
A Proof of the Learning Guarantee

In this section, we prove Theorem 3. First, recall the definition of (↵, ⇣)-normal DPPs (Definition 1)
below.
Definition 1. For ⇣ 2 [0, 0.5] and ↵ 2 [0, 1], a DPP with marginal kernel K is (↵, ⇣)-normal if:

1. The eigenvalues of K are in the range [⇣, 1 � ⇣]; and

2. For i, j 2 [n] : Ki,j 6= 0 ) |Ki,j | � ↵.

We assume that n is the size of the ground set with N = 2n. We set m = d(ln(1/�) + 1)
p

N/✏
2e

to be the number of samples, and use the parameter & := d200n
2
⇣
�1 min{2⇠/↵,

p
⇠/✏}e, with

⇠ := N
� 1

4

p
log(n) + 1. Below, we restate Theorem 3 for convenience.

Theorem 3. Let q be an (↵, ⇣)-normal DPP distribution with marginal kernel K
⇤. Given the

parameters defined above, suppose we have m samples from q. Then, one can generate a set M of
DPP distributions with cardinality |M| = (2& + 1)n

2

, such that, with probability at least 1� �, there
is a distribution p̃ 2 M with �

2(q, p̃)  ✏
2
/500.

Proof of Theorem 3. To prove Theorem 3, first we estimate each entry of the marginal kernel K
⇤

and generate the set M of our candidate DPPs, which contains a DPP p̃ 2 M whose marginal
kernel is close to K

⇤ in the Frobenius distance. Then, we show that that the closeness between the
marginal kernels of p̃ and q implies the desired upper bound in �

2-distance and `1-distance of the
two distributions. We start by introducing the initial estimate K̂ which is obtained by estimating the
entries of K

⇤ from our samples.

Estimating entries of KKK
⇤
: Note that one can write the entries of the matrix K

⇤ in terms
of the marginal probabilities of subsets of size one and two as follows:

PrJ⇠K⇤[[[ i 2 J ]]] = det
�⇥

K
⇤
i,i

⇤�
= K

⇤
i,i, (4)

PrJ⇠K⇤[[[{i, j} ✓ J ]]] = det

✓
K

⇤
i,i K

⇤
i,j

K
⇤
j,i K

⇤
j,j

�◆
= K

⇤
i,iK

⇤
j,j � K

⇤
i,j

2
. (5)

Given the sampled subsets {J (t)}mt=1, we can estimate the above marginal probabilities using the num-
ber of appearances of every single element and every pair of elements among J (1)

,J (2)
, ...,J (m).

We use E to denote the indicator variable of the event E. For each i 2 [n], we estimate K
⇤
i,i by the

average of the {{i} ✓ J (t)}’s:

K̂i,i :=
1

m

mX

t=1

{{i} ✓ J (t)} .

We also denote the averages of the {{i, j} ✓ J (t)}’s by ûi,j .

ûi,j :=
1

m

mX

t=1

{{i, j} ✓ J (t)} .

Using the estimates ûi,j , K̂i,i, and K̂j,j , we can also estimate K
⇤
i,j

2 by the term K̂i,iK̂j,j � ûi,j ,
based on Equation (5). To derive confidence intervals for our estimates, we use the Hoeffding bound
and a union bound, which implies that with probability at least 1 � �:

8i 2 [n] : K̂i,i 2 [PrJ⇠K⇤[[[ i ✓ J ]]] � ⇠✏ , PrJ⇠K⇤[[[ i ✓ J ]]] + ⇠✏] , (6)
8{i, j} ✓ [n], i 6= j : ûi,j 2 [PrJ⇠K⇤[[[{i, j} ✓ J ]]] � ⇠✏ , PrJ⇠K⇤[[[{i, j} ✓ J ]]] + ⇠✏] , (7)

where ⇠ := N
� 1

4

p
log(n) + 1. Note that Equation (5) does not reveal any information about the

sign of K
⇤
i,j . However, we can estimate its magnitude |K⇤

i,j |. Thus, we consider the following two
estimates for K

⇤
i,j :

8{i, j} ✓ [n], i 6= j :
K̂

(+)
i,j :=

q
max{K̂i,iK̂j,j � ûi,j , 0} ,

K̂
(�)
i,j := �

q
max{K̂i,iK̂j,j � ûi,j , 0} .

(8)
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Now, let K̂i,j be whichever of K̂
(+)
i,j or K̂

(�)
i,j that has the same sign as K

⇤
i,j . Then, according to

Equations (6), (7), and (8), we achieve:
���K̂2

i,j � K
⇤2
i,j

��� 
���K⇤

i,iK
⇤
j,j � K̂i,iK̂j,j

���+ |PrJ⇠K⇤[[[{i, j} ✓ J ]]] � ûi,j |

 max{|(K⇤
i,i + ⇠✏)(K⇤

j,j + ⇠✏) � K
⇤
i,iK

⇤
j,j |, |(K⇤

i,i � ⇠✏)(K⇤
j,j � ⇠✏) � K

⇤
i,iK

⇤
j,j |} + ⇠✏

 3⇠✏ + (⇠✏)2  4⇠✏,

where we used ⇠✏  1 and that 8i, j 2 [n] : |K⇤
i,j |  1. Moreover, using the fact that K̂i,j and K

⇤
i,j

have the same sign,

|K̂i,j � K
⇤
i,j |2  |K̂i,j � K

⇤
i,jkK̂i,j + K

⇤
i,j | = |K̂2

i,j � K
⇤2
i,j |  4⇠✏,

which gives

|K̂i,j � K
⇤
i,j |  2

p
⇠✏. (9)

On the other hand, we have the lower bound ↵ on the absolute value of the non-zero entries of K
⇤

from the ↵-normality condition (1), so for non-zero K
⇤
i,j we have:

|K̂i,j � K
⇤
i,j | 

4⇠✏

|K̂i,j + K⇤
i,j |

=
4⇠✏

|K̂i,j | + |K⇤
i,j |

 4⇠✏

↵
. (10)

Combining Equation (10) and Equation (9), we obtain:

|K̂i,j � K
⇤
i,j |  2✏ min

(
2⇠

↵
,

r
⇠

✏

)
. (11)

Note that by dropping the ↵-normality condition, we still have the bound |K̂i,j � K
⇤
i,j |  2

p
⇠✏.

Hence, the upper bound in Equation (11) holds even by setting ↵ = 0, which is equivalent to having
no ↵-normality for K

⇤.

Generating candidate matrices and DPPs for MMM: Our goal is to eventually bound the �
2-distance

between q and our estimated distribution. To achieve this goal (as we see shortly), it is enough that
one estimates each entry of K

⇤ up to an additive error of

} :=
✏⇣

100n2
. (12)

In some natural parameter regimes, i.e. when ✏ = ⌦̃(⇣�2
N

� 1
4 ) or ↵ = ⌦̃(⇣�1

N
� 1

4 ), } is
larger than the upper bound that we already have in Equation (11) and so we can return the
distribution of K̂ as our estimate for q. However, if this is not the case, we need more candi-
dates to make sure at least one of them is close to K

⇤
i,j . Note that K

⇤
i,j is already in the rangeh

K̂i,j � 2✏ min
n

2⇠/↵,
p

⇠/✏

o
, K̂i,j + 2✏ min

n
2⇠/↵,

p
⇠/✏

oi
with high probability. Therefore,

we divide this range into & := d2✏ min
n

2⇠/↵,
p

⇠/✏

o
/}e = d200n

2
⇣
�1 min{2⇠/↵,

p
⇠/✏}e inter-

vals of equal length. This way, it is guaranteed that the true K
⇤
i,j is }-close to one of the midpoints of

these intervals (except when K
⇤
i,j is zero which we handle separately). As discussed, this partitioning

(is called bracketing technique in the literature of learning theory) allows the algorithm to achieve the
optimal sample complexity.

