are drawn from N (0, 1/N), and the matrix M is independent of a. In particular, any combina-
tions of the matrices B are independent of a, since they only contain the random matrix J . Because of
this independence, we have

E
[
aTMa

]
=

N∑
i,j=1

E[aiMijaj] =
N∑

i,j=1
E[aiaj]︸ ︷︷ ︸
=δij/N

E[Mij] = E
[

TrM
N

]
. (81)

Computing the traces above and showing the self-averaging quality of the terms is a matter of counting
the number of contributing combinations of J and JT . Our results are based on expanding B into a
geometric series

B = I +
∞∑
K=1

JK . (82)

15

5.1 Tr(B)
We start with the trace of B alone:

E
[

TrB
N

]
= 1 +

∞∑
K=1

1
N

N∑
i=1

E
[
(JK)ii

]
= 1 +O

(
1
N

)
. (83)

We show why the sum vanishes with N . For K = 1, the entries Jii have expectation 0. For K = 2, the
independence of elements of J yields

1
N

N∑
i=1

E
[
(J2)ii

]
= 1
N

N∑
i,j=1

E [JijJji] = 1
N

∑
i6=j

E [Jij]E [Jji]︸ ︷︷ ︸
=0

+ 1
N

∑
i

E
[
J2
ii

]︸ ︷︷ ︸
=g2/N

= O
(

1
N

)
. (84)

The second term vanishes because there are only N terms, but the factor 1/N before the sum and the
contribution g2/N together yield 1/N2. This observation can be generalized to higher K:

1
N

N∑
i=1

E
[
(JK)ii

]
= 1
N

∑
i1,i2,...,iK

E [Ji1i2Ji2i3 . . . JiKi1] = 1
N

∑
i

E
[
J
K/2
ii

]
︸ ︷︷ ︸
=O(NK/2)

= O
(

1
NK/2−1

)
. (85)

There are K different indices. Because each index appears once as a first and once as a second index,
the attempt to form pairs directly results in setting all indices equal.

5.2 Tr(BBT)
The situation changes when introducing BT . We can write

BBT =
∞∑

K,L=0
JKJTL , (86)

where the transpose T and power L commute. We compute the trace again term by term, starting at
K = L = 1:

1
N

N∑
i=1

E
[
(JJT)ii

]
= 1
N

∑
i,j

E
[
JijJ

T
ji

]
= 1
N

∑
i,j

E
[
J2
ij

]︸ ︷︷ ︸
=g2/N

= g2 . (87)

For general K,L ≥ 1, we have

1
N

N∑
i=1

E
[
(JKJTL)ii

]
= 1
N

∑
i1,...iK

∑
j1,...jL

E
[
Ji1i2Ji2i3 . . . JiKj1J

T
j1j2

JTj2j3
. . . JTjLi1

]
= 1
N

∑
i1,...iK

∑
j1,...jL

E
[
Ji1i2Ji2i3 . . . JiKj1Jj2j1Jj3j2 . . . J

T
j1iL

]
.

(88)

We need to form pairs of indices. To simplify the discussion, we write the sequence of index pairs alone:[
i1
i2

] [
i2
i3

]
. . .

[
iK−1
iK

] [
iK
j1

] [
j2
j1

] [
j3
j2

]
. . .

[
i1
jL

]
. (89)

There are K + L indices, and we need to form (K + L)/2 distinct pairs of index pairs. Each index
constraint reduces the entire term by a factor of 1/N . Because of the additional factor 1/N in front of
the sum, we can have only (K + L)/2− 1 index constraints. The question becomes one of counting the
number of possible combinations.
The expression above indicates that the only relevant term needs to constrain iK = j2. Under this

16

condition, we have [
i1
i2

] [
i2
i3

]
. . .

[
iK−1
iK

] [
iK
j1

] [
iK
j1

] [
j3
iK

]
. . .

[
i1
jL

]
. (90)

The two middle terms drop and the new middle pairs show the same configuration. One can proceed
iteratively with this scheme until reaching the right or left end (depending on min(K,L)). In fact, if
L > K, then [

i1
i2

] [
i2
i3

]
. . .

[
iK−1
iK

] [
iK
j1

] [
iK
j1

] [
iK−1
iK

]
. . .

[
i1
i2

]
︸ ︷︷ ︸

paired with K − 1 constraints

[
jK+1
i1

] [
jK+2
jK+1

]
. . .

