
Appendix – “Learning Causal Effects via
Weighted Empirical Risk Minimization”

Notations. The following notations are used throughout this paper. Each variable will be represented
with a capital letter (X) and its realized value with the small letter (x). We will use bold letters
(X) to denote sets of variables. Given an ordered set of variables X : X1 < · · · < Xn, we
denote X(i) = {X1, · · · , Xi}, and X≥i = {Xi, · · · , Xn}. We use the typical graph-theoretic
terminology PA(C)G, Ch(C)G, De(C)G, An(C)G to represent the union of C with its parents,
children, descendants, ancestors in the graph G. We use GC1C2

to denote the graph resulting from
deleting all incoming edges to C1 and outgoing edges from C2 in G. GC denotes the subgraph of
G over C. (X ⊥⊥ Y | Z)G denotes that X is d-separated from Y given Z in G. EP (y|x)[f(Y)|x]
denotes the conditional expectation of f(Y) over P (y|x). D ≡ {V(i)}mi=1 denotes a sample drawn
from P (v) where V(i) denotes the ith sample in D. The indicator function for V(i) = v is written
as Iv(V(i)). Pm(v) ≡ 1

m

∑m
i=1 Iv(V(i)) denotes the empirical distribution of D.

A Demonstrations of wID (Algorithm 1)

We demonstrate the application of Algo. 1 using Examples 1 (Fig. 1b), 2 (Fig. 2a), and 3 (Fig. 2b).
First we restate wID algorithm and Lemma 1.
Lemma A.1 (Restated Lemma 1). Let a topological order over V be V1 < V2 < · · · < Vn.
Suppose Q [A] is given by Q [A] = PW(a|r) for some R ⊆ V and weight functionW .

1. If W is a C-component of GA, then Q [W] = PW×W
′
(w|r′), where R′ ≡ R ∪

((A\W) ∩An(W)) andW ′ ≡ PW((a\w)∩An(w)|r)∏
Vi∈(A\W)∩An(W) P

W(vi|v(i−1)∩a∩An(w),r)
.

2. If W ⊆ A satisfies W = An(W)GA
, then Q [W] = PW(w|r).

Example 1 (Figure 1b) Consider the model in Fig. 1b, where the causal effect is given by

P (y|do(x)) =
∑
w P (x, y|r, w)P (w)∑
w P (x|r, w)P (w)

, (A.1)

which is not in the weighting form. The graph has two C-components S1 = {W,X, Y }
and S2 = {R} (Line 2). We have Q [S1] = PW1 (s1|r) where W1 = P (r)/P (r|w), and
Q [S2] = P (r|w) by Lemma 1 (Line 3). Let D = An(Y )GV\X = {Y } (Line 4). Run
wIdentify(Y,S1, Q [S1] , r,W1) (Line 6). In Procedure wIdentify(), let A = An(Y )GS1

=

{X,Y }, then Q [A] = PW1 (a|r) (Line a.1). In GA = G{X,Y }, let S ≡ {Y } denote the C-
component containing Y (Line a.5). Then, Q [S] = Q [Y ] = PW1×W′ (y|r′) where R′ = {R,X}
and W ′ = PW(x|r)/PW(x|r) = 1 by Lemma 1 (with W = S = Y ) (Line a.6). Line a.7 re-
turns Q [Y ] = wIdentify(Y,S, Q [S] , r′,W1) = PW1 (y|x, r). Finally we obtain P (y|do(x)) =
PW1 (y|x, r) (Line 7).

Example 2 (Figure 2a) Consider Fig. 2a where the causal effect is given by

P (y|do(x)) =
∑
w,z

P (z|w, x)
∑
x′

P (y|w, x′, z)P (x′|w)P (w). (A.2)

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Algorithm A.1: wID (x,y, G, P ) – Restated Algo. 1.
Input: x,y, G, P
Output: Expression of P (y|do(x)) as a weighted distribution; or FAIL if P (y|do(x)) is unidentifiable.

1 Let V← An(Y); P (v)← P (An(Y)); and G← GAn(Y).
2 Find the C-components of G: S1, · · · ,Sk.
3 Let Q [Si] = PWsi (si|rsi) where (Wsi , rsi) are derived from Lemma 1.
4 Let D ≡ An(Y)GV\X .
5 Find the C-component of GD: D1, · · ·DK .
6 For each Di ∈ Sj for some (i, j), let

Q [Di] = wIdentify
(
Di,Sj , Q [Sj ] , rsj ,Wsj

)
≡ PWdi (di|rdi).

7 if K = 1 then
return P (y|do(x)) = PWd1 (y|rd1).

end
8 LetW ≡

∏K
i=1 P

Wdi (di|rdi) /P (d|r) where R ≡ V\D.
9 return P (y|do(x)) = PW (y|r)

Procedure wIdentify(C,T, Q [T] , r,W)
Input: T, Q [T] = PW(t|r)
Output: Q [C] for C ⊆ T as a weighted distribution.

a.1 Let A ≡ An(C)GT , then Q [A] = PW(a|r) by Lemma 1.
a.2 if A = C then

return Q [C] = PW (a|r)
end

a.3 if A = T then
return FAIL

end
a.4 else
a.5 Let S denote the C-component in GA such that C ⊆ S.
a.6 Compute Q [S] = PW×W

′
(s|r′) where (W ′, r′) are derived by Lemma 1.

a.7 return wIdentify (C,S, Q [S] , r′,W ×W ′)
end

We start with S1 = {W,X, Y } and S2 = {Z} (Line 2). We then derive Q [S1] = PWS1 (s1|z)
whereWS1

= P (z)/P (z|w, x) by applying Lemma 1 with A = V and W = S1 (Line 3). We also
derive Q [S2] = PWS2 (s2|x,w) = P (z|x,w) (whereWS2

= 1) by applying Lemma 1 with A = V
and W = S2 (Line 3). Let D = An(Y )GV\X = {W,Y,Z} (Line 4), where D1 = {W,Y } and
D2 = {Z} (Line 5).

For identifying Q [D1], we invoke wIdentify (D1,S1, Q [S1] , z,WS1
) (Line 6). Let A1 =

An(D1)GS1
= D1, then Q [A1] = Q [D1] = PWS1 (d1|z) (Line a.1). Since A1 = D1, then

we return Q [D1] = PWD1 (d1|z) whereWD1 =WS1 = P (z)/P (z|w, x) (Line a.2).

For identifying Q [D2], we invoke wIdentify (D2,S2, Q [S2] , (w, x), 1) (Line 6). Let A2 =
An(D2)GS2

= D2, then Q [D2] = P (d2|w, x) (Line a.1). Since A2 = D2, then we return
Q [D2] = PWD2 (d2|x,w) = P (z|x,w) whereWD2 = 1 (Line a.2).