Now, we claim that there are 2& + 1 candidates for K
⇤
i,j . This number comes from the fact that we do

not know whether K̂i,j is equal to K̂
(+)
i,j or K̂

(�)
i,j a priori. Thus, each option provides & candidates.

Also, we have to consider the case K
⇤
i,j = 0 separately because the lower bound ↵ only holds for

non-zero entries K
⇤
i,j . By considering all the combinations of candidates for each entry, we obtain a

set M of matrices. Since each entry has a }-close candidate, there exists a matrix K̃ 2 M such that
all of its entries are }-close to the true kernel matrix K

⇤. Therefore, this matrix is (n})-close to K
⇤

in the Frobenius distance. As we discussed in section 5, we project each K 2 M onto the set of valid
marginal kernels and consider the set of candidate distributions M := {Pr⇧(K)[[[ .]]]|K 2 M}. The
projection, ⇧(K), is with respect to the Frobenius distance between matrices, and it is easy to see that
computing it is equivalent to rounding up the eigenvalues of K that are negative to zero, and rounding
down the ones that are greater than one to one. Now for the DPP distribution p̃ = Pr⇧(K̃)[[[ .]]] 2 M,
we prove the following claims:
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(C1) The kernels ⇧(K̃) and K
⇤ are close in operator norm:

k⇧(K̃) � K
⇤k2  ✏⇣

100n
.

(C2) The singular values of ⇧(K̃) are in the range [99⇣/100, 1 � 99⇣/100].

For the first claim (C1), it is enough to write

k⇧(K̃) � K
⇤k2  k⇧(K̃) � K

⇤kF = k⇧(K̃) � ⇧(K⇤)kF  kK̃ � K
⇤kF  n} =

✏⇣

100n
.

(13)

where k.k2 and k.kF refer to matrix operator norm and Frobenius norm respectively. The first
inequality holds because the spectral norm is bounded by the Frobenius norm, the first equality
follows from the fact that K

⇤ is a valid marginal kernel, and the second inequality is because of the
contraction property of projection.

Next, we prove the second claim (C2). Using the variational characterization of the Operator norm
and noting the fact that ⇧(K̃) � K

⇤ is symmetric (thus its singular values are the absolute values of
its eigenvalues), we have

k⇧(K̃) � K
⇤k2 = max

v,kvk2=1
|vT (⇧(K̃) � K

⇤)v|.

Combining this with Equation (13) then implies the following for every normalized vector kvk2 = 1:

� ✏⇣

100n
 v

T (⇧(K̃) � K
⇤)v  ✏⇣

100n
. (14)

Since PrK⇤[[[ .]]] is ⇣-normal due to our assumption, we also have

⇣  v
T
K

⇤
v  1 � ⇣. (15)

Combining Inequalities (14) and (15) yields

v
T⇧(K̃)v � ⇣ � ✏⇣

100n
� ⇣ � ⇣

100
=

99⇣

100
,

and similarly

v
T⇧(K̃)v  1 � ⇣ +

✏⇣

100n
 1 � 99⇣

100
,

for any arbitrary normalized vector v. Finally, using the variational characterization of the
smallest and largest eigenvalues, we obtain that all eigenvalues of ⇧(K̃) are in the range
[99⇣/100, 1 � 99⇣/100]. Note that the singular values of ⇧(K̃) are the absolute values of its
eigenvalues, simply because ⇧(K̃) is symmetric, which completes the proof of the second claim (C2).
We use these claims (C1), (C2) in the next part.

Closeness in parameter space implies closeness of the distributions: In this part of the
proof, we show that closeness between K

⇤ and ⇧(K̃) in operator norm ensures the closeness of
the distributions q and p̃ with respect to the �

2-distance and `1-distance. This result is based on the
following Lemma, whose proof we defer to the end of this section.

Lemma 5. For arbitrary symmetric matrices B and E, we have
���| det(B + E)|� | det(B)|

���  | det(B)|nkEk2

�n(B)

✓
kEk2

�n(B)
+ 1

◆n�1

,

where �n(B) is the smallest singular value of B.

Now consider an arbitrary set J ✓ [n] and its complement J̄ . Recall that Equation (1) gives:

p̃(J) = | det(⇧(K̃) � IJ̄)| , q(J) = | det(K⇤ � IJ̄)|.
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Therefore, setting B := ⇧(K̃) � IJ̄ and E := K
⇤ � ⇧(K̃) in Lemma 5, we can upper bound

|q(J) � p̃(J)| as

|q(J) � p̃(J)|  p̃(J)
nkEk2

�n(B)

✓
kEk2

�n(B)
+ 1

◆n�1

. (16)

Furthermore, from the second claim (C2) of the previous part, the singular values of ⇧(K̃) are in
the range [99⇣/100, 1 � 99⇣/100], which means the kernel matrix ⇧(K̃) satisfies the condition of
Lemma 2. Therefore, from Lemma 2, the smallest singular value of B is lower bounded as

�n(B) � 99⇣/100(1 � 99⇣/100)p
2

� 99⇣

200
p

2
,

where we used 1 � 99⇣/100 > 1/2. Combining this with the first claim (C1) of the previous part
implies

kEk2

�n(B)
 2

p
2✏

99n
.

Hence, Equation (16) gives:

|q(J) � p̃(J)|  p̃(J)
2
p

2✏

99

 
2
p

2✏

99n
+ 1

!n�1

 ✏

25
p̃(J), (17)

where the last inequality follows from
 

2
p

2✏

99n
+ 1

!n�1

<

 
2
p

2

99n
+ 1

!n�1

<
99

50
p

2
8n 2 N.

Note that J ✓ [n] is arbitrary, so Equation (17) finally yields the desired bound on the `1-distance
and �

2-distance between q and p̃:

`1(q, p̃) =
1

2

X

J✓[n]

|q(J) � p̃(J)| 
X

J✓[n]

✏

50
p̃(J) =

✏

50
,

�
2(q, p̃) =

X

J✓[n]

(q(J) � p̃(J))2

p̃(J)
<

X

J✓[n]

✏
2

500
p̃(J) =

✏
2

500
.

Proof of Lemma 5. Let �1 � · · · � �n be the singular values of B. For every 0  k  n, we denote
sk the kth elementary symmetric function on the singular values of B, i.e.

s0 = 1, 8 1  k  n : sk =
X

1i1<...<ikn

�i1 . . . �ik ,

Note that since B is symmetric, the singular values are the absolute values of the eigenvalues, which
implies the relation | det(B)| = �1 · · ·�n.

