
Supplementary Material: Appendices
A Geometric Numerical Integration

Geometric numerical integration is a study on the numerical integrators of ODEs that preserve the
geometric property of the target class of equations. Contrary to the classical integrators, such as the
Runge–Kutta family of numerical integrators, these integrators are associated with a certain restricted
target class of equations; thereby, they are designed so that important geometric properties admitted by
the equations in the target class are preserved. As a consequence, the numerical solutions computed
by these integrators are not only quantitatively accurate but they are also qualitatively superior to those
by the classical integrators. A typical target class of the equations is the Hamilton equation, which is,
in terms of geometry, defined as a symplectic-gradient flow on symplectic manifolds. The Hamilton
equation is characterized by the conservation law of a symplectic form, a non-degenerate and closed
2-form (covariant 2-tensor) on the underlying symplectic manifold. Symplectic integrators are the
numerical integrators that preserve this conservation law; hence, they can be in a sense considered
as a discrete Hamiltonian system that is an approximation to the target Hamiltonian system. Due
to this property, there should exist a corresponding Hamiltonian function, i.e., energy function,
which is called a shadow Hamiltonian and it must be an approximation to the energy function of the
target system. Because the shadow Hamiltonian is exactly conserved, the original energy function is
conserved not exactly but highly accurately. This property of symplectic integrators is theoretically
guaranteed by the existence theorem of the shadow Hamiltonian.

Because the symplectic integrators conserve only the approximation of the energy function, one may
want to design energy-preserving integrators, that is, numerical integrators that preserves the energy
function exactly. As such, the discrete gradient method has achieved great success. The Ge–Marsden
theorem implies that there does not exist an integrator which is symplectic and energy-preserving [30].
More precisely, this theorem states that if an integrator is symplectic and energy-preserving for all
Hamiltonian systems, then the integrator is completely error-free; the orbits of the numerical results
must be exactly on the true orbit.

As shown above, a discrete gradient is defined in Definition 1. Because a discrete gradient is not
uniquely determined from this definition, several derivation methods have been proposed. A preferred
method is the average vector field method, which is second–order accurate and also conjugate-
symplectic (roughly speaking, the method also approximates a symplectic method with higher
order accuracy). However, most of the existing discrete gradients require explicit representation of
the Hamiltonian; hence, they are not available for neural networks. An exception is the Ito–Abe
method [24]

∇IAH(~u,~v) =

H((u1,u2,...,uN)>)−H((v1,u2,...,uN)>)

u1−v1
H((v1,u2,...,uN)>)−H((v1,v2,...,uN)>)

u2−v2
...

H((v1,v2,...,uN)>)−H((v1,v2,...,vN)>)
uN−vN

 (14)

which requires a number of evaluations of the energy function; hence, it is computationally intractable
for large systems. In contrast to the Ito–Abe discrete gradient, the discrete gradient obtained by our
method is available for neural networks and computationally efficient. It requires no more than twice
the computational cost of the ordinary automatic differentiation. Hence, the proposed automatic
discrete differentiation algorithm is indispensable for practical application of the discrete gradient
method for neural networks. See also [17, 22].

B The Target Equations: Geometric Ordinary and Partial Differential
Equations

The target equations for this study are the differential equations with a certain geometric structure.
Although the differential equations include PDEs, for simplicity, we only consider ODEs; we assume
that the target PDE is semi-discretized in space so that the equation can be transformed into a system
of ODEs (see Appendix D). LetM be a finite dimensional manifold and TM be the tangent bundle

13

ofM. A covariant 2-tensor ω~u at ~u ∈M is a bi-linear continuous map T~uM× T~uM→ R, that is,
a bi-linear continuous map that maps two tangent vectors at ~u into a real number. We assume that ω~u
is non-degenerate in the sense that for any bounded linear map f ∈ T ∗~uM, ω~u(~v, ·) = f(·) defines a
unique vector ~v ∈ T~uM. The target class of the differential equations for this study is the equations
of the following form.

d~u

dt
= X, ω~u(~X,~v) = dH(~v) for all ~v ∈ T~uM, (15)

where H :M→ R is an energy function and dH is the Fréchet derivative of H . In fact, because ω
is non-degenerate, the vector ~X in the above equation is uniquely determined. The covariant 2-tensor
ω~u can be written as follows.