LetW ≡ PWD1 (d1|z)PWD2 (d2|x,w) /P (d|x) (Line 8). Specifically,

W ≡ PWD1 (d1|z)PWD2 (d2|x,w) /P (d|x)

=
PWD1 (w, y|z)P (z|x,w)

P (w, z, y|x)
Finally, the causal effect is given by P (y|do(x)) = PW (y|x) (Line 9).

Example 3 (Figure 2b) Consider Fig. 2b where the causal effect is given by

P (y|do(x, r)) =
∑
w,z

P (z|w, x)
∑
x′

P (y|w, x′, r, z)P (x′|w, r)P (w). (A.3)

We start with S1 = {W,X, Y } and S2 = {R,Z} (Line 2). We then derive Q [S1] = PWS1 (s1|r, z)
whereWS1

= P (r, z)/P (z|w, x, r)P (r|w) by applying Lemma 1 with A = V and W = S1 (Line
3). We also derive Q [S2] = PWS2 (s2|x,w) = P (z|x,w) (whereWS2

= 1) by applying Lemma 1
with A = V and W = S2 (Line 3). Let D = An(Y )GV\{X,R} = {W,Y,Z} (Line 4), where
D1 = {W,Y } and D2 = {Z} (Line 5).
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For identifying Q [D1], we invoke wIdentify (D1,S1, Q [S1] , {r, z},WS1) (Line 6). Let A1 =
An(D1)GS1

= D1, then Q [A1] = PWS1 (a1|r, z) by applying Lemma 1 (Line a.1). Since A1 =

D1, then we return Q [D1] = PWD1 (d1|r, z) whereWD1
=WS1

(Line a.2).

For identifying Q [D2], we invoke wIdentify (D2,S2, Q [S2] , (w, x), 1) (Line 6). Let A2 =
An(D2)GS2

= D2, then Q [A2] = PWS2 (a2|w, x) = P (d2|w, x) by Lemma 1 (Line a.1). Since
A2 = D2, then we return Q [D2] = PWD2 (d2|x,w) = P (z|x,w) whereWD2

= 1 (Line a.2).

LetW ≡ PWD1 (d1|r, z)PWD2 (d2|x,w) /P (d|x, r) (Line 8). Specifically,

W ≡ PWD1 (d1|r, z)PWD2 (d2|x,w) /P (d|r, x)

=
PWD1 (w, y|r, z)P (z|x,w)

P (w, z, y|r, x)

Finally, the causal effect is given by P (y|do(x, r)) = PW (y|x, r) (Line 9).

Remark: The use of extra covariates in Algo. 1. We note that the result of Algo. 1 is given
by P (y|do(x)) = PW (y|r) for some R ⊇ X, despite that P (y|do(x)) should be a function of
only X = x instead of R = r. For instance, in Example 1 (Figure 1b), we obtain P (y|do(x)) =
PW (y|x, r). That PW (y|x, r) is independent of the value r, or equivalently, the r.h.s of Eq. (A.1)
is independent of the value r, is known as a Verma constraint on the observed distribution implied
by the causal graph [7]. Despite the equality PW (y|r) = PW (y|x) by Verma constraints, we use
the estimand PW (y|r) instead of PW (y|x) in finite sample settings, since the inclusion of more
covariates tends to reduce the error in the regression analysis [1].

B Procedure for Evaluating Weight Function Ŵ∗ in WERM-ID-R
(Algorithm 2)

Notice that Algo. 1 computes W∗ (i.e. W in Line 8) and expresses a causal estimand into a
weighted distribution recursively by repeated application of Lemma 1. Given finite samples D =

{V(i)}mi=1 drawn from P (v), one can evaluate Ŵ∗ by running wID (Algo. 1) and computing weights
recursively if we can evaluate the weights in Lemma 1 from D = {V(i)}mi=1. We provide a
procedure LearnWeightedDist given in Algo. B.1 for evaluating W × W ′ in Lemma 1 when
given D ∼ P (v) and the weightsW . The key idea is that P̂W(·|·) will be computed by drawing
samples DW that could be treated as if they were drawn from PW (v) in asymptotic. Specifically,
LearnWeightedDist evaluatesW ′ in Lemma 1 fromDW , generates samplesDW×W′ by weighting
D with W × W ′ using a procedure WeightedSample, and outputs (W × W ′,DW×W′). The
procedure WeightedSample(D,W) draws sample DW based on D by repeatedly taking bootstrap
samples D′ from D and re-sampling D′ with the weightW .

Given a weight function W , let PWm (v) denote the normalized empirical distribution Pm(v) of
D = {V(i)}mi=1 weighted byW , i.e.,

PWm (v) ≡ W(v)Pm(v)∑
vW(v)Pm(v)

. (B.4)

The following results ascertain that (1) DW output by WeightedSample(D,W) are samples that
could be treated as those drawn from PW (v) in asymptotic; and (2) The probability of |DW | ≥ D is
extremely high. For example, if a = 5,m = 100, then the probability |DW | < |D| is smaller than
10−70.

Lemma B.1 (Correctness of WeightedSample in Algo. B.1). Let V(j) ∈ DW denote the jth
sample of DW , the set of samples returned by WeightedSample (D,W) in Algo. B.1. Then, (1) DW
follows the distribution PWm (v); (2) PWm (v) converges to PW (v) for all v as m → ∞; and (3)
P (|DW | ≥ |D|) ≥ 1− exp

(
−0.5(1− 1/a)2am

)
.

Proof. In the proof, we will use Pr(·) to denote any probability measure assigned to any event in the
subset of sample spaces.
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Algorithm B.1: LearnWeightedDist(D,DW ,W, (A,W,R)) –Evaluating weights in
Lemma 1
Input: Samples D = {V(i)}mi=1 drawn from P (v); Estimated weightW; Samples DW drawn from

PWm (v).
Output: Estimated weightsW × Ŵ ′; Samples DW×Ŵ′ drawn from PW×Ŵ

′
m (v).

1 Evaluate Ŵ ′ ≡ P̂W ((a\w)∩An(w)|r)∏
Vk∈(A\W)∩An(W) P̂W (vk|v(k−1)∩a∩An(w),r)

by computing P̂W(·|·) from samples DW

using regressions.
2 EvaluateW × Ŵ ′.
3 Generate DW×Ŵ′ = WeightedSample(D,W × Ŵ ′).
4 return (W × Ŵ ′,DW×Ŵ′)

Procedure WeightedSample(D,W)
Input: Samples D drawn from P (v); A weight functionW(v).
Output: Samples DW drawn from PWm (v).

1 DW = {}.
2 LetWmax ≡ max

{
1,maxV(j)∈DW(V(j))}

}
.

3 Let j = 0 and jmax ≡ adWmaxe for some constant a ≥ 2. // e.g., a = 10
while |DW | < D do

4 j = j + 1.
5 Take a bootstrap sampling D′ from D.
6 for i = 1, 2, · · · , |D′| do
7 Generate A(i) from P (A(i) = 1|V(i)) ≡ Bernoulli

(
W(V(i))

Wmax

)
where V(i) ∈ D′.