Now Corollary 2.7 of [43] states the following determinant’s perturbation inequality:
��� det(B + E) � det(B)

��� 
nX

i=1

sn�ikEki2.

From this, we can derive
���| det(B + E)|� | det(B)|

��� 
��� det(B + E) � det(B)

��� 
nX

i=1

sn�ikEki2

= | det(B)|
nX

i=1

sn�i

�1 . . . �n
kEki2,
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where in the last equality, we multiplied and divided the sum by | det(B)|. Moving forward, we
bound sn�i by

�n
i

�
�1 · · ·�n�i:

���| det(B + E)|� | det(B)|
���  | det(B)|

nX

i=1

✓
n

i

◆
�1 . . . �n�i

�1 . . . �n
kEki2

= | det(B)|
nX

i=1

✓
n

i

◆
1

�n�i+1 . . . �n
kEki2

 | det(B)|
nX

i=1

✓
n

i

◆✓
kEk2

�n

◆i

 | det(B)|n
nX

i=1

✓
n � 1

i � 1

◆✓
kEk2

�n

◆i

= | det(B)|n kEk2

�n

n�1X

i=0

✓
n � 1

i

◆✓
kEk2

�n

◆i

= | det(B)|nkEk2

�n

✓
kEk2

�n
+ 1

◆n�1

.

B Uniform Lower Bound on the Smallest Singular Value of K � IJ̄

In this section, we prove Lemma 2: given a marginal kernel K whose eigenvalues are in the range
[⇣, 1 � ⇣], we prove the uniform lower bound ⇣(1 � ⇣)/

p
2 on the singular values of the family of

matrices {K � IJ̄}J✓[n]. This Lemma is used in the proof of Theorem 3 and enables us to control
the distances between the atom probabilities of PrK[[[ .]]] and Pr⇧(K̃)[[[ .]]].

Proof of Lemma 2. Let �1 � ... � �n be the eigenvalues of K and v1, ..., vn be an orthonormal set
of their corresponding eigenvectors. We fix a subset J ✓ [n] and lower bound the smallest singular
value of K � IJ̄ based on its variational characterization:

�n(K � IJ̄) = min
kvk2=1

q
vT (K � IJ̄)2v. (18)

Given a normalized vector v: kvk2 = 1, we represent v in the basis {vi}ni=1 as v =
Pn

i=1 ↵ivi.
Because {vi}ni=1 is orthonormal, we have

1 = kvk2 =
nX

i=1

↵
2
i kvik2 =

nX

i=1

↵
2
i .

Now we can express v
T (K � IJ̄)2v as:

v
T (K � IJ̄)2v =

 
nX

i=1

↵ivi

!T

(K � IJ̄)2
 

nX

i=1

↵ivi

!

=
X

1i,jn

↵i↵jv
T
i (K � IJ̄)2vj

=
X

1i,jn

↵i↵jv
T
i K

2
vj +

X

1i,jn

↵i↵j

�
v
T
i I

2
J̄vj � v

T
i KIJ̄vj � v

T
i IJ̄Kvj

�
.

Observe that vi
T
K

2
vi = �

2
i kvik2 = �

2
i and vi

T
K

2
vj = �i�jvi

T
vj = 0 for i 6= j. We define

some additional notation here: For any subset J ✓ [n], let (vi)J be the restriction of vi into support
J . We also denote the inner product of the vectors vi and vj restricted to J by

⌦
vi, vj

↵
J

. Using
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these notations, we can further simplify the terms vi
T
I
2
J̄
vj , vi

T
KIJ̄vj and vi

T
IJ̄Kvj to

⌦
vi, vj

↵
J̄

,
�i

⌦
vi, vj

↵
J̄

, and �j

⌦
vi, vj

↵
J̄

respectively. Substituting them above results in

v
T (K � IJ̄)2v =

nX

i=1

↵
2
i�

2
i +

X

1i,jn

(1 � �i � �j)↵i↵j

⌦
vi, vj

↵
J̄

=
nX

i=1

↵
2
i�

2
i �

X

1i,jn

↵i↵j�i�j

⌦
vi, vj

↵
J̄

+
X

1i,jn

↵i↵j(1 � �i)(1 � �j)
⌦
vi, vj

↵
J̄

where the last equality simply follows from the Equation (1 � �i)(1 � �j) = 1 � �i � �j + �i�j .
Now substituting

⌦
vi, vj

↵
J̄

by
⌦
vi, vj

↵
�
⌦
vi, vj

↵
J

in the second term above, we obtain

v
T (K � IJ̄)2v

=
nX

i=1

↵
2
i�

2
i �

X

1i,jn

↵i↵j�i�j

⌦
vi, vj

↵

+
X

1i,jn

↵i↵j�i�j

⌦
vi, vj

↵
J

+
X

1i,jn

↵i↵j(1 � �i)(1 � �j)
⌦
vi, vj

↵
J̄

=
nX

i=1

↵
2
i�

2
i �

nX

i=1

↵
2
i�

2
i +

X

1i,jn

↵i↵j�i�j

⌦
vi, vj

↵
J

+
X

1i,jn

↵i↵j(1 � �i)(1 � �j)
⌦
vi, vj

↵
J̄

=
���

nX

i=1

↵i�i(vi)J

���
2

+
���

nX

i=1

↵i(1 � �i)(vi)J̄

���
2
. (19)

Hence, it suffices to derive a lower bound on
���
Pn

i=1 ↵i�i(vi)J

���
2

+
���
Pn

i=1 ↵i(1 � �i)(vi)J̄

���
2

independent from J . To this end, we define the column vectors w1 =
⇣
↵i�i

⌘n
i=1

, w2 =
⇣
↵i(1 �

�i)
⌘n
i=1

. Furthermore, define R :=

✓
v1

���� . . .
����vn
◆

as the matrix with vi as its ith column, and let

v
0
1
T
, ..., v

0
n
T be the rows of R. Because {vi}ni=1 is an orthonormal set, R is a unitary matrix, so

{v0j}nj=1 is also an orthonormal set. Next, let V and V
T be the subspaces spanned by the set of

vectors {v0j}j2J̄ and {v0j}j2J respectively. Because {v0j}nj=1 is an orthonormal set, the subspaces
V and V

? are orthogonal to each other. Let ⌫1 =
P

j2J̄(v0j
T
w1)v0j and ⌫1

? =
P

j2J(v0j
T
w1)v0j

be the projections of w1 onto V and V
? respectively. Similarly, define ⌫2 =

P
j2J̄(v0j

T
w2)v0j and

⌫2
? =

P
j2J(v0j

T
w2)v0j as the projections of w2 onto V and V

?. Now by decomposing w1 on V

and V
?, we can write

w1 = ⌫1 + ⌫1
?

.

Similarly, we have
w2 = ⌫2 + ⌫2

?
.

Moreover, from the orthonormality of v
0
1, ..., v

0
n, we obtain

k⌫1
?k2 =

���
X

j2J

(v0j
T
w1)v

0
j

���
2

=
X

j2J

(v0j
T
w1)

2 =
X

j2J

(
nX

i=1

Rj,i(w1)i)
2

=
X

j2J

(
nX

i=1

(vi)j(w1)i)
2 =

���
nX

i=1

↵i�i(vi)J

���
2
.