[
i1
jL

]
. (91)

The non-paired terms need L−K additional constraints, so that the entire term only gives a contribution
of O(1/N (L−K)/2−1). This and a similar argument for K > L shows that we need K = L. In that case,
there are K − 1 = (K + L)/2 − 1 constraints and the term contributes at order O(1). We summarize
with

E
[

Tr(JKJTL)
N

]
= g2KδKL +O

(
1
N

)
. (92)

For the entire matrix BBT , this leads to

E
[

Tr(BBT)
N

]
=

∞∑
K,L=1

E
[

Tr(JKJTL)
N

]
=
∞∑
K=1

g2K +O
(

1
N

)
= 1

1− g2 +O
(

1
N

)
. (93)

Note that the correction terms remain finite under the infinite sums for K and L because they scale with
gK+L and we chose g < 1.

5.3 Tr(BBBT)
For Tr(BBBT), the arguments go in parallel to the previous discussion. Indeed, we have

E
[

Tr(BBBT)
N

]
=

∞∑
K,L,M=1

E
[

Tr(JKJLJTM)
N

]

=
∞∑

K,L,M=1
g2MδK+L,M

=
∞∑
M=0

g2M
∞∑
K=0

∞∑
L=0

δK+L,M︸ ︷︷ ︸
=
∑M

K=0
1

=
∞∑
M=0

g2M (M + 1)

= 1
(1− g2)2 .

(94)

plus an order O(1/N) correction.

5.4 Tr(BBTBBT)
For E[Tr(BBTBBT)/N], we first compute trace of the components J iJTjJkJTl. Similar to the cases
discussed before, we need to constrain indices to create equal index pairs. The index pairs before any
constraints can be written as[

i1 i2 . . . ii j2 j3 . . . k1 k1 k2 . . . kk l2 l3 . . . i1
i2 i3 . . . j1 j1 j2 . . . jj k2 k3 . . . l1 l1 l2 . . . ll

]
. (95)

17

There are n = i+ j + k + l summation indices, and each pair contributes with a factor g2/N . Together
with the additional factor 1/N , we can thus have at most n/2− 1 constraints. Note that like before, the
number of transposed matrices must equal that of the non-transposed, i + k = j + l, so that n is even.
A smaller number of constraints is not sufficient, so that the question becomes: How many different sets
of n/2− 1 constraints lead to n/2 pairs of index pairs?
We start with i = j = k = l = 1. The corresponding index pairs are[

i1 k1 k1 i1
j1 j1 l1 l1

]
. (96)

One can see that there are two possible combinations to create two pairs: i1 = k1 and j1 = l1, which
yield [

i1 i1 i1 i1
j1 j1 l1 l1

]
,

[
i1 k1 k1 i1
j1 j1 j1 j1

]
. (97)

Therefore, there are 2 combinations. An index-counting argument like before generalizes this result,
showing that the number of combinations is equal to

cijkl = 1 + min(i, j, k, l) . (98)

We prove this statement by induction: Let i = min(i, j, k, l) without loss of generality (since the trace is
cyclic). We rewrite the index pairs Eq. (95) and color cases were two upper or lower indices are equal
without any constraints:[

i1 i2 . . . ii j2 j3 . . . k1 k1 k2 . . . kk l2 l3 . . . i1
i2 i3 . . . j1 j1 j2 . . . jj k2 k3 . . . l1 l1 l2 . . . ll

]
. (99)

We next separate two cases: Case 1, ii = j2, and Case 2, ii 6= j2. In Case 1, the index pairs with the
blue js above become equal:[

i1 i2 . . . ii−1 j2 j2 j3 . . . k1 k1 k2 . . . kk l2 l3 . . . i1
i2 i3 . . . j2 j1 j1 j2 . . . jj k2 k3 . . . l1 l1 l2 . . . ll

]
. (100)

We can take these pairs out, and the remaining indices read[
i1 i2 . . . ii−1 j3 j4 . . . k1 k1 k2 . . . kk l2 l3 . . . i1
i2 i3 . . . j2 j2 j3 . . . jj k2 k3 . . . l1 l1 l2 . . . ll

]
, (101)

where we colored the j2 blue again. We now have (i′, j′, k′, l′) = (i − 1, j − 1, k, l) indices, with
min(i′, j′, k′, l′) = i − 1. According to our induction hypothesis, there are ci′j′k′l′ = 1 + i − 1 = i
different sets of n/2−2 constraints. Adding the constraint of Case 1, ii = j2 yields the expected number
of n/2− 1 constraints.
It remains to show that Case 2 allows for exactly one set of n/2 − 1 constraints. Because ii 6= j2 in

Eq. (99), we need to have a pair at the red i1; otherwise, one needs n/2 constraints. The pair at i1
requires ll = i2, and dropping the newly formed pair yields[

i2 i3 . . . ii j2 j3 . . . k1 k1 k2 . . . kk l2 l3 . . . i2
i2 i3 . . . j1 j1 j2 . . . jj k2 k3 . . . l1 l1 l2 . . . ll−1

]
. (102)

