Appendix - "Learning Causal Effects via Weighted Empirical Risk Minimization"

Abstract

Notations. The following notations are used throughout this paper. Each variable will be represented with a capital letter (X) and its realized value with the small letter (x). We will use bold letters (\mathbf{X}) to denote sets of variables. Given an ordered set of variables $\mathbf{X}: X_{1}<\cdots<X_{n}$, we denote $\mathbf{X}^{(i)}=\left\{X_{1}, \cdots, X_{i}\right\}$, and $\mathbf{X}^{\geq i}=\left\{X_{i}, \cdots, X_{n}\right\}$. We use the typical graph-theoretic terminology $P A(\mathbf{C})_{G}, \operatorname{Ch}(\mathbf{C})_{G}, \operatorname{De}(\mathbf{C})_{G}, A n(\mathbf{C})_{G}$ to represent the union of \mathbf{C} with its parents, children, descendants, ancestors in the graph G. We use $G_{{\overline{\mathbf{C}_{1} \mathbf{C}_{2}}} \text { to denote the graph resulting from }{ }^{\text {a }} \text {. }}$ deleting all incoming edges to \mathbf{C}_{1} and outgoing edges from $\overline{\mathbf{C}_{2}}$ in G. $G_{\mathbf{C}}$ denotes the subgraph of G over $\mathbf{C} .(\mathbf{X} \Perp \mathbf{Y} \mid \mathbf{Z})_{G}$ denotes that \mathbf{X} is d-separated from \mathbf{Y} given \mathbf{Z} in G. $\mathbb{E}_{P(\mathbf{y} \mid \mathbf{x})}[f(\mathbf{Y}) \mid \mathbf{x}]$ denotes the conditional expectation of $f(\mathbf{Y})$ over $P(\mathbf{y} \mid \mathbf{x}) . \mathcal{D} \equiv\left\{\mathbf{V}_{(i)}\right\}_{i=1}^{m}$ denotes a sample drawn from $P(\mathbf{v})$ where $\mathbf{V}_{(i)}$ denotes the i th sample in \mathcal{D}. The indicator function for $\mathbf{V}_{(i)}=\mathbf{v}$ is written as $I_{\mathbf{v}}\left(\mathbf{V}_{(i)}\right) . P_{m}(\mathbf{v}) \equiv \frac{1}{m} \sum_{i=1}^{m} I_{\mathbf{v}}\left(\mathbf{V}_{(i)}\right)$ denotes the empirical distribution of \mathcal{D}.

A Demonstrations of wID (Algorithm 1)

We demonstrate the application of Algo. 1 using Examples 1 (Fig. 1b), 2 (Fig. 2a), and 3 (Fig. 2b). First we restate wID algorithm and Lemma 1 .
Lemma $\mathbf{A . ~} 1$ (Restated Lemma 1). Let a topological order over \mathbf{V} be $V_{1}<V_{2}<\cdots<V_{n}$. Suppose $Q[\mathbf{A}]$ is given by $Q[\mathbf{A}]=P^{\mathcal{W}}(\mathbf{a} \mid \mathbf{r})$ for some $\mathbf{R} \subseteq \mathbf{V}$ and weight function \mathcal{W}.

1. If \mathbf{W} is a C-component of $G_{\mathbf{A}}$, then $Q[\mathbf{W}]=P^{\mathcal{W} \times \mathcal{W}^{\prime}}\left(\mathbf{w} \mid \mathbf{r}^{\prime}\right)$, where $\mathbf{R}^{\prime} \equiv \mathbf{R} \cup$ $((\mathbf{A} \backslash \mathbf{W}) \cap A n(\mathbf{W}))$ and $\mathcal{W}^{\prime} \equiv \frac{P^{\mathcal{W}}((\mathbf{a} \backslash \mathbf{w}) \cap A n(\mathbf{w}) \mid \mathbf{r})}{\prod_{V_{i} \in(\mathbf{A} \backslash \mathbf{W}) \cap A n(\mathbf{w})} P^{\mathcal{W}}\left(v_{i} \mid \mathbf{v}^{(i-1)} \cap \mathbf{a} \cap A n(\mathbf{w}), \mathbf{r}\right)}$.
2. If $\mathbf{W} \subseteq \mathbf{A}$ satisfies $\mathbf{W}=A n(\mathbf{W})_{G_{\mathbf{A}}}$, then $Q[\mathbf{W}]=P^{\mathcal{W}}(\mathbf{w} \mid \mathbf{r})$.

Example 1 (Figure 1b) Consider the model in Fig. 1b, where the causal effect is given by

$$
\begin{equation*}
P(y \mid d o(x))=\frac{\sum_{w} P(x, y \mid r, w) P(w)}{\sum_{w} P(x \mid r, w) P(w)} \tag{A.1}
\end{equation*}
$$