Similarly, one obtains

k⌫2k2 =
���
X

j /2J

(v0j
T
w2)v

0
j

���
2

=
���

nX

i=1

↵i(1 � �i)(vi)J̄

���
2
.
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Combining the last two equations with Equation (19), we obtain

v
T (K � IJ̄)2v = k⌫2k2 + k⌫1

?k2
. (20)

Now, it suffices to bound k⌫2k2 + k⌫1
?k2. Note that

kw1k2 =
nX

i=1

↵
2
i�

2
i 

X
↵

2
i = 1,

kw2k2 =
nX

i=1

↵
2
i (1 � �i)

2 
X

↵
2
i = 1.

which implies k⌫1k, k⌫2k, k⌫1
?k, k⌫2

?k  1. Moreover, the condition ⇣  �i  1 � ⇣ implies
�i(1 � �i) � ⇣(1 � ⇣). Therefore, on one hand, we get

⌦
w1, w2

↵
=

nX

i=1

�i(1 � �i)↵
2
i � ⇣(1 � ⇣)

nX

i=1

↵
2
i = ⇣(1 � ⇣). (21)

On the other hand,
⌦
w1, w2

↵
=
⌦
⌫1 + ⌫1

?
, ⌫2 + ⌫2

?↵ =
⌦
⌫1, ⌫2

↵
+
⌦
⌫1

?
, ⌫2

?↵

 k⌫1kk⌫2k + k⌫1
?kk⌫2

?k  k⌫2k + k⌫1
?k


q

2(k⌫2k2 + k⌫1
?k2) =

q
2vT (K � IJ̄)2v. (22)

where the last equality follows from Equation (20). Combining Equations (21) and (22), we conclude
v
T (K � IJ̄)2v � ⇣

2(1 � ⇣)2/2. Recall that v is an arbitrary normalized vector, and J is an arbitrary
subset of [n], so the variational characterization of �n in Equation (18) yields the desired lower bound
�n(K � IJ̄) � ⇣(1 � ⇣)/

p
2 for every J ✓ [n].

C Lower Bound for Testing Log-submodular Distributions

In this section, we rigorously prove Lemma 4, which in turn completes the proof of Theorem 4. We
assume that ✏

0, F , hr and h̄r are defined as in Section 6.

Detailed Proof of Lemma 4. Given ✏
0  2

3 and a log-submodular distribution f , we first show that the
`1-distance between f and the unnormalized measure h̄r is large with high probability independent
of f (we define the `1-distance of general measures the same as for probability measures.) To this
end, we define the following family of subsets based on hr, that is random:

Sr := {S ✓ [n] \ {1, 2} | r(S[{1,2}) = 1, r(S[{2}) = �1, r(S[{1}) = �1}. (23)

We prove that Sr has the following properties:

(P1) With high probability, the cardinality of Sr is at least N/64.

(P2) For every S 2 Sr, there is a contribution of at least ✏
0
/8N to the `1-distance between h̄r

and f from the term VS defined as

VS :=
1

2
|h̄r(S) � f(S)| + 1

2
|h̄r(S [ {1}) � f(S [ {1})|+

1

2
|h̄r(S [ {2}) � f(S [ {2})| + 1

2
|h̄r(S [ {1, 2}) � f(S [ {1, 2})|.

Note that based on these two properties, one can simply derive

`1(h̄r, f) � N

64
⇥ ✏

0

8N
=

✏
0

512
(24)

with high probability.
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To show that the event Q1 := {|Sr| � N/64} happens with high probability for the first property (P1),
we use a Chernoff bound for the random variables {S 2 Sr}, 8S ✓ [n] \ {1, 2}, where {.} is the
indicator function. Clearly, for each S ✓ [n] \ {1, 2}, we have E[ {S 2 Sr}] = Pr[[[S 2 Sr ]]] = 1/8,
and E[|Sr|] = N/32. Therefore,

Pr[[[Qc
1 ]]] = Pr

2

4

2

4

2

4
X

S2[n]\{1,2}

{S 2 Sr} <

✓
1 � 1

2

◆
E[|Sr|]

3

5

3

5

3

5  exp

✓
�0.5

N

32
(
1

2
)2
◆

= exp

✓
� N

256

◆
.

We conclude for n � n1 = 11, Q1 happens with probability at least 0.995.

We now prove the second property (P2). Fix a set S 2 Sr and define the constant ⇢ := 1+✏0

1�3✏0/4 . To

prove VS � ✏0

8N , we consider two cases:

Case 1:
f(S[{1,2})
f(S[{2})  ⇢

Here, we formalize a helper inequality in the following Lemma, and prove it at the end of this section.

Lemma 6. For a, b � 0, the condition a
b  ⇢ implies |1 + ✏

0 � a| + |1 � ✏
0 � b| � ✏0

4 .

Now from S 2 Sr, we get h̄r(S [ {1, 2}) = 1+✏0

N and h̄r(S [ {2}) = 1�✏0

N . Hence,

VS � 1

2
|h̄r(S [ {1, 2}) � f(S [ {1, 2})| + 1

2
|h̄r(S [ {2}) � f(S [ {2})|

=
1

2

���
1 + ✏

0

N
� f(S [ {1, 2})

���+
1

2

���
1 � ✏

0

N
� f(S [ {2})

��� �
✏
0

8N
,

where the last inequality follows from Lemma 6, by setting a = Nf(S [ {1, 2}), b = Nf(S [ {2}).

Case 2:
f(S[{1,2})
f(S[{2}) > ⇢

In this case, the log-submodularity property allows us to write

log(f(S [ {1})) � log(f(S)) � log(f(S [ {1, 2})) � log(f(S [ {2})) > log(⇢),

or equivalently
f(S [ {1})

f(S)
> ⇢ =

1 + ✏
0

1 � 3✏0/4
. (25)

Note that from S 2 Sr, we have h̄r(S [ {1}) = 1�✏0

N . If f(S [ {1}) is larger than 1�3✏0/4
N , then

VS � 1

2
|h̄r(S [ {1}) � f(S [ {1})| >

1

2

⇣1 � 3✏
0
/4

N
� 1 � ✏

0

N

⌘
=

✏
0

8N

and we are done. Otherwise, we have f(S [ {1})  1�3✏0/4
N . Combining this with Equation (25)

gives:

f(S)  ⇢
�1

f(S [ {1})  1 � 3✏
0
/4

1 + ✏0
⇥ 1 � 3✏

0
/4

N
 1 � ✏

0

N
� ✏

0

4N
,

where the last inequality follows from the condition ✏
0  2

3 . Finally, we obtain

VS � 1

2
|h̄r(S) � f(S)| � 1

2

⇣1 � ✏
0

N
� (

1 � ✏
0

N
� ✏

0

4N
)
⌘

=
✏
0

8N
,

which completes the proof for the second property (P2). Therefore, under the occurrence of Q1,
we conclude from Equation (24) that `1(h̄r, f) � ✏0

512 . To show the `1-distance between hr and
f is also large, we control the normalization constant Lr :=

P
S✓[n] h̄r(S). Define the event

Q2 := {1 � 4✏0p
N

 Lr  1 + 4✏0p
N
} . A simple Hoeffding bound for the random variables

1+rS✏0

N , 8S ✓ [n], implies that Q2 happens with probability at least 0.995. Now under the occurrence
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of Q1 \Q2 and assuming n � n2 = 22, we can write:

2`1(hr, f) =
X

S✓[n]

|hr(S) � f(S)| =
X

S✓[n]

���
h̄r(S)

Lr
� f(S)

���

�
X

S✓[n]

|h̄r(S) � f(S)|�
X

S✓[n]

h̄r(S)
���
1 � Lr

Lr

���

� ✏
0

256
� 4✏

0

Lr

p
N

X

S✓[n]

h̄r(S) � ✏
0(

1

256
� 4p

N
) � ✏

0(
1

256
� 1

512
) =

c✏

512
.

