
We thank all reviewers for their positive comments.1

Reviewer #1 Learning: Our tester implicitly learns, too: To learn a DPP, we can run the tester and return any DPP2

in the candidate setM that is accepted by the χ2-`1 test (if any). By Theorem 1, with high probability, the returned3

DPP is close to the DPP whose samples we observe. We will make this more explicit. Lemma 4: “high probability"4

means with an arbitrarily large constant probability. We will clarify this. Uniform distribution: In Line 286 we state5

why the uniform measure is a DPP. We will clarify this. Confidence Interval: The tester uses |K̂i,j | as an estimate6

for |K∗
i,j | (the sign is harder to estimate). For some parameter u, concentration assures that w.h.p. |K̂i,j | belongs to7

(|K∗
i,j | − u, |K∗

i,j |+ u). The algorithm picks multiple equally-distant values from the intervals (|K̂i,j | − u, |K̂i,j |+ u)8

and (−|K̂i,j | − u,−|K̂i,j |+ u). We will clarify this. Section 5.2: The main idea is to use the coupling to bound the9

acceptance probability of the tester for πz̄(K∗) instead of K∗, by applying Lemma 1, and then use their closeness to10

transfer the result. We will clarify this. Run time: is not generally polynomial as |M| is not polynomially bounded by11

n. We will add this.12

Other comments: We will add/clarify these and correct the typos. Thank you.13

Reviewer #2 We will add synthetic data experiments in the supplement. As the reviewer correctly pointed out, our14

exponential lower bound leaves no hope for a more efficient tester. But we hope that it motivates follow-up works15

studying structural assumptions, sub- and super-classes that may allow better results. Reducing the order of |M|: We16

are not aware of any systematic way for this. Yet, a simple idea is to consider the identifiability classes of K: for each17

i ∈ [n], multiplying the ith row and column of the marginal kernel by −1 does not change the distribution. This defines18

an equivalence relation between matrices, where each matrix is equivalent to 2n−1 others. Currently, we are considering19

all of the 2n−1 matrices of a class inM. Also, as a heuristic method, one can substitute the discrete search inM by an20

iterative approach: We are looking for a DPP inM for which the statistic Z(m) is less than C. One can see Z(m) as a21

smooth function of the kernel K, and minimize it using Gradient Descent (GD) with initialization K̂.22

Reviewer #3 L42: We will clarify this. L115: Indeed, our tester is deterministic. Except the statement of choosing a23

random distribution in F , all high probability statements, including the one in L115, are w.r.t. q, whose samples we24

observe. L148-150: This is a typo. We meant that using their algorithm results in sub-optimal sample complexity for25

testing. We will correct this. L186: We will add a note on the cardinality ofM. L288: The “high probability" in L29226

refers only to the randomness of selecting h from F . We will explain this. Randomization is necessary for the hardness27

result: compared to any fixed distribution in F , randomization further decreases the `1 distance to the uniform measure,28

which makes testing harder. Testing continuous DPPs: testing in continuous space without any parameterization is29

generally infeasible with finite samples. For example, consider ε-uniformity testing over [0, 1]: One can divide [0, 1]30

into N sub-intervals and consider only distributions that assign constant density to each. This discretization transfers the31

lower bound
√
N/ε2 of the discrete problem to the continuous case, for any N . We conjecture that a similar negative32

result holds for testing continuous DPPs. Approximate Sampler: We are currently not sure if our results generalize to33

an approximate sampler. The tester starts by estimating K∗ by computing the marginal probabilities for every i ∈ [n]34

and {i, j} ⊆ [n]. An approximate sampler with `1 error e adds an additional error term of e to the confidence intervals35

of our estimates for these marginals, and propagates to our learning guarantee. However, we do not currently know how36

the robust identity tests might behave with an approximate sampler. We thank the reviewer for mentioning this useful37

generalization, as oftentimes an MCMC sampler is used for DPPs. Minor comments: Thank you, we will follow38

these.39

Reviewer #4 We will make the writing more accessible, add illustrations, and include synthetic experiments. L4 in40

the algorithm: In section 5.1, we briefly explain what the χ2 − `1 test does. We will make it clearer. Testing against41

parametric DPPs: Indeed, our results motivate a study of additional structural assumptions that may bypass the lower42

bound. Currently, we do not know which sub-classes may enable this. Summary Statistics: Indeed, one hopes to43

exploit the parametric structure of DPPs to design good summary statistics for testing. We use the marginals in the44

learning part (based on the DPP structure), and the χ2-`1 tester computes Z(m). Our information-theoretic lower45

bound also guarantees that there are no better statistics for `1 testing. Uniformity testing intuition: Intuitively, the46

dependence on ε comes from Central limit theorem: To test if a coin is unbiased or has bias ε with the sum statistic, at47

least Ω(1/ε2) samples are needed. For the intuition of the dependence on N , consider this problem: we observe samples48

from either the uniform distribution over 2N , or over N items. By to the Birthday Paradox, with o(
√
N) samples,49

most likely no repetition of samples happens. But, without that, the two distributions are intuitively indistinguishable.50

Negative Dependence: Indeed, our lower bound relies only on submodularity, and does not directly generalize to every51

class with the negatively dependence property. Identifiability of K: Indeed, during the generation ofM, we do not52

classify different kernel representations of a DPP. Reducing the repetitions reduces the size ofM.53