ω~u(~v, ~w) = ~w>A(~u)~v (16)
with a matrix A(~u); hence, Eq. (15) is shown to be equivalent to

~w>A(~u)
d~u

dt
= dH(~w). (17)

By using the standard inner product 〈·, ·〉, this can be expressed as follows.〈
A(~u)

d~u

dt
, ~w

〉
= 〈∇H, ~w〉 , (18)

from which it follows
d~u

dt
= G(~u)∇H, G(~u) = A(~u)−1, (19)

where A(~u)−1 exists because ω~u is non-degenerate. This is our target equation in Eq. (1).

The typical examples of the manifolds with such a 2-tensor are the Riemannian manifold [4] and
the symplectic manifold [29]. In the former case, ω~u is the inverse of the matrix that represents the
metric tensor, which corresponds to the negative definite matrix G(~u). In the latter case, ω~u is the
symplectic form, for which the matrix G(~u) is skew-symmetric. They correspond to these manifolds
in the target equation in Eq. (15) and they are known as the gradient flow and the symplectic flow,
respectively.

C Proofs

This section provides the proofs of the Theorems in the main text.

Proof of Theorem 1. From the chain-rule, it follows that

dH

dt
= ∇H · d~u

dt
= ∇H>G∇H, (20)

and this is less than or equal to 0 if G ≤ O and it vanishes if G is skew-symmetric.

Proof of Theorem 2.
d

dt

∑
k

uk = ~1
du

dt
= ~1G∇H = 0. (21)

Proof of Theorem 3. If G is negative semi-definite, it follows from the definition of the discrete
gradient that

H(~u(n+1))−H(~u(n))

t(n+1) − t(n)
= ∇H(~u(n+1), ~u(n))>G∇H(~u(n+1), ~u(n)) ≤ 0 (22)

and the amount of the energy dissipation ∇H(~u(n+1), ~u(n))>G∇H(~u(n+1), ~u(n)) is indeed an
approximation to ∇H(~u)>G∇H(~u), which shows the discrete energy dissipation law. Similarly, if
G is skew-symmetric,

H(~u(n+1))−H(~u(n))

t(n+1) − t(n)
= ∇H(~u(n+1), ~u(n))>G∇H(~u(n+1), ~u(n)) = 0 (23)

14

is obtained in the same way. For the discrete mass conservation law,∑
k u

(n+1)
k −

∑
k u

(n)
k

t(n+1) − t(n)
= ~1

(
~u(n+1) − ~u(n)

t(n+1) − t(n)

)
= ~1G∇H(~u(n+1), ~u(n)) = 0. (24)

Proof of Theorem 4. The first equation comes from the linearity with respect to the first argument.
The third equation is obvious by definition. The second equation is a well-known result based on the
studies of the discrete gradient methods [17]:

f(x1)g(x1)− f(x2)g(x2) = g(x1)+g(x2)
2 (f(x1)− f(x2)) + f(x1)+f(x2)

2 (g(x1)− g(x2)). (25)

D Semi-Discretization of the Partial Differential Equations

Although for simplicity we have only considered the ODEs in Section 3, the target equations of our
approach include PDEs.

The target PDEs are equations of the following form.

∂u

∂t
= G(u)∇H, (26)

where u may depend on t and x ∈ Rn, and G(u) is a linear operator that depends on the function u.
In the underlying functional space that admits the inner product 〈·, ·, 〉, we can consider the adjoint
operator of G(u) as the operator that satisfies

〈Gv,w〉 =
〈
v, G̃w

〉
(27)

for any functions v, w. If the space is real and finite dimensional and the inner product is the standard
inner product, the adjoint operator of a matrix G is G>.