A union bound for the events Q
c
1 and Q

c
2 implies that Q1 \Q2 happens with probability at least 0.99.

Note that Q1 and Q2 does not depend on f . Setting c = 1024, we conclude that with probability at
least 0.99, `1(hr, f) � ✏ for any log-submodular distribution f , given that ✏ = ✏

0
/c  2

3⇥1024 and
n � max{n1, n2} = 22, which completes the proof of Lemma 4.

Proof of Lemma 6. Here, we prove Lemma 6, which we used above. First note that if b � a, then
clearly |b � (1 � ✏

0)| + |a � (1 + ✏
0)| � 2✏

0
>

✏0

4 . So we assume b < a.

Now define t := a � (1 + ✏
0), so that a = 1 + ✏

0 + t. Then, we can write

|b � (1 � ✏
0)| + |a � (1 + ✏

0)| = | b
a
(1 + ✏

0 + t) � (1 � ✏
0)| + |t|

� | b
a
(1 + ✏

0) � (1 � ✏
0)|� | b

a
t| + |t|

= | b
a
(1 + ✏

0) � (1 � ✏
0)| + (1 � b

a
)|t|.

The condition a
b  ⇢ implies b

a (1 + ✏
0) � 1 � 3✏0

4 . Therefore

|b � (1 � ✏
0)| + |a � (1 + ✏

0)| � ✏
0

4
+ (1 � b

a
)|t| � ✏

0

4
.

where the last inequality follows from the fact that 1 � b
a > 0.

D Coupling DPPs

In this section, we fully introduce and prove the coupling argument of Lemma 3. Given a value
0 < z  0.5 and a DPP whose marginal kernel has eigenvalues that are outside the range [z, 1 � z],
the goal is to couple it with another DPP, which has a marginal kernel with all eigenvalues in [z, 1�z],
such that the data sets generated from these two DPPs are equal with high probability.

Proof of Lemma 3. Let V be an orthonormal set of the eigenvectors of K. For each v 2 V , let �v be
its corresponding eigenvalue. To introduce our coupling, we need to define the class of elementary
DPPs [46]. A DPP is called elementary if the eigenvalues of its marginal kernel are either zero or
one. For each subset V

0 ✓ V of the eigenvectors of K, we consider the elementary DPP PrKV 0 [[[ .]]]
with marginal kernel K

V 0
:=
P

v2V 0 vv
T . It is well-known that any DPP can be viewed as a mixture

of its corresponding elementary DPPs [46], i.e.

PrK[[[ .]]] =
X

V 0✓V

⇣
⇧v2V 0�v⇧v/2V 0(1 � �v)

⌘
PrKV 0 [[[ .]]]. (26)

Using this mixture formulation, we can sample a set from PrK[[[ .]]] as follows: For each eigenvector
v 2 V , we sub-sample v with probability �v to obtain the random subset V

0 of V , then we sample
JK from the elementary DPP with marginal kernel K

V 0
. We call this sampling scheme “elementary

sampling:”

• (1) For each v 2 V , sample yv ⇠ Bernoulli(�v), add v 2 V
0 if yv = 1.

22



• (2) sample JK ⇠ PrKV 0 [[[ .]]]

According to the mixture formulation in Equation (26), the elementary sampling scheme samples
JK according to PrK[[[ .]]].

One can readily see that the projected matrix ⇧z(K) has the same eigenvectors as K but with
corresponding eigenvalues {�̄v}v2V , where

�̄v =

(
�v if �v 2 [z, 1 � z]
z if �v < z

1 � z if �v > 1 � z

(27)

This fact follows from applying the 2-Weilandt-Hoffman inequality [65] for the projection operator
⇧z(.). We can similarly sample J⇧z(K) ⇠ Pr⇧z(K)[[[ .]]] with the above elementary sampling scheme.
Next, we define a coupling between JK and J⇧z(K) as follows:

• (1) For each v 2 V , sample xv ⇠ Uniform[0, 1]. Then add v to V
0
1 if xv 2 [0, �v], and add

v to V
0
2 if xv 2 [0, �̄v].

• (2) if V
0
1 = V

0
2 , then sample J ⇠ Pr

KV 0
1
[[[ .]]] and set JK = J⇧z(K) = J . Otherwise,

independently sample JK ⇠ Pr
KV 0

1
[[[ .]]], J⇧z(K) ⇠ Pr

KV 0
2
[[[ .]]].

By looking at the marginal distributions of the sets JK and J⇧z(K) sampled above, we observe
that JK ⇠ PrK[[[ .]]], J⇧z(K) ⇠ Pr⇧z(K)[[[ .]]], i.e. the marginals of the coupling are as one would
expect. Furthermore, if the sampled sets V

0
1 and V

0
2 in the first step of the sampling are equal, then

JK = J⇧z(K). Therefore, to lower bound Prcoupling
⇥⇥⇥
JK = J⇧z(K)

⇤⇤⇤
, it is enough to upper bound

Prcoupling[[[W ]]] for the event W := {V 0
1 6= V

0
2}. But we can expand W as

W =
[

v2V

⇣
{v 2 V

0
1 , v /2 V

0
2} [ {v 2 V

0
2 , v /2 V

0
1}
⌘
.

Note that for each v 2 V , {v 2 V
0
1 , v /2 V

0
2} [ {v 2 V

0
2 , v /2 V

0
1} happens with probability |�v � �̄v|.

From Equation (27), we observe that |�v � �̄v|  z for every v 2 V . Therefore, using a union bound,
we obtain

Prcoupling[[[W ]]]  nz.

Using the definition z = �/2mn, we conclude that

Prcoupling
⇥⇥⇥
JK = J⇧z(K)

⇤⇤⇤
� 1 �Prcoupling[[[W ]]] � 1 � nz = 1 � �

2m
. (28)

Using this coupling to generate the samples {J (t)
K }mt=1 and {J (t)

⇧z(K)}
m
t=1, we can write

Prcoupling

hhh
{J (t)

K }mt=1 = {J (t)
⇧z(K)}

m
t=1

iii
=
⇣
Prcoupling

⇥⇥⇥
JK = J⇧z(K)

⇤⇤⇤⌘m

�
⇣
1 � �

2m

⌘m

For a real number u, we have the inequality

(1 � 1

u
)u  e

�1
,

and for u � 2, we have
(1 � 1

u
)u � e

� u
u�1 � e

�2
.