We follow the same argumentation, constraining ll−1 = i3, . . . , l2+l−i = ii. We arrive at[
ii j2 j3 . . . k1 k1 k2 . . . kk l2 . . . ii
j1 j1 j2 . . . jj k2 k3 . . . l1 l1 . . . l1+l−i

]
. (103)

Further setting l1+l−i = j1 and dropping the induced pair leads to[
j2 j3 . . . k1 k1 k2 . . . kk l2 . . . j1
j1 j2 . . . jj k2 k3 . . . l1 l1 . . . ll−i

]
. (104)

18

This is equal to the case JTjJkJT (l−i). By the cyclic nature of the trace, this is equal to the case
JT (j+l−i)Jk. As discussed above, Section 5.2, only one set of (j + l − i + k)/2 − 1 constraints leads to
a full separation into pairs. Note that if i = l, the last set of indices, Eq. (104), looks slightly different,
but yields the same result.
Counting the number of constraints in Case 2 yields 1 + i − 2 + 1 + (j + l − i + k)/2 − 1 = n/2 − 1.

Since there is no other combination for Case 2, the total number of constraint combinations is precisely
i+ 1 = 1 + min(i, j, k, l) = cijkl.
We return to the trace, which contains the factors g2:

E
[

Tr(J iJTjJkJTl)
N

]
= g2(i+k) δi+k,j+l cijkl . (105)

We now evaluate the sums over i, j, k, l, starting with fixed i:
∞∑

j,k,l=1
E
[

Tr(J iJTjJkJTl)
N

]
=

∞∑
j,k,l=1

g2(i+k) δi+k,j+l cijkl . (106)

We split the summation into different regimes:
∞∑

j,k,l=1
g2(i+k) δi+k,j+l cijkl =

∑
j,l

j+l≥i

∞∑
k=1

g2(i+k) δk,j+l−i cijkl

=
∑
j,l
j≥i
l≥i

g2(j+l) (i+ 1) +
∑
j,l

j+l≥i
min(j,l)<i

g2(j+l) cij(j+l−i)l

= a+ b+ c+ d ,

(107)

where we split the second summand of the second-last line into two parts. The parts are:

a =
∑
j,l
j≥i
l≥i

g2(j+l) (i+ 1) = (i+ 1)
∞∑
j=i

(i+ 1)

 ∞∑
j=i

g2j

2

= (i+ 1)g4i

(1− g2)2 , (108)

b =
∑
j,l
j<i
l<i
j+l≥i

g2(j+l) (j + l − i+ 1) = g2i

(1− g2)3

[
i(1 + g2i)(1− g2)− (1− g2i)(1 + g2)

]
, (109)

c =
∑
j,l
j≥i
l<i

g2(j+l) (l + 1) =
∞∑
j=i

i−1∑
l=0

g2l (l + 1) = g2i

(1− g2)3

[
1− g2i − g2ii(1− g2)

]
, (110)

d =
∑
j,l
j<i
l≥i

g2(j+l) (j + 1) = c . (111)

Joining all terms yields
∞∑

j,k,l=1
E
[

Tr(J iJTjJkJTl)
N

]
= (i+ 1)g2i

(1− g2)2 . (112)

19

Finally, we sum over i:

E
[

Tr(BBTBBT)
N

]
=

∞∑
i,j,k,l=1

E
[

Tr(J iJTjJkJTl)
N

]
=
∞∑
i=0

(i+ 1)g2i

(1− g2)2 = 1
(1− g2)4 . (113)

We return to the trace, which is therefore

E
[

Tr(J iJTjJkJTl)
N

]
= g2(i+k) δi+k,j+l cijkl . (114)

We now evaluate the sums over i, j, k, l, starting with fixed i:
∞∑

j,k,l=1
E
[

Tr(J iJTjJkJTl)
N

]
=

∞∑
j,k,l=1

g2(i+k) δi+k,j+l cijkl . (115)

We split the summation into different regimes:
∞∑

j,k,l=1
g2(i+k) δi+k,j+l cijkl =

∑
j,l

j+l≥i

∞∑
k=1

g2(i+k) δk,j+l−i cijkl

=
∑
j,l
j≥i
l≥i

g2(j+l) (i+ 1) +
∑
j,l

j+l≥i
min(j,l)<i

g2(j+l) cij(j+l−i)l

= a+ b+ c+ d ,

(116)

where we split the second summand of the second-last line into two parts. The parts are:

a =
∑
j,l
j≥i
l≥i

g2(j+l) (i+ 1) = (i+ 1)
∞∑
j=i

(i+ 1)

 ∞∑
j=i

g2j

2

= (i+ 1)g4i

(1− g2)2 , (117)

b =
∑
j,l
j<i
l<i
j+l≥i

g2(j+l) (j + l − i+ 1) = g2i

(1− g2)3

[
i(1 + g2i)(1− g2)− (1− g2i)(1 + g2)

