
APPENDIX:

In this section, we provide the details of our implementation and proofs for reproducibility 2.

A. Implementation of the Variational Graph Autoencoder in Differentiable NAS

Same as Zhang et al. [36], we also use the gated sum and gated recurrent unit (GRU) as the aggregate and update
function, respectively.

hin
v =

∑
u→v

g(Concat(hu, xuid))�m(Concat(hu, xuid))

hv = GRUe(xv, hin
v).

(8)

This encoding method also makes the framework similar to traditional RNNs for sequences.

After the optimization in the latent continuous space, we now need to decode the latent vector z to a neural
architecture. Following Zhang et al. [36], an MLP is first applied to the latent vector z to obtain the initial hidden
state h0 which is fed to GRUd. Then the decoder constructs a DAG node by node based on the existing graph’s
state.

• Compute vi’s type distribution using an MLP fadd_vetex based on current graph state hG := hvi−1

• Sample vi’s type.

• Update vi’s hidden state by hvi = GRUd(xvi , h
in
vi)

• For j = i− 1, i− 2, ..., 1: compute the edge probability of (vj , vi);(b) sample the edge; (c) if a new
edge is added, update hvi using step 3.

Zhang et al. [36] iteratively applies the above steps to generate new nodes until Step 2 samples the ending type.
However, if we want to sample the same number of nodes for each neural network, we could sample the same
number of nodes before the end of the iteration, and all nodes without output edge will be connected with the
extra output node.

B. Proof of Lemma 1

Proof Lemma 1 is under the assumption the noise ξ is orthogonal to T and statistically independent from the
manifold. Given a new data point ᾱ, rather than directly calculating the probability that the new points located in
the distribution of the random variable A, we could calculate the probability of w̄ drawn from random variable
W that W is obtained from A after coordinates rotation W = U> ·A, and we have

pA(ᾱ) = pW (w̄) = pW‖(w̄
‖)pW⊥(w̄⊥). (9)

Firstly, we have

w̄‖ = U‖
>
ᾱ = U‖

>
(ᾱ− ᾱ‖) + U‖

>
ᾱ‖ = U‖

>
ᾱ‖, (10)

when we assume the noise ξ orthogonal toM, and have U‖(ᾱ− ᾱ‖) ≈ 0. Based on Eq.(4) and Eq.(10), we
have

w̄‖ = U‖
>
D(ᾱθ) + U‖

>
U‖SV >(αθ − ᾱθ) +O(‖αθ − ᾱθ‖2)

= U‖
>
D(ᾱθ) + SV >(αθ − ᾱθ) +O(‖αθ − ᾱθ‖2).

(11)

Then pW‖(w̄
‖) = pAθ (U‖

>
D(ᾱθ) + SV >(αθ − ᾱθ)). Based on the linear transformation of probability

density, we have

pW‖(w̄
‖) =

∣∣detS−1
∣∣ pAθ (αθ), (12)

since V is a unitary matrix.

Then we need to calculate the second part of Eq.(6), which is also considered as noise part ξ. We approximate it
with its average over hypersphere Sm−n−1 of radius ‖w⊥‖, and assume that the noise with given intensity is
equally present in every direction.

2The codes and experimental log files on NAS-BENCH-201 dataset could be found
https://github.com/MiaoZhang0525/EENAS_for_NeurIPS2020.

12

https://github.com/MiaoZhang0525/EENAS_for_NeurIPS2020

As pW⊥(w̄⊥) is in m − n dimensional Euclidean space, we could approximate it with its average over
hypersphere Sm−n−1 of radius ‖w⊥‖, where the noise with given intensity will be equally present in every
direction. We should have

∫
2π

m−n−1
2

Γ(m−n
2

)

∥∥∥w̄⊥∥∥∥m−n−1

pW⊥(w̄⊥)d(‖w̄⊥‖) = 1, (13)

and also ∫
p‖W⊥‖(‖w̄

⊥‖)d(‖w̄⊥‖) = 1. (14)

We could let

p‖W⊥‖(‖w̄
⊥‖) =

2π
m−n−1

2

Γ(m−n
2

)

∥∥∥w̄⊥∥∥∥m−n−1

pW⊥(w̄⊥), (15)

where Γ(·) is the gamma function. So,

pW⊥(w̄⊥) =
Γ(m−n

2
)

2π
m−n

2 ‖w̄⊥‖m−n−1
p‖W⊥‖(‖w̄

⊥‖). (16)

Therefor Eq.(6) is proved.

We define N(ᾱ) as the novelty measurement, and the lower probability that the new point locates in the
distribution, the higher novelty that the new point has. And N(ᾱ) could be rephrased as:

N(ᾱ) = −log(pA(ᾱ)) = −log(
∣∣detS−1

∣∣ pAθ (αθ)

· 2π
m−n−1

2

Γ(m−n
2

)

∥∥∥w̄⊥∥∥∥m−n−1

p‖W⊥‖(‖w̄
⊥‖)).