Applying these inequalities, we finally obtain

Prcoupling

hhh
{J (t)

K }mt=1 = {J (t)
⇧z(K)}

m
t=1

iii
�
✓⇣

1 � �

2m

⌘ 2m
�

◆ �
2

� e
�� � 1 � �.
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E A More Detailed Proof of Theorem 1

In this section, we take a more elaborate look at the proof of Theorem 1. The proof is mentioned in
Section 5.2.

Detailed proof of Theorem 1. Lemma 1 tells us there exists a constant c1 such that c1CN,✏,↵,⇣

p
N/✏

2

samples suffice for DPP-Tester to successfully test against (↵, ⇣)-normal DPPs, with probability at
least 0.995. For the general problem of testing against any DPP (i.e. without having the normality
conditions), we prove that m

⇤ = c2CN,✏

p
N/✏

2 samples suffice to succeed with probability at least
0.99, as long as c2 � c1 max{23, 2 log(c1) + 23}. To test against all DPPs, we use the parameter
setting of DPP-Tester for (0, z̄)-normal DPPs, where we define z̄ := 0.005/2m

⇤
n. The key idea is

that via the coupling argument of Lemma 3, we can reduce the analysis for testing against all DPPs
to the analysis for testing against only (0, z̄)-normal DPPs. To this end, we use the following Lemma.
The derivation of the inequality in Lemma 7 is based on elementary algebraic operations, and we
differ its proof to the end of this section.

Lemma 7. For constant c2 picked as large as c2 � c1 max{23, 2 log(c1) + 23}, we have

m
⇤ � CN,✏,0,z̄

p
N/✏

2
. (29)

Therefore, we pick c2 � c1 max{23, 2 log(c1) + 23} to satisfy the inequality m
⇤ � CN,✏,0,z̄

p
N/✏

2.
This means that given m

⇤ samples, according to the definition of c1, our tester can test against
(0, z̄)-normal DPPs with success probability at least 0.995. Therefore, if the underlying distribution
q is an (0, z̄)-normal DPP, or if it is ✏-far from all DPPs, then DPP-Tester outputs correctly with
probability at least 0.995. It remains to show that the algorithm can also handle a DPP with kernel
K

⇤, which is not (0, z̄)-normal. To see this, note that because of the particular choice of z̄, our
coupling argument in Lemma 3 implies that the product distributions Pr(m⇤)

K⇤ [.] and Pr(m⇤)
⇧z̄(K⇤)[.] over

the space of data sets have `1-distance at most 0.005. This follows from the fact that for two arbitrary
random variables X and Y over the same underlying space, with probability distributions PX and
PY , we have the following characterization of their `1-distance:

`1(PX , PY ) = inf
coupling(X,Y )

Prcoupling[[[X 6= Y ]]].

Therefore, we have `1

⇣
Pr(m⇤)

K⇤ [.],Pr(m⇤)
⇧z̄(K⇤)[.]

⌘
 0.005. From this, we can relate the probability of

the tester’s acceptance region under Pr(m⇤)
K⇤ [.], to the same probability under Pr(m⇤)

⇧z̄(K⇤)[.]:

Pr(m⇤)
K⇤ [Acceptance Region] � Pr(m⇤)

⇧z̄(K⇤) [Acceptance Region] � 0.005 � 0.995 � 0.005 = 0.99,

where the last inequality follows from the fact that Pr⇧z̄(K⇤)[[[ .]]] is an (0, z̄)-normal DPP, according to
the definition of ⇧z̄(K⇤). Hence, for c2 � max{23, 2 log(c1)+23}, DPP-Tester, with the particular
choice of its parameter & with respect to (0, z̄)-normal DPPs, succeeds given c2CN,✏

p
N/✏

2 samples
to test all DPPs with probability at least 0.99. This completes the proof of Theorem 1.

Proof of Lemma 7. As usual, log(.) denotes the natural logarithm. Inequality (29) boils down to
c2CN,✏ � c1CN,✏,0,z̄,

or equivalently
c2 log2(N)(log(N) + log(1/✏)) � c1 log2(N)(1 + log(1/z̄) + log(1/✏))

, c2(log(N) + log(1/✏)) � c1(1 + log(1/0.0025) + log(m⇤) + log(n) + log(1/✏)). (30)
Using the inequality log(x)  x � 1 for x > 0, we get:

log(m⇤) = log(c2CN,✏

p
N/✏

2)

= log(c2) + 2 log(log(N)) + log(log(N) + log(1/✏)) +
1

2
log(N) + 2 log(1/✏)

 log(c2) + 2(log(N) � 1) + log(N) + log(1/✏) � 1 +
1

2
log(N) + 2 log(1/✏)

= log(c2) � 2 +
7

2
log(N) + 3 log(1/✏). (31)

24



Substituting Inequality (31) in Inequality (30), it is enough to satisfy

c2

c1
� log(c2) � 1 + log(1/0.0025) + 7/2 log(N) + 4 log(1/✏) + log(n)

log(N) + log(1/✏)
:= %.

We further upper bound % using the inequalities log(n) <
1
2 log(N) + 1 and log(N) � 0.69:

% <
log(c2) + 6 + 8 log(N) + 4 log(1/✏)

log(N) + log(1/✏)

=
log(c2) + 6

log(N) + log(1/✏)
+

8 log(N) + 4 log(1/✏)

log(N) + log(1/✏)

 1.5 log(c2) + 9 +
8(log(N) + log(1/✏))

log(N) + log(1/✏)

= 1.5 log(c2) + 17.

Therefore, it is enough to satisfy c2/c1 � 1.5 log(c2) + 17. But setting c2/c1 = c3, this means we
should choose c3 large enough so that c3 � 1.5 log(c3) + 1.5 log(c1) + 17. One can readily check
that c3 � max{23, 2 log(c1) + 23} satisfies this inequality. Consequently, it is enough to pick c2

as large as c2 � c1 max{23, 2 log(c1) + 23}, which completes the proof of Lemma 7. Note that
c1 max{23, 2 log(c1) + 23} is almost a linear function of c1.

F Modification of DPP-Tester for distinguishing (↵, ⇣)-normal DPPs from

the ✏-far set of just the (↵, ⇣)-normal DPPs

Here, we explain how to manipulate the tester to work when we want to distinguish if q is an (↵, ⇣)-
normal DPP, or ✏-far only from the class of (↵, ⇣)-normal DPPs. We suggest that the reader first read
the proof of Theorem 3.