// Bernoulli(θ) is a Bernoulli distribution parameterized by
θ ∈ [0, 1].

8 If A(i) = 1, then DW = DW ∪
{
V(i)

}
.

end
9 if j > jmax then end loop

end
10 return DW

We note that the samples of DW are chosen from D′, which was collected through the bootstrapped
sampling from D. Note that the bootstrapped samples D′ follow the empirical distribution of D,
denoted as Pm, i.e., D′ ∼ Pm. Let DW = {VW(i)}

m′

i=1 and D = {V(i)}mi=1. By the design of

Algo. B.1, we note Pr(A(i) = 1|v) = W(v)
Wmax

; Pr(V(i) = v) = Pm(v) (where V(i) ∈ D). Then, for
VW(i) ∈ D

W ,

Pr(VW(i) = v) = Pr(V(i) = v|A(i) = 1)

=
Pr(A(i) = 1|V(i) = v)Pr(V(i) = v)∑
v Pr(A(i) = 1|V(i) = v)Pr(V(i) = v)

=
Pr(A(i) = 1|v)Pm(v)∑
v Pr(A(i) = 1|v)Pm(v)

=
Pm(v)W(v)/Wmax∑
v Pm(v)W(v)/Wmax

=
Pm(v)W(v)∑
v Pm(v)W(v)

= PWm (v) ,

To see the second statement holds, we note that limm→∞ Pm(v) = P (v) for any possible realization
of V = v by the Strong law of large number. Then, limm→∞ Pm(v)W(v) = P (v)W(v). Now,
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consider the following:

lim
m→∞

WPm(v)∑
vW(v)Pm(v)

=
W(v)P (v)∑
vW(v)P (v)

(B.5)

=W(v)P (v) (B.6)

= PW (v) , (B.7)

where the first equality holds since WPm(v)∑
vW(v)Pm(v) is continuous with respect to Pm whenverW > 0

andW <∞; the second equality holds since
∑

vW(v)P (v) =
∑

v P
W (v) = 1 by the definition

of the weight (Def. 1); and third equality holds by the definition of the weighted distribution.

To see the third statement holds, proving that the stopping condition j > jmax happens at exteremely
low probability is sufficient. Let the number of samples of DW collected at jth iteration be Mj ≡∑|D′|
i=1 A(i). We note µM ≡ E [Mj ] = m/Wmax (for all j) since P (A(i) = 1) = 1/Wmax for

all i = 1, 2, · · · , |D′|. When the algorithm terminates, the number of collected samples are S ≡
M1 + M2 + · · · + Mjmax and µS ≡ E [S] = jmaxµM = adWmaxeµM ≥ am. By applying
Chernoff bound, P (S < (1− δ)µS) ≤ exp

(
−0.5δ2µS

)
≤ exp

(
−0.5δ2am

)
for δ ∈ [0, 1]. By

fixing (1 − δ) = Wmax

adWmaxe , we derive P (S < m) ≤ exp
(
−0.5δ2am

)
. Since δ ≥ (1 − 1/a), we

conclude P (S < m) ≤ exp
(
−0.5(1− 1/a)2am

)
. This completes the proof.

The asymptotic correctness of the procedure LearnWeightedDist is guaranteed by the following:

Lemma B.2 (Correctness of LearnWeightedDist (Algo. B.1)). Suppose P̂W(·|·) in the compu-
tation of Ŵ ′ in Line 1 of LearnWeightedDist (Algo. B.1) is a correct estimate of PWm (·|·). Then,
for (W × Ŵ ′,DW×Ŵ′) = LearnWeightedDist(D,DW ,W, (A,W,R)),W × Ŵ ′ converges to
(W ×W ′) as m→∞ and DW×Ŵ′ follows the true distribution PW×W

′
(v) in the limit of infinite

samples.

Proof. From the given assumption, P̂W(·|·) learned from DW are correct estimates of PWm (·|·). This
implies Ŵ ′ = PWm ((a\w)∩An(w)|r)∏

Vk∈(A\W)∩An(W) P
W
m (vk|v(k−1)∩a∩An(w),r)

. By the second statement of Lemma B.1,

which states PWm (v) converges to PW (v) for all v,W × Ŵ ′ converges to (W ×W ′) as m→∞.
Also, since DW×Ŵ′ are samples drawn from PW×Ŵ

′
m , in the limit of infinite samples, DW×Ŵ′

follows the true distribution PW×W
′
(v).

The time complexity of LearnWeightedDist is given as follows:

Lemma B.3 (Time complexity of Algo. B.1). Suppose 0 <W × Ŵ ′ < c for some constant c > 0.
Let T1(m) denote the time complexity for learning P̂W(·|·) from samples DW . Let n ≡ |V|. Then,
LearnWeightedDist (Algo. B.1) runs in O (mc+ nT1(m)) time.

Proof. We first note that WeightedSample (D,W) takes O(amc) = O(mc) since dWmaxe ≤ c.
Line 1 of LearnWeightedDist takes O(nT1(m)). Line 2 takes O(m), since |DW | = O(m) by
the While loop condition in WeightedSample. Line 3 takes O(mc). Summing up, Algo. B.1 takes
O(nT1(m) +m+mc) = O(nT1(m) +mc).

Equipped with LearnWeightedDist (Algo. B.1), we evaluate Ŵ∗ by running wID (Algo. 1) while
invoking LearnWeightedDist whenever wID calls Lemma 1. The time complexity of evaluating
Ŵ∗ is given as follows:

Lemma B.4 (Time complexity for evaluating Ŵ∗). LetW∗ denote the weight estimand defined
in Line 8 (or Line 7) of wID (Algo. 1) such that P (y|do(x)) = PW

∗
(y|r). Let n ≡ |V|. Let K

denote the number of C-components in GD (in Algo. 1). Let T1(m) denote the time complexity for

5



learning P̂W(·|·) from samples DW . Assume all weights satisfy 0 <W < c for some constant c > 0.
Suppose we evaluate Ŵ∗ by running wID and invoking LearnWeightedDist (Algo. B.1) whenever
wID calls Lemma 1. Then, evaluating Ŵ∗ takes O (nK (mc+ nT1(m))).

Proof. We note that the number of C-components of GD is K. In identifying Q [Di],
LearnWeightedDist is called at most n times. Therefore, by Lemma B.3, it takes O(K × n(mc+
nT1(m))) to evaluate Ŵ∗ .

C Proofs

C.1 Background Results

C.1.1 Multi-outcome Sequential Back-door (mSBD) Criterion

Definition C.1 (Multi-outcome sequential back-door (mSBD) criterion [3]). Given the pair of
sets (X,Y), let X = {X1, X2, · · · , Xn} be topologically ordered as X1 < X2 < · · · < Xn.
Let Y0 = Y \ De (X) and Yi = Y ∩

(
De (Xi) \De

(
X≥i+1

))
for i = 1, · · · , n. A sequence

Z = (Z1, · · · ,Zn) is mSBD admissible relative to (X,Y) if it holds that Zi ⊆ ND
(
X≥i

)
, and(

Y≥i ⊥⊥ Xi|Y(i−1),Z(i),X(i−1))
G

XiX
≥i+1

for i = 1, · · · , n.