]
, (118)

c =
∑
j,l
j≥i
l<i

g2(j+l) (l + 1) =
∞∑
j=i

i−1∑
l=0

g2l (l + 1) = g2i

(1− g2)3

[
1− g2i − g2ii(1− g2)

]
, (119)

d =
∑
j,l
j<i
l≥i

g2(j+l) (j + 1) = c . (120)

Joining all terms yields
∞∑

j,k,l=1
E
[

Tr(J iJTjJkJTl)
N

]
= (i+ 1)g2i

(1− g2)2 . (121)

Finally, we sum over i:

E
[

Tr(BBTBBT)
N

]
=

∞∑
i,j,k,l=1

E
[

Tr(J iJTjJkJTl)
N

]
=
∞∑
i=0

(i+ 1)g2i

(1− g2)2 = 1
(1− g2)4 , (122)

20

0 250 500
Epoch

0.0

0.2

0.4

0.6

L
os

s

(a)

Traininig
Validation

0 250 500
Epoch

0.6

0.8

A
cc

u
ra

cy

(b)

0

2

4

L
ay

er
1

S
V

(c)
Input weights U

∆U (1)

U (1)

U
(1)
0

(d)
Recurrent weights W

∆W (1)

W (1)

W
(1)
0

0 128 256
Rank

0

2

4

L
ay

er
2

S
V

(e)

∆U (2)

U (2)

U
(2)
0

0 128 256
Rank

(f)

∆W (2)

W (2)

W
(2)
0

Fig. S6: Details for 2-layer LSTM model trained on a sentiment analysis task. (a, b) Training and
validation loss and accuracy over epochs. (c-f) Singular values (SVs) of the input and recurrent
weights in both layers.

which is the statement we wanted to prove.

6 Details of sentiment analysis task
For the sentiment analysis task in the results section, we trained a 2-layer LSTM model on the Standford
Sentiment Treebank with binary labels (SST-2) [7]. The dataset consists of sentences from movie reviews
which are labeled positive or negative. Sentences have on average 20 words, and there are 6920 training
and 872 validation examples. We tokenized the sentences with the scaCy tokenizer [3]. We further used
a pretrained word embedding (GloVe, [6]) with dimension Nin = 100. The word embedding was kept
fixed during training.
Each LSTM layer had N = 256 units. All weights and biases were initialized from the uniform

distribution U(−a, a), where a =
√

1/N , except for input weights of layer 1, where a =
√

1/Nin. During
training, all weights and biases were updated with Adam on a binary cross entropy loss, as implemented
in PyTorch [5]. We set the learning rate to 0.01/N , and all other parameters at their default values.
We additionally applied dropout with probability 0.5 to all hidden states. We trained the model for 500
epochs, each epoch iterating over the entire data set with batches of 64 sentences.
To evaluate the performance after truncation, we separated the weights into recurrent and input

weights. Because the LSTM for the four different gates are concatenated, the input weights of layer 1
have shape 4N ×Nin, all other weights have shape 4N ×N . We simultaneously truncated the recurrent
weights of both layers and the input weights of layer 2, i.e., all blocks with shape 4N ×N This specific
choice did not alter the qualitative result, namely that truncating the changes ∆W and ∆U at a given
rank produces a much smaller decrease in performance than truncating the full weights W = W0 + ∆W
and U = U0 + ∆U .

Note that we chose the learning rate to be sufficiently small so that learning dynamics were smooth.
With higher learning rates and rugged loss curves, we observed that changes ∆W would replace the
initial connectivity, and the effective rank was much higher. Further note that other hyperparameters,
such as L2 regularization on the weights, may also change the picture.

References
[1] Jean Ginibre. Statistical ensembles of complex, quaternion, and real matrices. Journal of Mathemat-

ical Physics, 6(3):440–449, 1965.

[2] David A Harville. Matrix algebra from a statistician’s perspective. Taylor & Francis Group, 1998.

[3] Matthew Honnibal and Mark Johnson. An improved non-monotonic transition system for dependency
parsing. In Proceedings of the 2015 conference on empirical methods in natural language processing,
pages 1373–1378, 2015.

[4] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv:1412.6980,
2014.

[5] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[6] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543,
2014. URL http://www.aclweb.org/anthology/D14-1162.

[7] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empirical methods in natural language processing, pages
1631–1642, 2013.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://www.aclweb.org/anthology/D14-1162

	Simulation parameters
	Task details
	Supplementary figures
	Expansion of linear learning
	First order
	Second order
	Third order
	Singular values of weight changes
	Effect of shuffling

	Traces
	Tr(B)
	Tr(B BT)
	Tr(B B BT)
	Tr(B BT B BT)

	Details of sentiment analysis task