The only part we change in the algorithm is the way we generate the set of candidate DPPs M; we
build the set of candidate marginal kernels M the same way as in the proof of Theorem 3. Given
a candidate kernel matrix K 2 M and an arbitrary entry Ki,j , depending on whether Ki,j is zero,
or picked from the confidence interval around K̂

(+)
i,j or K̂

(�)
i,j , we define the value ↵i,j(K) to be

zero, +↵, or �↵ respectively. Now when we are in the case where the underlying distribution is
DPP, according to the way we generate M , with high probability there exists a K̃ 2 M , such that
K̃i,j is }-close to K

⇤
i,j for every i, j 2 [n], and furthermore, ↵i,j(K̃) is zero if K

⇤
i,j = 0, or has the

same sign as K
⇤
i,j if K

⇤
i,j 6= 0 (} is defined in Equation (12)). Our goal is to exploit this property of

↵i,j(K̃)’s to redefine M, so that the candidate DPPs in M are (↵, ⇣)-normal. To this end, for each
matrix K 2 M , instead of projecting K onto the set of PSD matrices with eigenvalues in [0, 1], we
project onto the following convex body with respect to the Frobenius distance, which is a subset of
(↵, ⇣)-normal DPPs:

DK := {A 2 S
+
n | ⇣.I � A �(1 � ⇣)I, 8i, j 2 [n] :

Ai,j/↵i,j(K) � 1 if ↵i,j(K) 6= 0, or Ai,j = 0 if ↵i,j(K) = 0},
and generate M as

M := {Pr⇧DK
(K)[[[ .]]]|K 2 M},

where we denote by ⇧DK the projection map onto DK . Particularly, it is clear that DK is a subset of
(↵, ⇣)-normal DPPs, and as the intersection of convex sets, DK is also convex, so projection on DK

is well-defined.

Now when q is a DPP with marginal kernel K
⇤, we know it is (↵, ⇣)-normal, so for every i, j 2 [n] :

|K⇤
i,j | � ↵. Combining this with the property that ↵i,j(K̃) is zero if K

⇤
i,j = 0, or it has the same sign

as K
⇤
i,j if K

⇤
i,j 6= 0, we obtain that K

⇤ 2 DK̃ . This means ⇧DK̃
(K⇤) = K

⇤. Using this relation
with the contraction property of projection, we obtain

k⇧DK̃
(K̃) � K

⇤kF = k⇧DK̃
(K̃) � ⇧DK̃

(K⇤)kF  kK̃ � K
⇤kF .

Therefore, by substituting the projection ⇧(K) in our algorithm by ⇧DK (K) for every K 2 M , the
inequality in Equation (13) in the proof of Theorem 3 remains to hold, and the rest of the proof for
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the �
2-distance bound follows accordingly. On the other hand, with the new projection ⇧DK (K)

instead of ⇧(K), the DPPs that are generated in M are all (↵, ⇣)-normal, so if we are in the case
that q is ✏-far from (↵, ⇣)-normal DPPs, it is also ✏-far from M. Consequently, our �

2-`1 tests are
able to distinguish the two cases as before, and we obtain an (✏, 0.99)-tester with sample complexity
⇥(

p
N/✏

2) for this modified version of our testing problem.

We should note that computing ⇧DK (K) is trickier than ⇧(K); for ⇧(K), computing the Singular
value decomposition (SVD) of K is enough (or we can use iterative algorithms to get an approximate
solution faster), but computing ⇧DK (K) is a general convex problem and is solvable via convex
programming approaches.

G Analysis of DPP-Tester2

In this section, we show the argument in Theorem 5, which is a direct consequence of the sample and
time complexities for the moment-based learning algorithm in [67].

Proof of Theorem 5. Recall from the proof of Theorem 3 that estimating each entry of K
⇤ up to

accuracy }, defined in Equation (12), is enough to prove the desired bound �
2(q, p̃)  ✏

2
/500, which

in turn enables the final �
2-`1 tester to work correctly.

Now let Dn be the set of n⇥ n diagonal matrices with +1 or �1 on their diagonal. For any D 2 Dn,
the marginal kernel DK

⇤
D induces the same DPP distribution as K

⇤ does. In other words, K
⇤ is

identifiable only up to the multiplication of its rows and columns by ±1. With this in mind, to get
the final guarantee for closeness of the DPP distributions when we use the moment-based learning
algorithm, i.e. �

2
⇣
q,PrKnew[[[ .]]]

⌘
 ✏

2
/500, it is enough that for some D 2 Dn, we estimate the

matrix DK
⇤
D entrywise with accuracy }. In fact, the moment-based learning algorithm gives us

such a guarantee; according to [67], in order to compute a }-accurate estimate of K
⇤ in pseudo-

distance, the moment-based algorithm requires O

✓⇣
1

↵2}2 + `( 4
↵ )2`

⌘
log(n)

◆
samples, where the

pseudo-distance of matrices K1 and K2 is defined as

⇢(K1, K2) = min
D2Dn

���DK1D � K2

���
1

= min
D2Dn

max
i,j2[n]

��(DK1D)i,j � (K2)i,j
��.

Now substituting } from Equation (12), the sample complexity of the moment-based algorithm as a
subroutine in DPP-Tester2 becomes

m = O

✓
n

4 log(n)

✏2↵2⇣2
+ `(

4

↵
)2` log(n)

◆
, (32)

where ` is the cycle sparsity3 of the graph with vertices [n], whose edges correspond to the non-zero
entries of K

⇤.

Adding the complexity of the final �
2-`1 test to the learning complexity in Equation (32), the overall

sample complexity of DPP-Tester2 is:

O

✓
n

4 log(n)

✏2↵2⇣2
+ `(

4

↵
)2` log(n) +

p
N

✏2

◆
.

For the time complexity, the run-time of the moment-based algorithm is O(n6 + mn
2) in the worst-

case due to [67], and the run-time of the �
2-`1 test is O(Nn

3+m), as we have to compute PrKnew[[[J ]]]
for each J ✓ [n], requiring an SVD in time O(n3). Adding them up results in an overall run time of

O(Nn
3 + n

6 + mn
2) = O(✏4m2

n
3 + n

6 + mn
2) = Poly(m, n)

for DPP-Tester2, where the above equality follows from our sample complexity lower bound
m = ⌦(

p
N/✏

2).
3The cycle sparsity of a graph is the smallest `0 such that the cycles with length at most `0 constitute a basis

for the cycle space of the graph.

26



H Time complexity of DPP-Tester

In this section, we analyze the time complexity of DPP-Tester.

For each p 2 M, to apply the robust �
2-`1 test of Acharya et al. [1], one has to compute the statistic

Z
(m) defined in Equation (3). To compute Z

(m), one should compute p(J) for every J ✓ [n], which
requires a determinant calculation in time O(n3). Therefore, each robust �

2 � `1 testing takes time
O(Nn

3). There is another O(m) pre-processing time for computing N(J)’s. Moreover, computing
the projection matrix ⇧(K) for every K 2 M requires the Singular value decomposition (SVD) of
K, which takes time O(n3). This is because we project with respect to the Frobenius distance, and
it follows from the 2-Weilandt-Hoffman inequality [65] that computing ⇧(K) can equivalently be
done by rounding down the eigenvalues of K that are larger than one to one, and rounding up the
eigenvalues that are negative to zero. Computing the initial estimate of the marginal kernel, i.e. K̂

in the proof of Theorem 3, also takes time at most O(min{N, m}n2). Therefore, the overall time
complexity becomes

O(|M|Nn
3 + m).