Similarly to the finite dimensional equations, it follows from the relation between the Fréchet
derivative and the gradient

dH

dt
= dH

(
∂u

∂t

)
=

〈
∇H, ∂u

∂t

〉
= 〈∇H,G∇H〉. (28)

Thus, Eq. (26) has the energy dissipation law

dH

dt
= 〈∇H,G∇H〉 ≤ 0 (29)

if the operator G(u) is negative semi-definite in the sense that 〈v,Gv〉 ≤ 0 for all v, and the energy
conservation law

dH

dt
= 0 (30)

if G(u) is skew-adjoint; G̃(u) = −G(u).

Examples of the negative semi-definite G in practical applications include

G = (−1)s−1
∂2s

∂x2s
, (31)

where s is a non-negative integer and we define G = −1 for s = 0. This operator is negative
semi-definite with respect to the L2 inner product under certain boundary conditions. For example,
suppose that the underlying space is the interval [0, 1]. Then for functions f , g it holds that∫ 1

0

f
∂2g

∂x2
dx = −

∫ 1

0

∂f

∂x

∂g

∂x
dx+

[
f
∂g

∂x

]1
0

=

∫ 1

0

∂2f

∂x2
gdx+

[
f
∂g

∂x

]1
0

−
[
∂f

∂x
g

]1
0

15

and hence if f and g satisfy [
f
∂g

∂x

]1
0

−
[
∂f

∂x
g

]1
0

= 0,

the operator ∂2/∂x2 is negative semi-definite with respect to the L2 inner product:〈
∂2f

∂x2
, g

〉
= −

〈
f,
∂2g

∂x2

〉
. (32)

Similarly, the operators

G =
∂2s−1

∂x2s−1
, (33)

are skew-adjoint.

In order to apply our framework to the PDEs, it would be preferable to discretize the operator G(u)
because the property of this operator is essential for the energy conservation or the dissipation law and
the mass conservation law. If G(u) is given by Eq. (31) or Eq. (33), this operator can be discretized
by using the central difference operators such as Eq. (4), while preserving the desired properties. In
general, suppose that the matrix Ds approximates the differential operator ∂s/∂xs then

Ds +D>s
2

,
Ds −D>s

2
(34)

are in principle respectively negative/positive semi-definite and skew-adjoint approximations to
∂s/∂xs. This design of the operator G yields an approximation to the operator G with the desired
property and also with the desired accuracy. For further details for the structure-preserving semi-
discretization, see,. e.g., [5, 17].

E Comparison with Symplectic Integrators

The Ge–Marsden theorem shows that no method can be both symplectic and strictly energy-
preserving [30]. Hence, the proposed discrete gradient method does not conflict with but complements
a neural network model solved by a symplectic integrator [8, 38, 45]. One can choose a preferable
one depending on targeted tasks.

Some symplectic integrators (such as the variational integrator) are known to preserve the momentum
in a physical system. The proposed discrete gradient method can have the property of conjugate
symplecticity, which guarantees the preservation of the momentum with high accuracy [21]; in fact
for a certain class of problems the discrete gradient derived by the proposed algorithm is equivalent
to the average vector field method, which is known to be conjugate symplectic of order four [5].
Moreover, if a certain quantity other than the energy should be strictly preserved, one can design
another discrete gradient by the method proposed in [11] so that both the energy and the quantity are
preserved.

With varying time-step, symplectic integrators are in general known to lose symplecticity and cannot
preserve the system energy just like non-symplectic Runge–Kutta methods [22], while the proposed
discrete gradient method can. In particular, depending on the learned parameters, the proposed
method can choose the time-step while preserving the energy.

F Automatic Discrete Differentiation Algorithm

Many practical implementations of the automatic differentiation algorithm indeed obtain gradients
directly [31]; hence, they are sometimes called the autograd algorithm. A discrete version of the
autograd algorithm is enough for this study. From this viewpoint, the implementation of the discrete
autograd algorithm is introduced as follows.