which is not in the weighting form. The graph has two C-components $\mathbf{S}_{1}=\{W, X, Y\}$ and $\mathbf{S}_{2}=\{R\}$ (Line 2). We have $Q\left[\mathbf{S}_{1}\right]=P^{\mathcal{W}_{1}}\left(\mathbf{s}_{1} \mid r\right)$ where $\mathcal{W}_{1}=P(r) / P(r \mid w)$, and $Q\left[\mathbf{S}_{2}\right]=P(r \mid w)$ by Lemma 1 (Line 3). Let $\mathbf{D}=\operatorname{An}(Y)_{G_{\mathbf{V} \backslash X}}=\{Y\}$ (Line 4). Run wIdentify $\left(Y, \mathbf{S}_{1}, Q\left[\mathbf{S}_{1}\right], r, \mathcal{W}_{1}\right)$ (Line 6). In Procedure wIdentify () , let $\mathbf{A}=\operatorname{An}(Y)_{G_{\mathbf{S}_{1}}}=$ $\{X, Y\}$, then $Q[\mathbf{A}]=P^{\mathcal{W}_{1}}(\mathbf{a} \mid r)$ (Line a.1). In $G_{\mathbf{A}}=G_{\{X, Y\}}$, let $\mathbf{S} \equiv\{Y\}$ denote the C component containing Y (Line a.5). Then, $Q[\mathbf{S}]=Q[Y]=P^{\mathcal{W}_{1} \times \mathcal{W}^{\prime}}\left(y \mid \mathbf{r}^{\prime}\right)$ where $\mathbf{R}^{\prime}=\{R, X\}$ and $\mathcal{W}^{\prime}=P^{\mathcal{W}}(x \mid r) / P^{\mathcal{W}}(x \mid r)=1$ by Lemma 1 (with $\mathbf{W}=\mathbf{S}=Y$) (Line a.6). Line a. 7 returns $Q[Y]=$ wIdentify $\left(Y, \mathbf{S}, Q[\mathbf{S}], r^{\prime}, \mathcal{W}_{1}\right)=P^{\mathcal{W}_{1}}(y \mid x, r)$. Finally we obtain $P(y \mid d o(x))=$ $P^{\mathcal{W}_{1}}(y \mid x, r)$ (Line 7).

Example 2 (Figure 2a) Consider Fig. 2a where the causal effect is given by

$$
\begin{equation*}
P(y \mid d o(x))=\sum_{w, z} P(z \mid w, x) \sum_{x^{\prime}} P\left(y \mid w, x^{\prime}, z\right) P\left(x^{\prime} \mid w\right) P(w) . \tag{A.2}
\end{equation*}
$$

```
Algorithm A.1: wID \((\mathbf{x}, \mathbf{y}, G, P)\) - Restated Algo. 1
Input: \(\mathbf{x}, \mathbf{y}, G, P\)
Output: Expression of \(P(\mathbf{y} \mid d o(\mathbf{x}))\) as a weighted distribution; or FAIL if \(P(\mathbf{y} \mid d o(\mathbf{x}))\) is unidentifiable.
Let \(\mathbf{V} \leftarrow A n(\mathbf{Y}) ; P(\mathbf{v}) \leftarrow P(A n(\mathbf{Y}))\); and \(G \leftarrow G_{A n(\mathbf{Y})}\).
Find the \(C\)-components of \(G: \mathbf{S}_{1}, \cdots, \mathbf{S}_{k}\).
Let \(Q\left[\mathbf{S}_{i}\right]=P^{\mathcal{W}_{\mathbf{s}_{i}}}\left(\mathbf{s}_{i} \mid \mathbf{r}_{\mathbf{s}_{i}}\right)\) where \(\left(\mathcal{W}_{\mathbf{s}_{i}}, \mathbf{r}_{\mathbf{s}_{i}}\right)\) are derived from Lemma 1
Let \(\mathbf{D} \equiv \operatorname{An}(\mathbf{Y})_{G_{\mathbf{V} \backslash \mathbf{x}}}\).
Find the \(C\)-component of \(G_{\mathbf{D}}: \mathbf{D}_{1}, \cdots \mathbf{D}_{K}\).
For each \(\mathbf{D}_{i} \in \mathbf{S}_{j}\) for some \((i, j)\), let
    \(Q\left[\mathbf{D}_{i}\right]=\) wIdentify \(\left(\mathbf{D}_{i}, \mathbf{S}_{j}, Q\left[\mathbf{S}_{j}\right], \mathbf{r}_{\mathbf{s}_{j}}, \mathcal{W}_{\mathbf{s}_{j}}\right) \equiv P^{\mathcal{W}_{\mathbf{d}_{i}}}\left(\mathbf{d}_{i} \mid \mathbf{r}_{\mathbf{d}_{i}}\right)\).
if \(K=1\) then
    return \(P(\mathbf{y} \mid d o(\mathbf{x}))=P^{\mathcal{W}_{\mathbf{d}_{1}}}\left(\mathbf{y} \mid \mathbf{r}_{\mathbf{d}_{1}}\right)\).
end
Let \(\mathcal{W} \equiv \prod_{i=1}^{K} P^{\mathcal{W}_{\mathbf{d}_{i}}}\left(\mathbf{d}_{i} \mid \mathbf{r}_{\mathbf{d}_{i}}\right) / P(\mathbf{d} \mid \mathbf{r})\) where \(\mathbf{R} \equiv \mathbf{V} \backslash \mathbf{D}\).
return \(P(\mathbf{y} \mid \operatorname{do}(\mathbf{x}))=P^{\mathcal{W}}(\mathbf{y} \mid \mathbf{r})\)
Procedure wIdentify \((\mathbf{C}, \mathbf{T}, Q[\mathbf{T}], \mathbf{r}, \mathcal{W})\)
    Input: T, \(Q[\mathbf{T}]=P^{\mathcal{W}}(\mathbf{t} \mid \mathbf{r})\)
    Output: \(Q[\mathbf{C}]\) for \(\mathbf{C} \subseteq \mathbf{T}\) as a weighted distribution.
    Let \(\mathbf{A} \equiv \operatorname{An}(\mathbf{C})_{G_{\mathbf{T}}}\), then \(Q[\mathbf{A}]=P^{\mathcal{W}}(\mathbf{a} \mid \mathbf{r})\) by Lemma 1
    if \(\mathbf{A}=\mathbf{C}\) then
        return \(Q[\mathbf{C}]=P^{\mathcal{W}}(\mathbf{a} \mid \mathbf{r})\)
    end
    if \(\mathbf{A}=\mathbf{T}\) then
        return FAIL
    end
    else
        Let \(\mathbf{S}\) denote the \(C\)-component in \(G_{\mathbf{A}}\) such that \(\mathbf{C} \subseteq \mathbf{S}\).
        Compute \(Q[\mathbf{S}]=P^{\mathcal{W} \times \mathcal{W}^{\prime}}\left(\mathbf{s} \mid \mathbf{r}^{\prime}\right)\) where \(\left(\mathcal{W}^{\prime}, \mathbf{r}^{\prime}\right)\) are derived by Lemma 1
        return wIdentify \(\left(\mathbf{C}, \mathbf{S}, Q[\mathbf{S}], \mathbf{r}^{\prime}, \mathcal{W} \times \mathcal{W}^{\prime}\right)\)
    end
```