Theorem C.1 (mSBD adjustment [3, Thm. 1]). If Z is mSBD admissible relative to (X,Y), then
P (y|do(x)) is identifiable and given by

P (y|do(x)) =
∑
z

n∏
k=0

P
(
yk|x(k), z(k),y(k−1)

)
×

n∏
j=1

P
(
zj |x(j−1), z(j−1),y(j−1)

)
. (C.8)

Theorem C.2 (Representation of mSBD adjustment as a weighted distribution [3, Thm. 2]). If
Z is mSBD admissible relative to (X,Y), then

P (y|do(x)) = PW(y|x), whereW =
P (x)∏n

k=1 P
(
xk|x(k−1),y(k−1), z(k)

) . (C.9)

Lemma C.1 (mSBD adjustment and C-factor identification). Let S denote a union of some
C-components of G. If W ⊆ S satisfies W = An (W) in GS, then (1) (S\W) ∩
An(W) is mSBD admissible relative to ((V\S) ∩An(W),W); and (2) P (w|do(v\w)) =
P (w|do((v\s) ∩An(w))), which is identifiable by the mSBD adjustment by Thm. C.1.

Proof. Two things that we will prove are following:

1. (S\W) ∩An(W) satisfies the mSBD criterion relative to ((V\S) ∩An(W),W); and

2. P (w|do((v\s) ∩An(w))) = P (w|do(v\w)) = Q [W].

We start by proving the first statement. For the notational convenience, let Z ≡ (S\W) ∩An(W).
Let R ≡ (V\S) ∩ An(W). Let R = {R1, R2, · · · , Rn} where R1 ≺ R2 ≺ · · · ≺ Rn. Let
W0 = W\De(R), and Wi = W ∩ (De(Ri)\De(R≥i+1)) for i = 1, 2, · · · , n.

We first partition Z = {Z1, · · · ,Zn} as follow: Z1 = Z ∩ ND(R), and Zk ≡ (Z\Z(k−1)) ∩
ND(R≥k). To witness that such partition is possible, it suffices to show that there exists no Zk ∈ Z
that is a descendent of Rn. Suppose there exists such Zk; i.e., there exists a path Rn → · · · → Zk.
Since Zk is an ancestor of some Wj ∈W, Zk → · · · → Wj . Note Wj ∈Wn since Rn → · · · →
Zk → · · · → Wj . We note that there should be some variables Ci ∈ V\S on the path from Zk to
Wj ; Otherwise, all internal nodes on the path (other than Rn) belongs to S, implying that Zk should
be included in W (since Zk should be included in the ancestral set of S), which is a contradiction.
Suppose the path includes such Ci. This implies that Ci is a parent of some nodes on S, which
contradicts that the path stems from Rn such that R1 ≺ · · · ≺ Rn. Therefore, there are no such Zk.
This implies that we can partition Z as Z = {Z1, · · · ,Zn}.
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By such partition, the condition Zi ⊆ ND(R≥i) is automatically satisfied. Thus, We focus on
showing (

W≥i ⊥⊥ Ri|W(i−1),Z(i),R(i−1)
)
G

RiR
≥i+1

. (C.10)

On G′ ≡ G
RiR≥i+1 , we consider the latent projected graph G′′ ≡ G′[W,R(i),Z(i)] (i.e., the latent

projection of V onto W,R(i),Z(i) [4, Def. 1]) without loss of generality, since the projected graph
preserves the independence between W,R(i),Z(i) on G′. On G′′, suppose there exists a path p
connecting Ri ∈ R = (V\S) ∩An(W) to Wj ∈W≥i conditioned on W(i−1),Z(i),R(i−1).

The path has the following form. Let Rj ∈ Pa(Ri)\{Ri}. Let Rp ∈ An(Ri)\Pa(Ri).
Ri{← ∨{↔, ∅}}Rj{← ∨{↔, ∅}}Rp{← ∨ → ∨∅}Sk{↔ ∧{→ ∨ ← ∨∅}}Wj ,

where Sk ∈ S\{Wj} ⊆W∪Z(i). SupposeRp ← Sk. This means that Sk ∈
(
W ∪ Z(i)

)
∩An(Rp).

Since this Sk is conditioned, the path is blocked. Even if there are no such Rp and Rj , the path is
still blocked by the conditioned Sk. If there exists no such Sk, then the path contains the bidirected
edge between Ri and Wj , or the directed path from Wj to Ri, which both are contradictions. In
conclusion, either (1) there are no such path; or (2) such path is blocked.

Suppose Rp → Sk. This path is then blocked by conditioning on Rp. If there exists no Rp and Rj ,
we can block this path by conditioning on Sk, since there should be no bidirected path between Ri
and Sk. Therefore, either (1) there are no such path; or (2) such path is blocked. This implies that the
condition in Eq. (C.10) holds.

We will now prove the second statement. We first show

P (w|do(v\w)) = P (w|do(v\s)) =
∑
s\w

P (s|do(v\s)) . (C.11)

Let W′ ≡ S\W. Then

Q [W] = P (w|do(v\w)) = P (w|do(v\s,w′)) (C.12)
= P (w|do(v\s)) (C.13)

=
∑
w′

P (s|do(v\s)) (C.14)

=
∑
s\w

P (s|do(v\s)) (C.15)

Eq. (C.13) follows by applying Rule 3 of do-calculus using the independence
(W ⊥⊥W′|V\S)G

V\S,W′
. We can show that the independence condition holds using contradiction:

Assume there exists a path in G
V\S,W′ between Vi ∈W and Vj ∈W′. Such path must have arrows

going out of Vj , the following node in the path must be in W for the edge in the path to be inG
V\S,W′ .

But if this is the case, Vj is a parent of some Vk ∈W; then W is not an ancestral set in GS, a contra-
diction. This completes the proof that P (w|do(v\w)) = P (w|do(v\s)) =

∑
s\w P (s|do(v\s)).

Note P (w|do(v\s)) = P (w|do((v\s) ∩An(w))) by the Rule 3 of do-calculus [5]. This completes
the proof.

C.1.2 Background Results on Weighted Distributions

Lemma C.2. In Lemma 1, supposingW satisfies EP [W(V)] = 1, then EP [W(V)×W ′(V)] = 1.

Proof. We first note that PW (v) is a valid weighted distribution such that PW (v) > 0 and∑
v P
W (v) = 1.