The Fréchet derivative dg(·; ~u) : RN → RM of a function g : RN → RM at ~u is a bounded linear
operator that satisfies the following condition.

lim
||~h||→+0

||g(~u+ ~h)− g(~u)− dg(~h; ~u)||
||~h||

= 0. (35)

16

∇𝐻(ℎ1)

𝑢
𝑓1

ℎ1 𝑓2
ℎ2 𝑓3

𝐻(𝑢)

d𝑓3d𝑓2

∇𝐻(ℎ2)∇𝐻(𝑢)

d𝑓1

1 ത∇𝐻(ℎ1,𝑘1)

𝑢
𝑓1

ℎ1
𝑓2

ℎ2
𝑓3

𝐻(𝑢)

തd𝑓3തd𝑓2
ത∇𝐻(ℎ2,𝑘2)ത∇𝐻(𝑢,𝑣)

തd𝑓1

1

𝑣 𝑘1 𝑘2 𝐻(𝑣)

Figure A1: A conceptual comparison between the autograd algorithm (left) and the discrete autograd
algorithm (right).

Algorithm 1 Discrete Autograd Algorithm
Input: a function H(·) = fN ◦ · · · ◦ f1(·) for i ∈ {1, . . . , N}, and arguments ~u and ~v
Output: discrete gradient∇H(~u,~v)
~h0 ← ~u, ~k0 ← ~v
for i = 1, · · · , N do

~hi ← fi(~hi−1), ~ki ← fi(~ki−1)
end for
H(~u)← ~hN , H(~v)← ~kN
∇H(~hN ,~kN)← 11
for i = N, · · · , 1 do

if fi is a linear layer then
J̄fi ← Jfi

else if fi is an element-wise nonlinear activation function then
J̄fi ← diag(~hi − ~ki)diag(~hi−1 − ~ki−1)−1

else
J̄fi ←(depending on the function)

end if
∇H(~hi−1,~ki−1)← J̄>fi∇H(~hi,~ki)

end for
return∇H(~u,~v)← ∇H(~h0,~k0)

The Fréchet derivative dg can be regarded as multiplication by the Jacobian matrix Jg(~u) ∈ RM×N
at ~u.

dg(~w; ~u) = Jg(~u)~w. (36)

The chain-rule can be rewritten as a chain of Jacobian matrices.

d(f ◦ g)(~w; ~u) = df(·; g(~u)) ◦ dg(~w; ~u) = Jf (g(~u))Jg(~u)~w. (37)

The gradient ∇f of a scalar-valued function f : RM → R is defined using an inner product · as
follows.

lim
||~k||→+0

||f(~v + ~k)− f(~v)−∇f(~v) · ~k||
||~k||

= 0. (38)

This implies that the gradient is dual to the derivative. Hence, the gradient ∇f is equal to the
transposed Jacobian matrix Jf .

df(~w;~v) = Jf (~v)~w = ∇f(~v) · ~w. (39)

Therefore, the gradient ∇(f ◦ g) of the compositional function f ◦ g is obtained by multiplying the
upper-layer gradient∇f by the transposed lower-layer Jacobian matrix Jg(~u)>.

∇(f ◦ g)(~u) = Jg(~u)>∇f(g(~u)). (40)

This is the autograd algorithm to obtain the gradient of a compositional function, which is shown in
the left panel of Fig. A1.

For the discrete autograd algorithm, we replace the Jacobian matrices Jg with their discrete counter-
parts J̄g as shown in the right panel of Fig. A1. For a linear layer g, the discrete Jacobian matrix J̄g is

17

equal to the ordinary one Jg(~v) = ∂g
∂~v . For an element-wise nonlinear activation layer g, the discrete

Jacobian matrix J̄g is a diagonal matrix where each non-zero element is expressed as f(v1)−f(v2)
v1−v2

when given two scalar arguments v1 and v2. If the two arguments v1 and v2 are closer than ε, we
use the gradient df

dz at the midpoint z = v1+v2
2 to avoid the loss of significance. We empirically

found that ε = 10−6 and ε = 10−12 worked well with single and double precisions, respectively. We
summarize the discrete autograd algorithm in Algorithm 1.

For obtaining a discrete gradient, the automatic discrete differentiation algorithm requires two forward
paths and one modified backward path. The computational cost of a discrete gradient is one and a
half times as much as that of the ordinary gradient. The training of DGNet is less expensive than the
training of HNN with the explicit midpoint method (RK2), and it is tens of times less expensive than
the training of HNN with the adaptive Dormand–Prince method.