We start with $\mathbf{S}_{1}=\{W, X, Y\}$ and $\mathbf{S}_{2}=\{Z\}$ (Line 2). We then derive $Q\left[\mathbf{S}_{1}\right]=P^{\mathcal{W}_{\mathbf{S}_{1}}}\left(\mathbf{s}_{1} \mid z\right)$ where $\mathcal{W}_{\mathbf{S}_{1}}=P(z) / P(z \mid w, x)$ by applying Lemma 1 with $\mathbf{A}=\mathbf{V}$ and $\mathbf{W}=\mathbf{S}_{1}$ (Line 3). We also derive $Q\left[\mathbf{S}_{2}\right]=P^{\mathcal{W}_{\mathbf{S}_{2}}}\left(\mathbf{s}_{2} \mid x, w\right)=P(z \mid x, w)$ (where $\mathcal{W}_{\mathbf{S}_{2}}=1$) by applying Lemma 1 with $\mathbf{A}=\mathbf{V}$ and $\mathbf{W}=\mathbf{S}_{2}$ (Line 3). Let $\mathbf{D}=\operatorname{An}(Y)_{G_{\mathbf{V} \backslash X}}=\{W, Y, Z\}$ (Line 4), where $\mathbf{D}_{1}=\{W, Y\}$ and $\mathbf{D}_{2}=\{Z\}$ (Line 5).
For identifying $Q\left[\mathbf{D}_{1}\right]$, we invoke wIdentify $\left(\mathbf{D}_{1}, \mathbf{S}_{1}, Q\left[\mathbf{S}_{1}\right], z, \mathcal{W}_{\mathbf{S}_{1}}\right)$ (Line 6). Let $\mathbf{A}_{1}=$ $A n\left(\mathbf{D}_{1}\right)_{G_{\mathbf{s}_{1}}}=\mathbf{D}_{1}$, then $Q\left[\mathbf{A}_{1}\right]=Q\left[\mathbf{D}_{1}\right]=P^{\mathcal{W}_{\mathbf{s}_{1}}}\left(\mathbf{d}_{1} \mid z\right)$ (Line a.1). Since $\mathbf{A}_{1}=\mathbf{D}_{1}$, then we return $Q\left[\mathbf{D}_{1}\right]=P^{\mathcal{W}_{\mathbf{D}_{1}}}\left(\mathbf{d}_{1} \mid z\right)$ where $\mathcal{W}_{\mathbf{D}_{1}}=\mathcal{W}_{\mathbf{S}_{1}}=P(z) / P(z \mid w, x)$ (Line a.2).
For identifying $Q\left[\mathbf{D}_{2}\right]$, we invoke wIdentify $\left(\mathbf{D}_{2}, \mathbf{S}_{2}, Q\left[\mathbf{S}_{2}\right],(w, x), 1\right)$ (Line 6). Let $\mathbf{A}_{2}=$ $A n\left(\mathbf{D}_{2}\right)_{G_{\mathbf{S}_{2}}}=\mathbf{D}_{2}$, then $Q\left[\mathbf{D}_{2}\right]=P\left(\mathbf{d}_{2} \mid w, x\right)$ (Line a.1). Since $\mathbf{A}_{2}=\mathbf{D}_{2}$, then we return $Q\left[\mathbf{D}_{2}\right]=P^{\mathcal{W}_{\mathbf{D}_{2}}}\left(\mathbf{d}_{2} \mid x, w\right)=P(z \mid x, w)$ where $\mathcal{W}_{\mathbf{D}_{2}}=1$ (Line a.2).
Let $\mathcal{W} \equiv P^{\mathcal{W}_{\mathrm{D}_{1}}}\left(\mathbf{d}_{1} \mid z\right) P^{\mathcal{W}_{\mathrm{D}_{2}}}\left(\mathbf{d}_{2} \mid x, w\right) / P(\mathbf{d} \mid x)$ (Line 8). Specifically,

$$
\begin{aligned}
\mathcal{W} & \equiv P^{\mathcal{W}_{\mathbf{D}_{1}}}\left(\mathbf{d}_{1} \mid z\right) P^{\mathcal{W}_{\mathbf{D}_{2}}}\left(\mathbf{d}_{2} \mid x, w\right) / P(\mathbf{d} \mid x) \\
& =\frac{P^{\mathcal{W}_{\mathbf{D}_{1}}}(w, y \mid z) P(z \mid x, w)}{P(w, z, y \mid x)}
\end{aligned}
$$