Let X ≡ (A\W) ∩ An(W). Let Y ≡ W. Then, (X,Y) = (X ∪ Y) = A ∩
An(W). Let T ≡ A\An(W). Then, (X,Y,T) = X ∪ Y ∪ T = A. Note
W ′ ≡ PW((a\w)∩An(w)|r)∏

Vi∈(A\W)∩An(W) P
W(vi|v(i−1)∩a∩An(w),r)

, which is a function of (R,X,Y); i.e., W ′ =

W ′(R,X,Y).
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LetW ′′ ≡ W ×W ′. Then,

EP

[
W(V)×W ′(V)

]
= EP

[
W ′′(V)

]
=
∑
v

W ′′(v)P (v)

=
∑
v

W(v)P (v) · W ′(v)

=
∑
a,r

(∑
v\(a,r)W(v)P (v)∑

v\rW(v)P (v)

)
︸ ︷︷ ︸

=PW (a|r)=Q[A]

∑
v\r

W(v)P (v)


︸ ︷︷ ︸

=PW (r)

·W ′(v)

=
∑
r

PW (r)
∑
a

PW (a|r) · W ′(r,x,y)

=
∑
r

PW (r)
∑
x,y

∑
t

PW (x,y, t|r) · W ′(r,x,y)

=
∑
r

PW (r)
∑
x,y

PW (x,y|r) · W ′(r,x,y)

=
∑
r

PW (r)
∑
x,y

PW (x,y|r) · PW (x|r)∏
Vi∈X P

W (vi|v(i−1) ∩ (x,y), r)

=
∑
r

PW (r)
∑
x,y

∏
Vi∈X

PW
(
vi|v(i−1) ∩ (x,y), r

)
·
∏

Vk∈Y

PW
(
vk|v(k−1) ∩ (x,y), r

)
· PW (x|r)∏

Vi∈X P
W (vi|v(i−1) ∩ (x,y), r)

=
∑
r

PW (r)
∑
x

PW (x|r)

∑
y

∏
Vk∈Y

PW
(
vk|v(k−1) ∩ (x,y), r

)
= 1.

where the fourth equality holds by the definition of Q [A] in Lemma 1 and else equality holds since
the PW (v) is a valid distribution allowing the marginalization; i.e.,

∑
v\c P

W (v) = PW (c) for
any subset C ⊆ V, by the definition of the weighted distribution.

Corollary C.1 (Justification of EP [W] = 1 forW in the line 8 of Algo. 1). The weightW in the
Line 8 of Algo. 1 satisfies EP [W(V)] = 1.

Proof. We first note that W =
∏K

i=1 P
Wdi (di|rdi)
P (d|r) =

∏K
i=1 P

Wdi (di|rdi)P (v\d)
P (v) by the definition

of R in Line 8 of Algo. 1. We note that PWdi (di|rdi
) = Q [Di] = P (di|do(v\di)). Also,∏K

i=1 P
Wdi (di|rdi

) =
∏K
i=1Q [Di] = Q [D] = P (d|do(v\d)). Then,

EP [W(V)] =
∑
v

W(v)P (v)

=
∑
v

K∏
i=1

PWdi (di|rdi
)P (v\d)

=
∑
v\d

P (v\d)
∑
d

K∏
i=1

PWdi (di|rdi
)︸ ︷︷ ︸

=P (d|do(v\d))

=
∑
v\d

P (v\d)
∑
d

P (d|do(v\d)) = 1.
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Lemma C.3 (Recursion of Weighting). Let A,B be disjoint sets of variables. Let C,D ⊆ A be
disjoint variables. Let q(a) ≡ PW (a|b). Then qW

′
(c|d) = PW×W

′
(c|b,d).

Proof. We have the following:

qW
′
(c|d) =

∑
a\(c,d)W ′q(a)∑
a\dW ′q(a)

=

∑
a\(c,d))W ′PW (a|b)∑

a\dW ′PW (a|b)
=

∑
a\(c,d)W ′

PW(a,b)
PW(b)∑

a\dW ′
PW(a,b)
PW(b)

,

Continuing, ∑
a\(c,d)W ′

∑
v\(a,b)WP (v)∑

v\bWP (v)∑
a\dW ′

∑
v\(a,b)WP (v)∑

v\bWP (v)

=

∑
a\(c,d),v\(a,b)W

′×W×P (v)∑
v\bWP (v)∑

a\d,v\(a,b)W′×W×P (v)∑
v\bWP (v)

=

∑
a\(c,d),v\(a,b)W ′ ×W × P (v)∑
a\d,v\(a,b)W ′ ×W × P (v)

= PW×W
′
(c|b,d) .

Lemma C.4 (Marginalization of Weighted Distributions). For C ⊆ T, T ∩ X = ∅,∑
c P
W (t|x) = PW (t\c|x).

Proof. We first note
∑

c P
W (t,x) =

∑
c

∑
v\(t,x) P

W (v) =
∑

(v\(t,x))∪c P
W (v) =

PW (t\c,x). Consider the following:∑
c

PW (t|x) =
∑
c

PW (t,x)

PW (x)
=

∑
c P
W (t,x)

PW (x)
=
PW (t\c,x)
PW (x)

= PW (t\c|x) .

Lemma C.5 (Justification of Line 8 in wID). For D and Di (for i = 1, 2, · · · ,K) in Algo. 1
and Q [Di] = PWdi (di|rdi

), let W ≡ (
∏K
i=1 P

Wdi (di|rdi
))/P (d|r) where R ≡ V\D. Then,

P (y|do(x)) = PW (y|r).

Proof. We recall that

PW (v) ≡ W · P (v) =W · P (d|r)P (r)

= (

K∏
i=1

PWdi (di|rdi))/P (d|r) · P (d|r)P (r)

= P (r)

K∏
i=1

PWdi (di|rdi) .

Also,

PW (r) = PW (v\d) =
∑
d

PW (v) =
∑
d

P (r)

K∏
i=1

PWdi (di|rdi
) = P (r)

∑
d

K∏
i=1

PWdi (di|rdi
) = P (r).

Then,

P (y|do(x)) =
∑
d\y

Q [D] =
∑
d\y

K∏
i=1

PWdi (di|rdi
) =

P (v\d)
P (v\d)

∑
d\y

K∏
i=1

PWdi (di|rdi
)

=
∑
d\y

1

P (v\d)
P (v\d)

K∏
i=1

PWdi (di|rdi) =
∑
d\y

1

PW (r)
P (v\d)

K∏
i=1

PWdi (di|rdi) =
∑
d\y

1

PW (r)
PW (v)

=
∑
d\y

1

PW (r)
PW (v) =

∑
d\y

PW (d|r) = PW (y|r) .
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C.2 Proofs

Lemma C.6 (Restated Lemma 1). Let a topological order over V be V1 < V2 < · · · < Vn. Suppose
Q [A] is given by Q [A] = PW(a|r) for some R ⊆ V and weight functionW .