G Details of Datasets and Results

We implemented all codes using Python v3.7.3 with libraries; numpy v1.16.2, scipy v1.2.1, and
PyTorch v1.4.0 [31]. We performed all experiments on NVIDIA TITAN V for PDEs and GeForce
2080 Ti for ODEs. We also used torchdiffeq v0.0.1 library for numerical integrations of neural
network models [7]. The results are summarized in Tables A1, A2, and A3.

PDE systems. We provide detailed results on Tables A1, which corresponds to Table 2. The standard
deviations are preceded by plus-minus signs ±, and the scales are noted in brackets. For all errors,
the standard deviations are large. The performence difference between HNN++ and DGNet would not
be significant for the KdV equation but it is obviously significant for the Cahn–Hilliard equation.

We also provide the results of longer-time predictions of the KdV equation in Fig. A2. Under the
conditions same as in Section 4, HNN++ and DGNet predicted state u for 5,000 steps, as shown in the
left column. In the center column, the true equation in Eq. (12) gives the system energies of the true
state and predicted state, as denoted by the blue and orange lines, respectively. The system energy
of the true state is conserved within a range of the rounding error. The prediction errors become
larger when two solitons collide with each other, but they are restored to their former levels; each
model learned collisions qualitatively rather than quantitatively. In the right column, each panel
shows the system energy of the predicted state when a trained neural network model is considered
as a true equation. The neural network models formed Hamiltonian systems in Eq. (1) and may
conserve the system energy. However, the system energy learned by HNN++ increases, implying
that the conservation law is destroyed. This phenomena is called energy drift and occurs commonly
in a Runge–Kutta method integrating a Hamiltonian system. The energy drift is a practical issue
for a simulation of molecular dynamics and solar systems, where the number of time steps is more
than one million and the numerical error becomes more significant than the modeling error. This
is the main reason why structure-preserving integrators are needed [22]. The Runge–Kutta method
also destroys the conservation law that DGNet potentially produces (see the third row). Only when
using the implicit scheme in Eq. (6), DGNet gives the system energy that fluctuates within a range of
±3× 10−12, implying that DGNet conserves the system energy only with the rounding error.

ODE systems. In Section 4, we evaluated the models on the ODE datasets from the original source
codes for the study on the HNN [19]. Each of their datasets is composed of three parts; the first
is for training, the second is for evaluating the time-derivative error, and the third is for evaluating
the accuracy of the long-term prediction. The number of observations and the duration of each
trajectory are summarized in Table A4. For the pendulum dataset, each trajectory in the training and
test sets consists of 45 observations over three unit times. Meanwhile for the long-term prediction
set, it was composed of 100 observations over 20 unit times. This difference did not matter in the
original study because each model was trained with the true time-derivative and it used the adaptive
Dormand–Prince method for the time-series prediction. Conversely, in our experiments, the finite
difference was instead given. The difference in the time step size caused unanticipated impacts on all
models. Hence, in Section 4, we set the conditions for training and testing to the same as those for
the long-term prediction. Moreover, for the spring dataset prediction, the time step size was rescaled
to compensate for the observation noise in the original implementation. However, we found that this
modification did not matter in our experiments; thus, we removed the rescaling.

18

state u

true energy of true state

true energy of predicted state

estimated energy of predicted state

0

10

G
ro

u
n

d
T

ru
th

sp
a

ce
x

−5

0

×10−13

0

10

H
N

N
+

+
(a

d
a

.
D

P
)

sp
a

ce
x

0

1

×10−1

0

1

×10−5

0

10

D
G

N
et

(a
d

a
.

D
P

)
sp

a
ce
x

−1

0

×10−1

−5

0

×10−6

0 5.0time t

0

10

D
G

N
et

(E
q

.
(6

))
sp

a
ce
x

0 5.0time t

−1

0

×10−1

0 5.0time t

0

2

×10−12

−5.0 −2.5 0.0 2.5 5.0

(a) (b) (c)

Figure A2: Results of long-term predictions. Models and integrators are on the left edge. (a) State u.
(b) The system energies of the true state and predicted state derived from the true equation, denoted
by blue and orange lines, respectively. (c) The system energy of the predicted state when considering
the trained neural network as a true equation.