Finally, the causal effect is given by $P(y \mid d o(x))=P^{\mathcal{W}}(y \mid x)$ (Line 9).
Example 3 (Figure 2b) Consider Fig. 2b where the causal effect is given by

$$
\begin{equation*}
P(y \mid d o(x, r))=\sum_{w, z} P(z \mid w, x) \sum_{x^{\prime}} P\left(y \mid w, x^{\prime}, r, z\right) P\left(x^{\prime} \mid w, r\right) P(w) \tag{A.3}
\end{equation*}
$$

We start with $\mathbf{S}_{1}=\{W, X, Y\}$ and $\mathbf{S}_{2}=\{R, Z\}$ (Line 2). We then derive $Q\left[\mathbf{S}_{1}\right]=P^{\mathcal{W}_{\mathbf{S}_{1}}}\left(\mathbf{s}_{1} \mid r, z\right)$ where $\mathcal{W}_{\mathbf{S}_{1}}=P(r, z) / P(z \mid w, x, r) P(r \mid w)$ by applying Lemma 1 with $\mathbf{A}=\mathbf{V}$ and $\mathbf{W}=\mathbf{S}_{1}$ (Line 3). We also derive $Q\left[\mathbf{S}_{2}\right]=P^{\mathcal{W}_{\mathbf{S}_{2}}}\left(\mathbf{s}_{2} \mid x, w\right)=P(z \mid x, w)$ (where $\mathcal{W}_{\mathbf{S}_{2}}=1$) by applying Lemma 1 with $\mathbf{A}=\mathbf{V}$ and $\mathbf{W}=\mathbf{S}_{2}$ (Line 3). Let $\mathbf{D}=\operatorname{An}(Y)_{G_{\mathbf{V} \backslash\{X, R\}}}=\{W, Y, Z\}$ (Line 4), where $\mathbf{D}_{1}=\{W, Y\}$ and $\mathbf{D}_{2}=\{Z\}$ (Line 5).

For identifying $Q\left[\mathbf{D}_{1}\right]$, we invoke wIdentify $\left(\mathbf{D}_{1}, \mathbf{S}_{1}, Q\left[\mathbf{S}_{1}\right],\{r, z\}\right.$, $\mathcal{W}_{\mathbf{S}_{1}}$) (Line 6). Let $\mathbf{A}_{1}=$ $A n\left(\mathbf{D}_{1}\right)_{G_{\mathbf{S}_{1}}}=\mathbf{D}_{1}$, then $Q\left[\mathbf{A}_{1}\right]=P^{\mathcal{W}_{\mathbf{S}_{1}}}\left(\mathbf{a}_{1} \mid r, z\right)$ by applying Lemma 1 (Line a.1). Since $\mathbf{A}_{1}=$ \mathbf{D}_{1}, then we return $Q\left[\mathbf{D}_{1}\right]=P^{\mathcal{W}_{\mathbf{D}_{1}}}\left(\mathbf{d}_{1} \mid r, z\right)$ where $\mathcal{W}_{\mathbf{D}_{1}}=\mathcal{W}_{\mathbf{S}_{1}}$ (Line a.2).
For identifying $Q\left[\mathbf{D}_{2}\right]$, we invoke wIdentify $\left(\mathbf{D}_{2}, \mathbf{S}_{2}, Q\left[\mathbf{S}_{2}\right],(w, x), 1\right)$ (Line 6). Let $\mathbf{A}_{2}=$ $A n\left(\mathbf{D}_{2}\right)_{G_{\mathbf{S}_{2}}}=\mathbf{D}_{2}$, then $Q\left[\mathbf{A}_{2}\right]=P^{\mathcal{W}_{\mathbf{s}_{2}}}\left(\mathbf{a}_{2} \mid w, x\right)=P\left(\mathbf{d}_{2} \mid w, x\right)$ by Lemma 1 (Line a.1). Since $\mathbf{A}_{2}=\mathbf{D}_{2}$, then we return $Q\left[\mathbf{D}_{2}\right]=P^{\mathcal{W}_{\mathbf{D}_{2}}}\left(\mathbf{d}_{2} \mid x, w\right)=P(z \mid x, w)$ where $\mathcal{W}_{\mathbf{D}_{2}}=1$ (Line a.2).
Let $\mathcal{W} \equiv P^{\mathcal{W}_{\mathbf{D}_{1}}}\left(\mathbf{d}_{1} \mid r, z\right) P^{\mathcal{W}_{\mathbf{D}_{2}}}\left(\mathbf{d}_{2} \mid x, w\right) / P(\mathbf{d} \mid x, r)$ (Line 8). Specifically,

$$
\begin{aligned}
\mathcal{W} & \equiv P^{\mathcal{W}_{\mathrm{D}_{1}}}\left(\mathbf{d}_{1} \mid r, z\right) P^{\mathcal{W}_{\mathbf{D}_{2}}}\left(\mathbf{d}_{2} \mid x, w\right) / P(\mathbf{d} \mid r, x) \\
& =\frac{P^{\mathcal{W}_{\mathrm{D}_{1}}}(w, y \mid r, z) P(z \mid x, w)}{P(w, z, y \mid r, x)}
\end{aligned}
$$