To have a time complexity upper bound only in terms of the main variables n, ✏, note that based
on what was discussed in section 5.2, for the general DPPs without the knowledge of ⇣ and ↵, we
set the normality parameters in our algorithm as (↵, ⇣) = (0, z̄), where z̄ is 0.005/(2m

⇤
n), for

m
⇤ = O(CN,✏

p
N/✏

2). Substituting CN,✏ = log2(N)(log(N) + log(1/✏)), we get that z̄
�1 =

O

⇣
(n4 + n

3 log(1/✏))
p

N/✏
2
⌘

. Substituting ⇣ = z̄ in Theorem 3, in the definition of & and ignoring
↵ in the min term, we obtain the following worst-case scenario upper bound on &:

& =O((n2
⇣
�1
p

⇠/✏) = O

⇣
n

2(n4 + n
3 log(1/✏))

p
N/✏

2)N� 1
8 log

1
4 (n)✏�0.5

⌘
(33)

=O

⇣
✏
�2.5(n6 + n

5 log(1/✏))N
3
8 log

1
4 (n)

⌘
. (34)

Therefore,

|M| = O

⇣
✏
�2.5(n6 + n

5 log(1/✏))N
3
8 log

1
4 (n)

⌘n2

.

But notice that our matrices are symmetric, hence, we only have to consider different candidates for
at most n(n + 1)/2 entries, which reduces the size of |M| to

|M| = O

⇣
✏
�2.5(n6 + n

5 log(1/✏))N
3
8 log

1
4 (n)

⌘n(n+1)/2
.

I Lower bound on the Sample Complexity of Distinguishing the Uniform

distribution from F

In this section, we give a high-level sketch of the approach that Diakonikolas and Kane [24] use, to
argue a lower bound of ⌦(

p
N/✏

2) on the sample complexity of the problem of testing the uniform
distribution against hr, randomly selected from F .

Proof. Suppose that we observe samples from the underlying distribution g, where g can either be
hr or the uniform distribution. We flip a random coin X , and based on that set g to the uniform
distribution, or to hr, a distribution randomly selected from F . For every S ✓ [n], let N(S) be the
number of samples that are equal to S. We aim to show that given the number of samples satisfy
m = o(

p
N/✏

2), the information in the collection of random variables A = {N(S)|S ✓ [n]} is not
enough to guess the value of X strictly better than random guessing, say with success probability
greater than 0.51.

To begin, we use the following Lemma without proof, which is exactly Lemma 3.2. in page 19 of [24].
This is a classical result in Information theory:

Lemma 8. For random variables X and A, if there exist a function mapping A to X such that
f(A) = X with probability at least 0.51, then we have the following bound on their mutual
information:

I(X;A) � 2.10�4
.
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Based on Lemma 8, it is enough to show that I(X;A) = o(1). To continue, we use the Poissonization
trick; instead of directly deriving m samples from g, we sample m

0 from the Poisson distribution with
parameter m, namely m

0 ⇠ Poisson(m), then derive m
0 samples from g. Using this trick, we still have

m
0 = ⇥(m) samples with high probability, so it is enough to bound I(X,A) for A with respect to the

new sampling scheme with Poissonization. Based on properties of the Poisson distribution, the new
scheme is equivalent to deriving N(S) ⇠ Poisson(mg(S)) for each set S ✓ [n] independent from
the others. Furthermore, we showed in the proof of Theorem 4 that Lr = ⇥(1) with high probability,
so by using mLr instead of m samples, the order of sample size does not change. But now, in the
case g = hr, N(S) is sampled according to N(S) ⇠ Poisson(mLrhr(S)) = Poisson(mh̄r(S)).
Thus, one can readily see that again, we can substitute hr by its unnormalized counterpart h̄r in our
Poisson sampling.

Finally, assuming the sampling scheme N(S) ⇠ Poisson(mh̄r(S)), 8S ✓ [n], we bound I(X,A).
Note that given the value of X , the random variables {N(S)} are independent, so we have the
following bound on the mutual information:

I(X;A) 
X

S✓[n]

I(X; N(S)). (35)

It is enough to bound each of the terms I(X; N(S)). For that, we bring without proof Lemma 3.3.
from [24], page 20:

Lemma 9. If N(S) ⇠ Poisson(mh̄(S)) for X = 0 and N(S) ⇠ Poisson(m/N) for X = 1, then:

I(X; N(S)) = O(m2
✏
4
/N

2).

From this Lemma and Equation (35), we get I(X;A) = o(m2
✏
4
/N) = o(1). Combining this with

Lemma 8, we conclude that we need at least ⌦(
p

N/✏
2) samples to non-trivially guess X from the

observed samples. This completes the proof of the promised lower bound on the sample complexity
of the problem of testing uniform distribution against F . For more details and the proof of Lemmas 8
and 9, we refer the reader to [24].

J Experiments

Finally, we perform small-scale synthetic experiments as a proof of concept.

We generate random DPPs for n = 4 by randomly generating kernel matrices K. We draw the
eigenvalues of each K uniformly from [0, 1], and use eigenvectors of random matrices with entries
uniformly sampled from [0, 1]. To generate a ⇥(✏)-far distribution from the class of DPPs, we use our
lower bound approach in section 6: we add a random perturbation of ± ✏

N to each atom probability
of the uniform distribution over 2n. Lemma 4 implies that for sufficiently large n and small ✏, with
high probability, we are ⇥(✏) far from the class of DPPs, where the constant in ⇥(✏) is in the range
[1/1024, 1]. Since we do not know the exact value of this constant, we use the constant 1/2 to
compute the algorithm’s acceptance threshold: C = m( ✏

2 )2/10.

We simplified the algorithm slightly in two ways: (1) instead of projecting the candidate matrices, we
just ignore the ones that have an eigenvalue outside the range [0, 1]; (2) Instead of checking multiple
candidate entries in the confidence intervals for each K

⇤
ij , we only consider the two signed values

+| bKij | and �| bKij |. The results are obtained by averaging the empirical probabilities over 20 runs.

Figure 1 shows the performance of our tester for various number of samples: detection rate when the
underlying distribution is a DPP (blue bars), and False Alarm rate when it is ⇥(✏) far from the class
of DPPs (orange bars). For ✏ = 0.02, and the C we picked here, the algorithm correctly accepts most
DPPs, but needs more samples to correctly reject non-DPPs.

Our adaptive sample complexity has a weak logarithmic dependence on ⇣
�1; as a reminder, ⇣

measures how close the eigenvalues of K are to zero or one. The coupling argument in Lemma 3
got rid of this dependence, for ⇣ below some threshold. This theory motivates the question how
much the accuracy of our tester depends on the spectrum of K, in particular, on the distribution of its
eigenvalues. To investigate this for n = 4, we sample the eigenvalues of K from a normal distribution
with mean on one of the equidistant points 0.05, 0.1, . . . , 0.9, 0.95 and standard deviations 0.1 or 0.2,
conditioned on the interval [0, 1].
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Figure 1: Detection and False Alarm rates of the testing algorithm for various numbers of samples
and ✏ = 0.02.
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Figure 2: Detection errors of the testing algorithm for DPP kernel matrices with eigenvalues sampled
from a conditional normal distribution, with different means, variances, and over multiple choices of
the algorithm’s threshold C.

Figure 2 shows the results for a variety of parameters. The x-axis is the mean of the normal
distribution, while the y-axis is the empirical value of the error probability in Detection (i.e. recovering
the underlying DPP), averaged over 100 runs for each setting of the parameters. The sample size is
10000 here. The results suggest that the detection accuracy is only very weakly affected by the mean
of the eigenvalues of K and, in particular, the error does not increase a lot at the boundaries.
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