1. If W is a C-component of GA, then Q [W] = PW×W
′
(w|r′), where R′ ≡ R ∪

((A\W) ∩An(W)) andW ′ ≡ PW((a\w)∩An(w)|r)∏
Vi∈(A\W)∩An(W) P

W(vi|v(i−1)∩a∩An(w),r)
.

2. If W ⊆ A satisfies W = An(W)GA
, then Q [W] = PW(w|r).

Proof. First statement. Let P be the joint distribution compatible with G. For any subset of
nodes C ⊆ V, let G(C) denote the subgraph of G composing nodes in C. Let q(a) ≡ Q [A] ≡
P (a|do(v\a)) = PW (a|r) denote a joint distribution over A. We note that q(a) is a valid dis-
tribution, since

∑
a q(a) = 1 and q(a) ≥ 0. Since q(a) ≡ P (a|do(v\a)), G

V\A(A) is a graph
compatible with q(a). For any nodes B,C ⊆ A, we will note that q(b|do(c)) denote the distribution
over B induced by not only fixing V\A = v\a in G (which induced q(a)), but also fixing C = c in
G. That is, q(b|do(c)) = P (b|do(v\a, c)).
Let W be a C-component of GA (i.e., G(A)). We note that this W is also a C-component of
G

V\A(A) since no edges between nodes in A are cut. Now, consider Q [W] ≡ P (w|do(v\w)).
We note the following equality holds:
Q [W] ≡ P (w|do(v\w)) = P (w|do(v\a,a\w)) = q(w|do(a\w)) = q(w|do ((a\w) ∩An(w))).

The equality P (w|do(v\a,a\w)) = q(w|do(a\w)) holds by the above discussion about the defini-
tion of q(·). The equality q(w|do(a\w)) = q(w|do ((a\w) ∩An(w))) holds since

q(w|do(a\w)) = P (w|do(a\w,v\a))
= P (w|do((An(w) ∩ a\w),v\a))
= q(w|do ((a\w) ∩An(w))),

where the third equality holds by the above discussion about the definition of q(·). The second
equality holds by

(W ⊥⊥ (A\W)\An(W)|An(W) ∩ (A\W),V\A)G
A\W,V\A

.

Specifically, in G
A\W,V\A, for Wk ∈ W and Aj ∈ (A\W)\An(W), the only possible path

between Wk and Aj is the path from Aj to Wk. However, such path is contradictory since Aj is not
an ancestor of Wk. Then, by Rule 3 of do-Calculus, the second equality holds.

We note that, inG
V\A(A) (where the distribution q(a) is compatible with), ∅ satisfies mSBD criterion

relative to ((A\W) ∩An(W),W) by Lemma C.1. This means that, for the q(a), the interventional
distribution q(w|do(a\w ∩An(w))) is given by the mSBD adjustment. Specifically, since since ∅
satisfies mSBD criterion relative to (A\W ∩An(W),W) in G

V\A(A) (where the graph G
V\A

induces the joint distribution q(a)), by Thm. C.2, q(w|do(a\w ∩ An(w))) = qW
′
(w|(a\w) ∩

An(w)) whereW ′ ≡ q((a\w)∩An(w))∏
Vi∈(A\W)∩An(W) q(vi|v(i−1)∩A∩An(w))

. Then, by Lemma C.3, given the fact

that q(a) = PW (a|r),
qW
′
(w|(a\w) ∩An(w)) = PW×W

′
(w|(a\w) ∩An(w), r) ,

where, by Lemma C.3,

W ′ ≡ q((a\w) ∩An(w))∏
Vi∈(A\W)∩An(W) q(vi|v(i−1) ∩ a ∩An(w))

=
PW ((a\w) ∩An(w)|r)∏

Vi∈(A\W)∩An(W) P
W
(
vi|v(i−1) ∩ a ∩An(w), r

) .
This completes the proof.

Second statement. Under the given condition, Q [W] =
∑

a\wQ [A] by [8, Lemma 3]. Therefore,
Q [W] =

∑
a\w P

W (a|r) = PW (w|r).
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Theorem C.3 (Restated Theorem 1). A causal effect P (y|do(x)) is identifiable if and only if
wID(x,y, G, P ) (Algo. 1) returns PW (y|r) such that P (y|do(x)) = PW (y|r).

Proof. Algo. 1 follows precisely Tian’s algorithm (Alg. 2 in [8]) for identifying causal effects except
that in Lines 3, 9, a.1, and a.6 the Q-factors are expressed in the form of weighted distributions.
The correctness of Lines 3, a.1, and a.6 follows from Lemma 1. The correctness of Line 9 follows
from Lemma C.5. Then the soundness and completeness of Algo. 1 follows from the soundness and
completeness of Tian’s algorithm [2].

Theorem C.4 (Restated Theorem 2). Let h∗ ≡ argminh∈HRW
∗
(h), and (Wm, hm) ≡

argminW∈HW ,h∈H L (W, h), where HW is the model hypotheses class for W . Suppose HW
is correctly specified such thatW∗ ∈ HW . Then, hm converges to h∗ with a rate of Op(m−1/4).
Specifically,RW∗(hm)−RW∗(h∗) ≤ Op(m−1/4).

Proof. We rewrite the objective function as follow:
L (W, h)

≡ R̂W(h) +
λh
m
C(h) +

√√√√ 1

m

m∑
i=1

(
W(V(i))−W∗(V(i))

)2
+
λW
m
‖W‖2

= R̂W(h) + Op(m
−1)︸ ︷︷ ︸

=(λh/m)C(h)

+

√
EP
[(
W(V(i))−W∗(V(i))

)2]
+Op(m

−1/4) +Op(m
−1/2)

= RW(h) +

√
EP
[(
W(V(i))−W∗(V(i))

)2]
+Op(m

−1/4).

To see the above equality, let Am ≡ 1
m

∑m
i=1

(
W(V(i))−W∗(V(i))

)2
and µ ≡

EP
[(
W(V(i))−W∗(V(i))

)2]
. Then,

P (
√
m · |Am − µ| ≥ t) ≤ 2 · exp

(
−2t2

c2

)
,

implying that Am − µ = OP (m
−1/2). Then,

√
Am =

√
µ+OP (m−1/2) =

√
µ + OP (m

−1/4).

Also, since λW
m ‖W‖2 = OP (m

−1),
√

λW
m ‖W‖2 = OP (m

−1/2). This implies that L (W∗, h) =
RW∗(h) +Op(m

−1/4).

Now, consider Prop. 1 with respect to m. Since log(m) ≤ m−1/4 for m ≤ 10000, we note

F (p,m, δ) = O
(
(log(m)/m)

3/8
)
≤ O

(
m3/32/m−3/8

)
= OP (m

−9/32).