Finally, the causal effect is given by $P(y \mid d o(x, r))=P^{\mathcal{W}}(y \mid x, r)$ (Line 9).
Remark: The use of extra covariates in Algo. 1. We note that the result of Algo. 1 is given by $P(\mathbf{y} \mid d o(\mathbf{x}))=P^{\mathcal{W}}(\mathbf{y} \mid \mathbf{r})$ for some $\mathbf{R} \supseteq \mathbf{X}$, despite that $P(\mathbf{y} \mid d o(\mathbf{x}))$ should be a function of only $\mathbf{X}=\mathbf{x}$ instead of $\mathbf{R}=\mathbf{r}$. For instance, in Example 1 (Figure 1b), we obtain $P(y \mid d o(x))=$ $P^{\mathcal{W}}(y \mid x, r)$. That $P^{\mathcal{W}}(y \mid x, r)$ is independent of the value r, or equivalently, the r.h.s of Eq. A. 1 , is independent of the value r, is known as a Verma constraint on the observed distribution implied by the causal graph [7]. Despite the equality $P^{\mathcal{W}}(\mathbf{y} \mid \mathbf{r})=P^{\mathcal{W}}(\mathbf{y} \mid \mathbf{x})$ by Verma constraints, we use the estimand $P^{\mathcal{W}}(\mathbf{y} \mid \mathbf{r})$ instead of $P^{\mathcal{W}}(\mathbf{y} \mid \mathbf{x})$ in finite sample settings, since the inclusion of more covariates tends to reduce the error in the regression analysis [1].

B Procedure for Evaluating Weight Function $\widehat{\mathcal{W}^{*}}$ in WERM-ID-R (Algorithm 2)

Notice that Algo. 1 computes \mathcal{W}^{*} (i.e. \mathcal{W} in Line 8) and expresses a causal estimand into a weighted distribution recursively by repeated application of Lemma 1. Given finite samples $\mathcal{D}=$ $\left\{\mathbf{V}_{(i)}\right\}_{i=1}^{m}$ drawn from $P(\mathbf{v})$, one can evaluate $\widehat{\mathcal{W}^{*}}$ by running wID (Algo. 1) and computing weights recursively if we can evaluate the weights in Lemma 1 from $\mathcal{D}=\left\{\nabla_{(i)}\right\}_{i=1}^{m}$. We provide a procedure LearnWeightedDist given in Algo. B. 1 for evaluating $\mathcal{W} \times \mathcal{W}^{\prime}$ in Lemma 1 when given $\mathcal{D} \sim P(\mathbf{v})$ and the weights \mathcal{W}. The key idea is that $\widehat{P}^{\mathcal{W}}(\cdot \mid \cdot)$ will be computed by drawing samples $\mathcal{D}^{\mathcal{W}}$ that could be treated as if they were drawn from $P^{\mathcal{W}}(\mathbf{v})$ in asymptotic. Specifically, LearnWeightedDist evaluates \mathcal{W}^{\prime} in Lemma 1 from $\mathcal{D}^{\mathcal{W}}$, generates samples $\mathcal{D}^{\mathcal{W} \times \mathcal{W}^{\prime}}$ by weighting \mathcal{D} with $\mathcal{W} \times \mathcal{W}^{\prime}$ using a procedure WeightedSample, and outputs $\left(\mathcal{W} \times \mathcal{W}^{\prime}, \mathcal{D}^{\mathcal{W}} \times \mathcal{W}^{\prime}\right)$. The procedure WeightedSample $(\mathcal{D}, \mathcal{W})$ draws sample $\mathcal{D}^{\mathcal{W}}$ based on \mathcal{D} by repeatedly taking bootstrap samples \mathcal{D}^{\prime} from \mathcal{D} and re-sampling \mathcal{D}^{\prime} with the weight \mathcal{W}.
Given a weight function \mathcal{W}, let $P_{m}^{\mathcal{W}}(\mathbf{v})$ denote the normalized empirical distribution $P_{m}(\mathbf{v})$ of $\mathcal{D}=\left\{\mathbf{V}_{(i)}\right\}_{i=1}^{m}$ weighted by \mathcal{W}, i.e.,

$$
\begin{equation*}
P_{m}^{\mathcal{W}}(\mathbf{v}) \equiv \frac{\mathcal{W}(\mathbf{v}) P_{m}(\mathbf{v})}{\sum_{\mathbf{v}} \mathcal{W}(\mathbf{v}) P_{m}(\mathbf{v})} \tag{B.4}
\end{equation*}
$$