We provide detailed results on Tables A2 and A3, which correspond to Table 3. The standard
deviations are preceded by plus-minus signs ±, and the scales are noted in brackets. For the real
pendulum dataset, the long-term prediction error of DGNet is significantly smaller than that of the
HNN; DGNet extimates the amount of energy dissipation well, as expected in Theorem 3. Even
through other differences between the HNN and DGNet would not be significant, this fact is still
remarkable. For the HNN, the Dormand–Prince method is a fourth–order method and adjusts the time
step size to suppress the prediction error smaller than a given threshold; it is the most numerically
accurate and realible integrator in our experiments. Conversely, DGNet and the leapfrog integrator
are second–order methods. For learning physical phenomena, the qualitative property is important
equally to or more than the quantitative accuracy.

We provide the detailed results of the mass-spring dataset in Fig. A3. The leftmost column shows
trajectories of state ~u, each of which forms a circle. In the second left column, the true equation gives
the system energy of the true state and predicted state. Because the ground truth data was generated
using a Runge–Kutta method (specifically, the adaptive Dormand–Prince method implemented in
solve_imp method of scipy library), the true system energy is drifting. For all neural network
models, the system energy was fluctuating over a wide range due to the modeling error. Each of

19

−1 1state u0

−1

1

G
ro

u
n

d
T

ru
th

st
a

te
u

1

state ~u

true energy of true state

true energy of predicted state

estimated energy of predicted state

0 100time step n
−2

−1

0
×10−5

0 100time step n
−2

−1

0
×10−5

0 10000time step n
−2

−1

0
×10−3

−1 1state u0

−1

1

H
N

N
(a

d
a

.
D

P
)

st
a

te
u

1

0 100time step n

−1

0

1

2

×10−2

0 100time step n

−4

−2

0

×10−6

0 10000time step n

−1

0
×10−4

−1 1state u0

−1

1

S
R

N
N

(l
ea

p
fr

o
g

)
st

a
te
u

1

0 100time step n

−1

0

×10−2

0 100time step n

0

1

×10−2

0 10000time step n

0

1

×10−2

−1 1state u0

−1

1

D
G

N
et

(a
d

a
.

D
P

)
st

a
te
u

1

0 100time step n

−1

0

1

2

×10−2

0 100time step n

−2

0

2
×10−6

0 10000time step n
−2

−1

0
×10−4

−1 1state u0

−1

1

D
G

N
et

(E
q

.
(6

))
st

a
te
u

1

0 100time step n

−1

0

1

2

×10−2

0 100time step n

−1

0

1
×10−6

0 10000time step n

0

1
×10−5

(a) (b) (c) (d)

Figure A3: Detailed results of the mass-spring dataset. Models and integrators are on the left edge.
(a) A trajectory of state u. (b) The system energies of the true state and predicted state derived from
the true equation, denoted by blue and orange lines, respectively. (c)(d) The system energy of the
predicted state when considering the trained neural network as a true equation (c) for 100 steps, and
(d) for 10,000 steps.

the remaining panels shows the system energy of the predicted state when a trained neural network
model is considered as a true equation for 100 steps in the second right column and 10,000 steps in
the rightmost column. Using the Runge–Kutta method (specifically, the adaptive Dormand–Prince
method implemented in odeint method of torchdiffeq library), the system energies of HNN++ and

20

−1 1state u0

−1

1

G
ro

u
n

d
T

ru
th

st
a

te
u

1

state ~u

true energy of true state

true energy of predicted state

estimated energy of predicted state

0 100time step n

−2

−1

0
×10−1

0 100time step n

−2

−1

0
×10−1

−1 1state u0

−1

1

H
N

N
(a

d
a

.
D

P
)

st
a

te
u

1

0 100time step n

−2

−1

0
×10−1

0 100time step n

−1

0
×10−1

−1 1state u0

−1

1

S
R

N
N

(l
ea

p
fr

o
g

)
st

a
te
u

1

0 100time step n

−2

−1

0
×10−1

0 100time step n

0

2

×10−3

−1 1state u0

−1

1

D
G

N
et

(a
d

a
.