Then, m1/4F (p,m, δ) = OP (m
−1/32) = OP (1), implying that F (p,m, δ) = OP (m

−1/4). There-
fore, we can rewrite Prop. 1 with respect Om asRW∗(h) ≤ R̂W(h)+EP [|W∗ −W|]+Op(m−1/4).
Then,
RW

∗
(hm)−RW

∗
(h∗)

≤ R̂Wm(hm) + EP [(W∗ −Wm)] +Op(m
−1/4)−RW

∗
(h∗)

≤ R̂Wm(hm) +
√

EP

[
(W∗ −Wm)2

]
+Op(m

−1/4)︸ ︷︷ ︸
=L(Wm,hm)

+E [|W∗ −Wm|]−
√

EP

[
(W∗ −Wm)2

]
+Op(m

−1/4)−RW
∗
(h∗)

= L(Wm, hm) + E [|W∗ −Wm|]−
√

EP

[
(W∗ −Wm)2

]︸ ︷︷ ︸
≤0 By Hoelder’s inequality

+Op(m
−1/4)− RW

∗
(h∗)︸ ︷︷ ︸

=L(W∗,h∗)+Op(m−1/4)

≤ L(Wm, hm)− L(W∗, h∗)︸ ︷︷ ︸
≤0 by definition of (hm,Wm)

+Op(m
−1/4) +Op(m

−1/4).

≤ Op(m
−1/4).
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This completes the proof.

Theorem C.5 (Restated Theorem 3). Let m = |D| and n ≡ |V|. Assume all weights satisfy
0 < W < c for some constant c > 0. Let T1(m) denote the time complexity for estimating
P̂ (vi|·) from sample D ∼ P (v) for Vi ∈ V. Let K denote the number of C-factors in GD

(in Algo. 1). Let T2(m) denote the time complexity of minimizing LW and Lh. Then, Algo. 2
runs in O (poly(n) + nK(mc+ nT1(m)) + T2(m)) time, where O (poly(n)) is for running Algo. 1,
O (nK(mc+ nT1(m))) for evaluating Ŵ∗.

Proof. Algo. 1 is a precise replication of the identification algorithm in [8] which is known to
have time complexity O (poly(n)). That evaluating Ŵ∗ takes O (nK(mc+ nT1(m))) is proved in
Lemma B.4. Time complexities to optimize the loss functions LW ,Lh are T2(m). This completes
the proof.

D Further Details in Experiments

Tuning hyperparameters. Throughout the experiments, the hyperparameters λW , λh in Eq. (6) are
chosen using the grid-search method [6]. Specifically, the hyperparameter λW is chosen as follows:
(1) Split the sample as D = Dtr ∪ Dte at random; (2) For each fixed λk ∈ {2, 4, · · · , 50}, learn
Wk ≡ argminW′ LW(W ′, λk; Ŵ∗) from Dtr and compute εk,te ≡ LW(Wk, λk; Ŵ∗) on Dte; and
(3) Choose k′ ≡ argmink {εk,te}k∈{2,4,··· ,50} and set λW ≡ λk′ . With the fixed learned W , we
choose λh analogously.

D.1 Structural Causal Models Used in the Experiments

Example 1. A data generating process written in R is given in the following:

v a r v a l = 2

c1 = rnorm (D , 1 , 1 )
c2 = rnorm (D, − 2 , 1 )
cz = rnorm (D , 2 , 1 )

U1mean = −8; U1Var = 10
U1 = rnorm (N, U1mean , U1Var )
U1 . i n t v = rnorm ( Nintv , U1mean , U1Var )

U2mean = 6 ; U2Var = 8
U2 = rnorm (N, U2mean , U2Var )
U2 . i n t v = rnorm ( Nintv , U2mean , U2Var )

fW = f u n c t i o n (N, U1 , U2) {
Uw = rnorm (N, 0 , 0 . 5 )
W = matrix ( 0 , nco l =D , nrow=N)
f o r ( i d x i n 1 :D) {

W[ , i d x ] = rbinom (N, s i z e =1 , prob = i n v . l o g i t ( c1 [ i d x ] *U1+c2 [ i d x ] *U2 ) )
}
W = data . frame (W)
colnames (W) = p a s t e ( ’W’ , 1 :D , s ep =" " )
re turn (W)

}
fZ = f u n c t i o n (N,W) {

Uz = rnorm (N, 0 , 0 . 5 )
Wmat = as . matrix (2 *W−1)
czmat = as . matrix ( cz )
Zva l = i n v . l o g i t (Wmat %*% czmat )
Z = round ( i n v . l o g i t ( −1 * Zval + Uz−1 ) )
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re turn ( Z )
}
fX = f u n c t i o n (N, U1 , Z) {

Ux = rnorm (N, 1 , 6 )
X = rbinom (N, s i z e =1 , i n v . l o g i t (1 *U1 − 2*Z + Ux − 5 ) )
re turn (X)

}
fY = f u n c t i o n (N, U2 ,X) {

Uy = rnorm (N, − 2 , 1 )
i n d .X = 2*X − 1
Y = rbinom (N, s i z e =1 , i n v . l o g i t ( 0 . 5 *U2 − 2* i n d .X + Uy ) )
re turn (Y)

}

Example 2. A data generating process written in R is given in the following:

v a r v a l = 1

c1 = rnorm (D, − 2 , 0 . 5 )
c2 = rnorm (D , 1 , 0 . 5 )

cx = rnorm (D , 2 , 0 . 5 )
cz = rnorm (D , − 0 . 8 , 0 . 5 )
cy = rnorm (D , 1 . 5 , 0 . 5 )

U1 = rnorm (N, 0 , v a r v a l )
U2 = rnorm (N, 0 , v a r v a l )
U3 = rnorm (N, 0 , v a r v a l )
U1in tv = rnorm ( Nintv , 0 , v a r v a l )
U2in tv = rnorm ( Nintv , 0 , v a r v a l )
U3in tv = rnorm ( Nintv , 0 , v a r v a l )

fW = f u n c t i o n (N, U1 , U2) {
Uw = rnorm (N, 0 , 0 . 5 )
W = matrix ( 0 , nco l =D , nrow=N)
f o r ( i d x i n 1 :D) {

W[ , i d x ] = rbinom (N, s i z e =1 , prob = i n v . l o g i t ( c1 [ i d x ] *U1+c2 [ i d x ] *U2 +Uw) )
}
W = data . frame (W)
colnames (W) = p a s t e ( ’W’ , 1 :D , s ep =" " )
re turn (W)

}
fX = f u n c t i o n (N,W, U1 , U3) {

Ux = rnorm (N, 0 , 0 . 5 )
Wmat = as . matrix (2 *W−1)
cxmat = as . matrix ( cx )
Wval = i n v . l o g i t (Wmat %*% cxmat )
X = rbinom (N, s i z e =1 , i n v . l o g i t ( −1 *Wval − 2*U1 + 0 . 5 *U3*Wval + Ux − 2*U1*U3 ) )
re turn (X)