The following results ascertain that (1) $\mathcal{D}^{\mathcal{W}}$ output by WeightedSample $(\mathcal{D}, \mathcal{W})$ are samples that could be treated as those drawn from $P^{\mathcal{W}}(\mathbf{v})$ in asymptotic; and (2) The probability of $\left|\mathcal{D}^{\mathcal{W}}\right| \geq \mathcal{D}$ is extremely high. For example, if $a=5, m=100$, then the probability $\left|\mathcal{D}^{\mathcal{W}}\right|<|\mathcal{D}|$ is smaller than 10^{-70}.
Lemma B. 1 (Correctness of WeightedSample in Algo. B.1. Let $\mathbf{V}_{(j)} \in \mathcal{D}^{\mathcal{W}}$ denote the jth sample of $\mathcal{D}^{\mathcal{W}}$, the set of samples returned by WeightedSample $(\mathcal{D}, \mathcal{W})$ in Algo. B.1. Then, (1) $\mathcal{D}^{\mathcal{W}}$ follows the distribution $P_{m}^{\mathcal{W}}(\mathbf{v})$; (2) $P_{m}^{\mathcal{W}}(\mathbf{v})$ converges to $P^{\mathcal{W}}(\mathbf{v})$ for all \mathbf{v} as $m \rightarrow \infty$; and (3) $P\left(\left|\mathcal{D}^{\mathcal{W}}\right| \geq|\mathcal{D}|\right) \geq 1-\exp \left(-0.5(1-1 / a)^{2} a m\right)$.

Proof. In the proof, we will use $\operatorname{Pr}(\cdot)$ to denote any probability measure assigned to any event in the subset of sample spaces.

```
Algorithm B.1: LearnWeightedDist \(\left(\mathcal{D}, \mathcal{D}^{\mathcal{W}}, \mathcal{W},(\mathbf{A}, \mathbf{W}, \mathbf{R})\right)\)-Evaluating weights in
Lemma 1
Input: Samples \(\mathcal{D}=\left\{\mathbf{V}_{(i)}\right\}_{i=1}^{m}\) drawn from \(P(\mathbf{v})\); Estimated weight \(\mathcal{W}\); Samples \(\mathcal{D}^{\mathcal{W}}\) drawn from
    \(P_{m}^{\mathcal{W}}(\mathbf{v})\).
```



```
Evaluate \(\widehat{\mathcal{W}^{\prime}} \equiv \frac{\widehat{P}^{\mathcal{W}}((\mathbf{a} \backslash \mathbf{w}) \cap A n(\mathbf{w}) \mid \mathbf{r})}{\Pi_{V_{k} \in(\mathbf{A} \backslash \mathbf{W}) \cap A n(\mathbf{w})} \hat{P}^{\mathcal{W}}\left(v_{k} \mid \mathbf{v}^{(k-1)} \cap \mathbf{n} \cap A n(\mathbf{w}), \mathbf{r}\right)}\) by computing \(\widehat{P}^{\mathcal{W}}(\cdot \mid \cdot)\) from samples \(\mathcal{D}^{\mathcal{W}}\)
    using regressions.
Evaluate \(\mathcal{W} \times \widehat{\mathcal{W}^{\prime}}\).
```



```
return \(\left(\mathcal{W} \times \widehat{\mathcal{W}}^{\prime}, \mathcal{D}^{\left.\mathcal{W} \times \widehat{\mathcal{W}^{\prime}}\right)}\right.\)
Procedure WeightedSample \((\mathcal{D}, \mathcal{W})\)
    Input: Samples \(\mathcal{D}\) drawn from \(P(\mathbf{v})\); A weight function \(\mathcal{W}(\mathbf{v})\).
    Output: Samples \(\mathcal{D}^{\mathcal{W}}\) drawn from \(P_{m}^{\mathcal{W}}(\mathbf{v})\).
    \(\mathcal{D}^{\mathcal{W}}=\{ \}\).
    Let \(\left.\mathcal{W}_{\text {max }} \equiv \max \left\{1, \max _{\mathbf{V}_{(j)} \in \mathcal{D}} \mathcal{W}\left(\mathbf{V}_{(j)}\right)\right\}\right\}\).
    Let \(j=0\) and \(j_{\text {max }} \equiv a\left\lceil\mathcal{W}_{\max }\right\rceil\) for some constant \(a \geq 2 . / / \mathrm{e} . \mathrm{g} ., \quad a=10\)
    while \(\left|\mathcal{D}^{\mathcal{W}}\right|<\mathcal{D}\) do
        \(j=j+1\).
        Take a bootstrap sampling \(\mathcal{D}^{\prime}\) from \(\mathcal{D}\).
        for \(i=1,2, \cdots,\left|\mathcal{D}^{\prime}\right|\) do
            Generate \(A_{(i)}\) from \(P\left(A_{(i)}=1 \mid \mathbf{V}_{(i)}\right) \equiv \operatorname{Bernoulli}\left(\frac{\mathcal{W}\left(\mathbf{V}_{(i)}\right)}{\mathcal{W}_{\text {max }}}\right)\) where \(\mathbf{V}_{(i)} \in \mathcal{D}^{\prime}\).
                // Bernoulli \((\theta)\) is a Bernoulli distribution parameterized by
                \(\theta \in[0,1]\).
            If \(A_{(i)}=1\), then \(\mathcal{D}^{\mathcal{W}}=\mathcal{D}^{\mathcal{W}} \cup\left\{\mathbf{V}_{(i)}\right\}\).
        end
        if \(j>j_{\text {max }}\) then end loop
    end
return \(\mathcal{D}^{\mathcal{W}}\)
```