D
P

)
st

a
te
u

1

0 100time step n

−2

−1

0
×10−1

0 100time step n
−1

0
×10−1

−1 1state u0

−1

1

D
G

N
et

(E
q

.
(6

))
st

a
te
u

1

0 100time step n

−2

−1

0
×10−1

0 100time step n
−1

0
×10−1

(a) (b) (c)

Figure A4: Detailed results of the real pendulum dataset. Models and integrators are on the left
edge. (a) A trajectory of state u. (b) The system energies of the true state and predicted state derived
from the true equation, denoted by blue and orange lines, respectively. (c) The system energy of the
predicted state when considering the trained neural network as a true equation.

DGNet are drifting. Using the leapfrog integrator, the system energy of SRNN is fluctuating over
the widest range. The leapfrog integrator is a symplectic integrator and conserves the “shadow”
Hamiltonian, which is an approximation to the true Hamiltonian [22]. The fluctuation makes it
difficult to evaluate the energy efficiency of a system, and this is a main drawback of symplectic

21

integrators. Using the implicit scheme in Eq. (6), the system energy of DGNet fluctuates within the
narrowest range, demonstrating the superiority of the discrete gradient method.

We provide the detailed results of the real rendulum dataset in Fig. A4. The left column shows
trajectories of state ~u. Each trajectory forms a spiral except for the leapfrog integrator, which produces
a circle without dissipation. In the center column, the true equation gives the system energy of the
true state and predicted state. The true energy derived only from the angle and momentum of the
pendulum bob does not monotonically decrease because it ignores the other components (e.g., the
pendulum rod). The right column shows the system energy of the predicted state when a trained
neural network model is considered as a true equation. The system energy estimated by HNN and
DGNet dissipates monotonically (see green lines); these models build the alternative energy by
implicitly estimating the other components. For a real-world problem, we cannot always observe all
states, and then, the “true” equation cannot describes the time evolution. The data-driven modeling
enables us to predict a partially observable state with the conservation and dissipation laws.

22

Table A1: Detailed results on the PDE datasets corresponding to Table 2.

Integrator KdV equation Cahn–Hilliard equation

Model Training Prediction Deriv. Energy Mass Deriv. Energy Mass

NODE [7] RK2 RK2 1.15±0.01 (×101) 4.57±3.62 (×104) 2.86±0.38 (×100) 7.91±0.03 (×102) 1.43±0.05 (×10−2) 9.15±0.11 (×10−1)
ada.DP ada.DP 1.15±0.01 (×101) 5.58±6.56 (×104) 2.84±0.43 (×100) 7.90±0.03 (×102) 1.42±0.05 (×10−2) 9.14±0.11 (×10−1)

HNN++∗ RK2 RK2 3.63±4.14 (×10−2) 6.32±10.26 (×10−3) 7.00±10.80 (×10−4) 3.44±0.20 (×102) 1.33±1.40 (×10−1) 8.76±5.07 (×10−2)
ada.DP ada.DP 2.33±2.19 (×10−2) 3.01±4.81 (×10−3) 3.35±4.92 (×10−4) 3.30±0.75 (×101) 4.89±1.74 (×10−6) 7.95±3.12 (×10−4)

↑ RK2 ↑ 1.84±1.69 (×10−3) 2.78±2.77 (×10−4) ↑ 6.61±3.34 (×100) 8.22±2.04 (×10−1)
DGNet Eq. (6) ada.DP 1.75±1.00 (×10−2) 1.60±1.65 (×10−3) 2.54±2.91 (×10−4) 7.14±8.27 (×100) 3.39±4.05 (×10−7) 6.95±7.64 (×10−5)

↓ Eq. (6) ↓ 1.60±1.65 (×10−3) 2.55±3.00 (×10−4) ↓ 3.40±4.10 (×10−7) 6.96±7.70 (×10−5)

Table A2: Detailed results on the ODE datasets corresponding to Table 3.