(17)

�

C. Proof of Lemma 2

Proof To overcoming the multi-model forgetting during the supernet training, WPL [5] regularizes the
learning of current architecture by maximizing the p(θv, θi | D). Different from WPL, we consider one more
complementary architecture, αci with weights θci , and then we need to maximize two posterior probabilities as
p1 ∗ p2 = p(θi−1, θi | D) ∗ p(θci , θi | D) in each step of supernet training. Now we need to prove the proposed
complementation loss function in Eq.(7) corresponds to maximize p1 ∗ p2.

Similar to WPL [5], we depict the shared weights between θci and θi as θcs, and the private weights for the two
architecture are defined as θpc and θci . We also depict the shared weights between θi−1 and θi as θi−1

s , and the
private weights for the two architecture are defined as θpi−1 and θi−1

i , and we have θi ∩ {θi−1, θ
c
i } = θi, and

θi−1 ∩ θci = ∅. Using the Bayes’ theorem, we have:

p1 ∗ p2 = p(θi−1, θi | D) ∗ p(θci , θi | D) = p(θpi−1, θ
i−1
i , θi−1

s | D) ∗ p(θpc , θci , θcs | D)

=
p(θpi−1 | θ

i−1
i , θi−1

s ,D)p(θi−1
i , θi−1

s ,D)

p(D)
∗ p(θ

p
c | θci , θcs,D)p(θci , θ

c
s,D)

p(D)

=
p(θpi−1 | θ

i−1
s ,D)p(θi−1

i , θi−1
s ,D)

p(D)
∗ p(θ

p
c | θcs,D)p(θci , θ

c
s,D)

p(D)

∝
p(θpi−1, θ

i−1
s ,D)p(θi−1

i , θi−1
s ,D)

p(θi−1
s ,D)

∗ p(θ
p
c , θ

c
s,D)p(θci , θ

c
s,D)

p(θcs,D)

=
p(θi−1,D)p(θi,D)

p(θi−1
s ,D)

∗ p(θ
c
i ,D)p(θi,D))

p(θcs,D)
=
p(θi−1,D)p(θi,D)p(θci ,D)p(θi,D))

p(θi−1
s ,D)p(θcs,D)

=
p(θi−1,D)p(θi,D)p(θci ,D)p(θi,D))

p(θi,D)
= p(θi−1)p(D | θi−1)p(θci)p(D | θci)p(θi)p(D | θi)

= p(θi)
2p(D | θci)p(D | θi−1)p(D | θi),

(18)

where we use the conditional independence assumption p(θ1 | θ2, θs,D) = p(θ1 | θs,D) as we train different
architecture independently in line 3; We also presupposes that the parameters (θi−1

s , θcs) are independent as the
same as WPL [5] in line 6, and {θi−1

s , θcs} = θi as θi ∩ {θi−1, θ
c
i } = θi; p(θi−1)p(θci) = p(θi) in the line 7

since only weights θi of architecture αi is trained in step i.

From Eq.(18), we could directly derive the loss function, which is the same as Eq.(7). Therefore Lemma 2 is
proved. �

13

D. Sigmoid-Type Function for γ

In Section 4.3, we devise a Sigmoid function to adapt the γ during the supernet training, which is defined as:

γ(t) = 1− Sigmoid
(
(

t
total epochs

∗ 2− 1) ∗ b
)
, (19)

where Sigmoid(x) = 1
1+e−x , and we define Sigγ(b) as the γ is scheduled based on Eq.(19) with b. In this way,

our architecture search is supposed to avoid local optimal in the early stage, and guarantees better solutions with
higher validation performance in the later stage.

0 50 100 150 200 250
Training epochs

0.0

0.2

0.4

0.6

0.8

1.0
Va

lue
s

b=1
b=2
b=5
b=10

Figure 2: Sigmoid-type function for the hyperparameter γ with the training epochs based on Eq.(19).

E. Complementary Architecture Selection

Section 3.2 theoretically demonstrates the benefit of the proposed architecture complementation loss function,
and the experimental results in Section 4.4 also verify the effectiveness of our approach, which could effectively
relieve multi-model forgetting in One-Shot NAS. Figure 3 gives an example of our architecture complementation.
We consider a cell structure, where node 0 is the input node, node 1 and 2 are operation nodes, and node 3 is the
output node which concatenates the outputs of all input and operation nodes as the output of the cell. When the
input of operation node of αi is same as αi−1 (take node 1 as example), αci randomly select a different operation.
While when the input of operation node of αi is different from αi−1 (take node 2 as example), αci select a same
operation as αi. In this way, we have θi ∩ {θi−1, θ

c
i } = θi, and θi−1 ∩ θci = ∅.

0

1

2

3

0

1

2

3

0

1

2

3

ai ai-1 aic

Concatenate	

Operation		1

Operation	2

Operation	3

Operation	4

Figure 3: Example of obtaining αci through our architecture complementation.

14