We note that the samples of $\mathcal{D}^{\mathcal{W}}$ are chosen from \mathcal{D}^{\prime}, which was collected through the bootstrapped sampling from \mathcal{D}. Note that the bootstrapped samples \mathcal{D}^{\prime} follow the empirical distribution of \mathcal{D}, denoted as P_{m}, i.e., $\mathcal{D}^{\prime} \sim P_{m}$. Let $\mathcal{D}^{\mathcal{W}}=\left\{\mathbf{V}_{(i)}^{\mathcal{W}}\right\}_{i=1}^{m^{\prime}}$ and $\mathcal{D}=\left\{\mathbf{V}_{(i)}\right\}_{i=1}^{m}$. By the design of Algo. B.1. we note $\operatorname{Pr}\left(A_{(i)}=1 \mid \mathbf{v}\right)=\frac{\mathcal{W}(\mathbf{v})}{\mathcal{W}_{\text {max }}} ; \operatorname{Pr}\left(\mathbf{V}_{(i)}=\mathbf{v}\right)=P_{m}(\mathbf{v})\left(\right.$ where $\left.\mathbf{V}_{(i)} \in \mathcal{D}\right)$. Then, for $\mathbf{V}_{(i)}^{\mathcal{W}} \in \mathcal{D}^{\mathcal{W}}$,

$$
\begin{aligned}
\operatorname{Pr}\left(\mathbf{V}_{(i)}^{\mathcal{W}}=\mathbf{v}\right) & =\operatorname{Pr}\left(\mathbf{V}_{(i)}=\mathbf{v} \mid A_{(i)}=1\right) \\
& =\frac{\operatorname{Pr}\left(A_{(i)}=1 \mid \mathbf{V}_{(i)}=\mathbf{v}\right) \operatorname{Pr}\left(\mathbf{V}_{(i)}=\mathbf{v}\right)}{\sum_{\mathbf{v}} \operatorname{Pr}\left(A_{(i)}=1 \mid \mathbf{V}_{(i)}=\mathbf{v}\right) \operatorname{Pr}\left(\mathbf{V}_{(i)}=\mathbf{v}\right)} \\
& =\frac{\operatorname{Pr}\left(A_{(i)}=1 \mid \mathbf{v}\right) P_{m}(\mathbf{v})}{\sum_{\mathbf{v}} \operatorname{Pr}\left(A_{(i)}=1 \mid \mathbf{v}\right) P_{m}(\mathbf{v})} \\
& =\frac{P_{m}(\mathbf{v}) \mathcal{W}(\mathbf{v}) / \mathcal{W}_{\max }}{\sum_{\mathbf{v}} P_{m}(\mathbf{v}) \mathcal{W}(\mathbf{v}) / \mathcal{W}_{\max }} \\
& =\frac{P_{m}(\mathbf{v}) \mathcal{W}(\mathbf{v})}{\sum_{\mathbf{v}} P_{m}(\mathbf{v}) \mathcal{W}(\mathbf{v})} \\
& =P_{m}^{\mathcal{W}}(\mathbf{v})
\end{aligned}
$$

To see the second statement holds, we note that $\lim _{m \rightarrow \infty} P_{m}(\mathbf{v})=P(\mathbf{v})$ for any possible realization of $\mathbf{V}=\mathbf{v}$ by the Strong law of large number. Then, $\lim _{m \rightarrow \infty} P_{m}(\mathbf{v}) \mathcal{W}(\mathbf{v})=P(\mathbf{v}) \mathcal{W}(\mathbf{v})$. Now,
consider the following:

$$
\begin{align*}
\lim _{m \rightarrow \infty} \frac{\mathcal{W} P_{m}(\mathbf{v})}{\sum_{\mathbf{v}} \mathcal{W}(\mathbf{v}) P_{m}(\mathbf{v})} & =\frac{\mathcal{W}(\mathbf{v}) P(\mathbf{v})}{\sum_{\mathbf{v}} \mathcal{W}(\mathbf{v}) P(\mathbf{v})} \tag{B.5}\\
& =\mathcal{W}(\mathbf{v}) P(\mathbf{v}) \tag{B.6}\\
& =P^{\mathcal{W}}(\mathbf{v}) \tag{B.7}
\end{align*}
$$

where the first equality holds since $\frac{\mathcal{W} P_{m}(\mathbf{v})}{\sum_{\mathbf{v}} \mathcal{W}(\mathbf{v}) P_{m}(\mathbf{v})}$ is continuous with respect to P_{m} whenver $\mathcal{W}>0$ and $\mathcal{W}<\infty$; the second equality holds since $\sum_{\mathbf{v}} \mathcal{W}(\mathbf{v}) P(\mathbf{v})=\sum_{\mathbf{v}} P^{\mathcal{W}}(\mathbf{v})=1$ by the definition of the weight (Def. 1 ; ; and third equality holds by the definition of the weighted distribution.
To see the third statement holds, proving that the stopping condition $j>j_{\max }$ happens at exteremely low probability is sufficient. Let the number of samples of $\mathcal{D}^{\mathcal{W}}$ collected at j th iteration be $M_{j} \equiv$ $\sum_{i=1}^{\left|\mathcal{D}^{\prime}\right|} A_{(i)}$. We note $\mu_{M} \equiv \mathbb{E}\left[M_{j}\right]=m / \mathcal{W}_{\text {max }}$ (for all j) since $P\left(A_{(i)}=1\right)=1 / \mathcal{W}_{\text {max }}$ for all $i=1,2, \cdots,\left|\mathcal{D}^{\prime}\right|$. When the algorithm terminates, the number of collected samples are $S \equiv$ $M_{1}+M_{2}+\cdots+M_{j_{\max }}$ and $\mu_{S} \equiv \mathbb{E}[S]=j_{\max } \mu_{M}=a\left\lceil\mathcal{W}_{\max }\right\rceil \mu_{M} \geq$ am. By applying Chernoff bound, $P\left(S<(1-\delta) \mu_{S}\right) \leq \exp \left(-0.5 \delta^{2} \mu_{S}\right) \leq \exp \left(-0.5 \delta^{2} a m\right)$ for $\delta \in[0,1]$. By fixing $(1-\delta)=\frac{\mathcal{W}_{\max }}{a\left\lceil\mathcal{W}_{\max }\right\rceil}$, we derive $P(S<m) \leq \exp \left(-0.5 \delta^{2} a m\right)$. Since $\delta \geq(1-1 / a)$, we conclude $P(S<m) \leq \exp \left(-0.5(1-1 / a)^{2} a m\right)$. This completes the proof.