Integrator Mass–Spring Pendulum 2-Body

Model Training Prediction Deriv. Energy Deriv. Energy Deriv. Energy

NODE RK2 RK2 5.27±0.32 (×10−2) 5.70±1.53 (×10−1) 5.67±0.56 (×10−2) 4.60±0.76 (×100) 2.08±0.40 (×10−5) 1.44±1.96 (×10−1)
ada.DP ada.DP 5.57±0.38 (×10−2) 5.74±1.51 (×10−1) 5.54±0.61 (×10−2) 4.62±0.76 (×100) 2.07±0.41 (×10−5) 1.83±3.05 (×10−1)

HNN [19] RK2 RK2 3.82±0.09 (×10−2) 6.13±1.50 (×10−2) 4.25±0.24 (×10−2) 4.04±0.69 (×10−1) 5.39±2.65 (×10−6) 9.39±8.10 (×10−5)
ada.DP ada.DP 3.99±0.09 (×10−2) 1.74±3.99 (×10−3) 4.09±0.29 (×10−2) 1.66±0.59 (×10−2) 6.21±4.65 (×10−6) 8.18±6.08 (×10−5)

SRNN [8] leapfrog leapfrog 3.95±0.08 (×10−2) 6.90±8.08 (×10−4) 3.92±0.14 (×10−2) 1.12±0.67 (×10−2) 4.36±2.40 (×10−6) 4.04±3.22 (×10−5)

↑ RK2 ↑ 6.13±0.74 (×10−2) ↑ 7.43±1.23 (×10−1) ↑ 8.11±10.91 (×10−5)
DGNet Eq. (6) ada.DP 3.85±0.09 (×10−2) 6.16±4.28 (×10−4) 3.93±0.19 (×10−2) 1.61±1.16 (×10−2) 7.80±4.22 (×10−6) 8.10±10.91 (×10−5)

↓ Eq. (6) ↓ 6.17±4.28 (×10−4) ↓ 1.08±0.91 (×10−2) ↓ 8.10±10.91 (×10−5)

23

Table A3: Detailed results on the real pendulum dataset corresponding to Table 3.

Integrator Real Pendulum

Model Training Prediction Deriv. Energy

NODE RK2 RK2 1.38±0.02 (×10−3) 6.22±4.32 (×10−4)
ada.DP ada.DP 1.37±0.02 (×10−3) 5.88±4.02 (×10−4)

HNN [19] RK2 RK2 1.42±0.22 (×10−3) 2.86±0.50 (×10−3)
ada.DP ada.DP 1.41±0.15 (×10−3) 3.44±1.71 (×10−3)

SRNN [8] leapfrog leapfrog 1.38±0.02 (×10−3) 9.63±0.49 (×10−3)

↑ RK2 ↑ 8.63±4.96 (×10−4)
DGNet Eq. (6) ada.DP 1.38±0.06 (×10−3) 4.92±3.94 (×10−4)

↓ Eq. (6) ↓ 5.04±3.99 (×10−4)

Table A4: Details of the datasets used in [19]

Training/Test Long-Term Prediction

Dataset #Iteration #Traject. #Observ. Duration #Traject. #Observ. Duration

Mass-Spring 2,000 25/25 30 3 15 100 20
Pendulum 2,000 25/25 45 3 15 100 20
2-Body 10,000 800/200 50 20 15 500 25

24

	Introduction
	Related Work
	Methods
	General Form of Energy-Based Dynamical Systems
	Discrete Gradient for Energetic-Property-Preserving Integration
	Automatic Discrete Differentiation Algorithm
	Learning and Computation by the Discrete-Time Model

	Learning of Partial and Ordinary Differential Equations
	Conclusion
	Geometric Numerical Integration
	The Target Equations: Geometric Ordinary and Partial Differential Equations
	Proofs
	Semi-Discretization of the Partial Differential Equations
	Comparison with Symplectic Integrators
	Automatic Discrete Differentiation Algorithm
	Details of Datasets and Results