}
fZ = f u n c t i o n (N,W,X) {

Uz = rnorm (N, 0 , 1 )
Wmat = as . matrix (2 *W−1)
czmat = as . matrix ( cz )
Wval = i n v . l o g i t (Wmat %*% czmat )
Z = rbinom (N, s i z e =1 , i n v . l o g i t (1 *Wval − 2* (2 *X−1) + Uz ) )
re turn ( Z )

}
fY = f u n c t i o n (N, U2 , U3 , Z ,W) {

Uy = rnorm (N, 0 , 0 . 5 )
Wval = myXOR(W)
Y = rbinom (N, s i z e =1 , i n v . l o g i t ( −U3−U2+Z−10*Wval + 1 ) )
re turn (Y)

}
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Example 3. A data generating process written in R is given in the following:

c . z . 1 = rnorm (D , − 2 , 0 . 5 ) ; c . z . 2 = rnorm (D , 1 , 0 . 5 ) ; c . z . 3 = rnorm (D , 0 , 1 )
c .w. 1 = rnorm (D , 2 , 0 . 5 ) ; c .w. 2 = rnorm (D, − 1 , 0 . 5 ) ; c .w. 3 = rnorm (D , 1 , 0 . 5 )
cx = rnorm (D , 2 , 0 . 5 ) ; c r = rnorm (D, − 1 , 1 ) ; cz = rnorm (D, − 2 , 0 . 3 )

U1 = rnorm (N, −1 , v a r v a l ) ; U2 = rnorm (N, − 0 . 5 , v a r v a l ) ;
U3 = rnorm (N, 0 . 5 , v a r v a l ) ; U4 = rnorm (N, 1 , v a r v a l )

fW = f u n c t i o n (N, U1 , U2) {
Uw = rnorm (N, 0 , 0 . 5 )
W = matrix ( 0 , nco l =D , nrow=N)
f o r ( i d x i n 1 :D) {

W[ , i d x ] = rbinom (N, s i z e =1 , prob = i n v . l o g i t ( c .w . 1 [ i d x ] *U1+c .w . 2 [ i d x ] *U2 + Uw) )
}
W = data . frame (W)
colnames (W) = p a s t e ( ’W’ , 1 :D , s ep =" " )
re turn (W)

}

fX = f u n c t i o n (N,W, U1 , U3) {
Ux = rnorm (N, 0 , 0 . 5 )
Wmat = as . matrix (2 *W−1)
cxmat = as . matrix ( cx )
Wval = i n v . l o g i t (Wmat %*% cxmat )
X = rbinom (N, s i z e =1 , i n v . l o g i t ( −1 *Wval + −0.5 *U1 − 0 . 2 *U3 + Ux−2 ) )
re turn (X)

}

fR = f u n c t i o n (N,W, U4) {
Ur = rnorm (N, 0 , 0 . 5 )
Wmat = as . matrix (2 *W−1)
c rma t = as . matrix ( c r )
Wval = i n v . l o g i t (Wmat %*% c rma t )
R = rbinom (N, s i z e =1 , i n v . l o g i t ( −1 *Wval − 1 . 2 *U4 + Ur − 2 ) )
re turn (R)

}

fZ = f u n c t i o n (N,W, X, R , U4) {
Uz = rnorm (N, 0 , 0 . 5 )
Wmat = as . matrix (2 *W−1)
czmat = as . matrix ( cz )
Wval = i n v . l o g i t (Wmat %*% czmat )
Z = rbinom (N, s i z e =1 , i n v . l o g i t ( 0 . 5 *Wval+U4 + 0 . 5 * (2 *X−1) −
0 . 9 * (2 *R−1) + Uz−1 − l o g ( abs ( Wval ) + 1 ) ) )
re turn ( Z )

}

fY = f u n c t i o n (N, R , Z , U2 , U3) {
Uy = rnorm (N, 0 , 0 . 5 )
Y = rbinom (N, s i z e =1 , i n v . l o g i t ( −1 * (2 *R−1) *Z +
0 . 5 * (2 *Z−1) * l o g ( abs ( U2*U3 ) + 1 ) −
R*U2− Uy + 1 ) )
re turn (Y)

}

D.2 Additional Experimental Results

In this section, we provide experimental results of evaluating the proposed WERM based estimators
against Plug-in in Examples 1, 2, and 3 for D ≡ |W | ∈ {5, 10}.
Example 1 (Fig. 1b). We test on estimating E [Y |do(x)] with D ∈ {5, 10} where the causal effect
P (y|do(x)) is given by Eq. (A.1). The MAAE plots are given in Fig. (D.1a,D.1d). We observe that
the WERM-based methods (WERM-ID/WERM-ID-R) significantly outperform Plug-in.
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Figure D.1: (Top) MAAE plots comparing proposed WERM based estimators (WERM-ID and
WERM-ID-R) with Plug-in on D = 5. (Bottom) Plots on D = 10.

Example 2 (Fig. 2a). We test on estimating E [Y |do(x)] with D ∈ {5, 10} where the effect
P (y|do(x)) is given by Eq. (A.2). The MAAE plots are given in Fig. (D.1b,D.1e) We observe
that the WERM-based methods (WERM-ID/WERM-ID-R) perform on par with Plug-in.

Example 3 (Fig. 2b). We test on estimating E [Y |do(x, r)] with D ∈ {5, 10} where P (y|do(x, r))
is given by Eq. (A.3). The MAAE plots are given in Fig. (D.1c,D.1f). We note that WERM-ID-R
significantly outperforms WERM-ID, and both significantly outperform Plug-in.

D.3 Comparison with potential outcome frameworks (For Reviewer 3)

0.000

0.025

0.050

0.075

0.100

2500 5000 7500 10000
m

M
AA

E

WERM-ID-R
PO-framework

PO framework
WERM-ID-R

X

(a) Example 1 (Fig. 1b)

0.0

0.1

0.2

0.3

0.4

2500 5000 7500 10000
m

M
AA

E

WERM-ID-R
PO-framework

PO framework
WERM-ID-R

X

(b) Example 2 (Fig. 2a)

0.0

0.1

0.2

0.3

0.4

2500 5000 7500 10000
m

M
AA

E

WERM-ID-R
PO-framework

PO framework
WERM-ID-R

X

(c) Example 3 (Fig. 2b)

Figure D.2: (For Reviewer 3) MAAE plots comparing the proposed vs. potential outcome based
estimator for Example (1,2,3) with D = 15. Shades are standard deviations.

In this section, we compare the proposed estimator with the potential-outcome (PO) based estimator
(specifically, the inverse probability weighting estimator) to address the question of Reviewer 3: “I
am a bit curious about the comparison results with some recent causal inference methods under
PO framework if simply seeing the whole other variables V\{X,Y} as observed confounders.”
Comparison examples are given in Fig. (D.2a,D.2b,D.2c). As expected, the performances of the
PO framework based estimator are inferior to the proposed estimator (‘WERM-ID-R’). This result
implies adjusting covariates without taking into account the causal graph might yield inaccurate
estimates of the causal effect.
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