The asymptotic correctness of the procedure LearnWeightedDist is guaranteed by the following:
Lemma B. 2 (Correctness of LearnWeightedDist (Algo. B.1)). Suppose $\widehat{P}^{\mathcal{W}}(\cdot \mid \cdot)$ in the computation of $\widehat{\mathcal{W}^{\prime}}$ in Line 1 of LearnWeightedDist (Algo. B.1 is a correct estimate of $P_{m}^{\mathcal{W}}(\cdot \mid \cdot)$. Then, for $\left(\mathcal{W} \times \widehat{\mathcal{W}}^{\prime}, \mathcal{D}^{\mathcal{W}} \times \widehat{\mathcal{W}}^{\prime}\right)=$ LearnWeightedDist $\left(\mathcal{D}, \mathcal{D}^{\mathcal{W}}, \mathcal{W},(\mathbf{A}, \mathbf{W}, \mathbf{R})\right), \mathcal{W} \times \widehat{\mathcal{W}}^{\prime}$ converges to $\left(\mathcal{W} \times \mathcal{W}^{\prime}\right)$ as $m \rightarrow \infty$ and $\mathcal{D}^{\mathcal{W} \times \widehat{\mathcal{W}^{\prime}}}$ follows the true distribution $P^{\mathcal{W} \times \mathcal{W}^{\prime}}(\mathbf{v})$ in the limit of infinite samples.

Proof. From the given assumption, $\widehat{P}^{\mathcal{W}}(\cdot \mid \cdot)$ learned from $\mathcal{D}^{\mathcal{W}}$ are correct estimates of $P_{m}^{\mathcal{W}}(\cdot \mid \cdot)$. This implies $\widehat{\mathcal{W}^{\prime}}=\frac{P_{m}^{\mathcal{W}}((\mathbf{a} \backslash \mathbf{w}) \cap A n(\mathbf{w}) \mid \mathbf{r})}{\prod_{V_{k} \in(\mathbf{A} \backslash \mathbf{W}) \cap A n(\mathbf{w})} P_{m}^{\mathcal{W}}\left(v_{k} \mid \mathbf{v}^{(k-1)} \cap \mathbf{a} \cap A n(\mathbf{w}), \mathbf{r}\right)}$. By the second statement of Lemma B. 1 which states $P_{m}^{\mathcal{W}}(\mathbf{v})$ converges to $P^{\mathcal{W}}(\mathbf{v})$ for all $\mathbf{v}, \mathcal{W} \times \widehat{\mathcal{W}}^{\prime}$ converges to $\left(\mathcal{W} \times \mathcal{W}^{\prime}\right)$ as $m \rightarrow \infty$. Also, since $\mathcal{D}^{\mathcal{W}} \times \widehat{\mathcal{W}}^{\prime}$ are samples drawn from $P_{m}^{\mathcal{W} \times \widehat{\mathcal{W}}^{\prime}}$, in the limit of infinite samples, $\mathcal{D}^{\mathcal{W} \times \widehat{\mathcal{W}}^{\prime}}$ follows the true distribution $P^{\mathcal{W} \times \mathcal{W}^{\prime}}(\mathbf{v})$.

The time complexity of LearnWeightedDist is given as follows:
Lemma B. 3 (Time complexity of Algo. B.1). Suppose $0<\mathcal{W} \times \widehat{\mathcal{W}^{\prime}}<c$ for some constant $c>0$. Let $T_{1}(m)$ denote the time complexity for learning $\widehat{P}^{\mathcal{W}}(\cdot \mid \cdot)$ from samples $\mathcal{D}^{\mathcal{W}}$. Let $n \equiv|\mathbf{V}|$. Then, LearnWeightedDist (Algo.B.1) runs in $O\left(m c+n T_{1}(m)\right)$ time.

Proof. We first note that WeightedSample $(\mathcal{D}, \mathcal{W})$ takes $O(a m c)=O(m c)$ since $\left\lceil\mathcal{W}_{\max }\right\rceil \leq c$. Line 1 of LearnWeightedDist takes $O\left(n T_{1}(m)\right)$. Line 2 takes $O(m)$, since $\left|\mathcal{D}^{\mathcal{W}}\right|=O(m)$ by the While loop condition in WeightedSample. Line 3 takes $O(m c)$. Summing up, Algo. B. 1 takes $O\left(n T_{1}(m)+m+m c\right)=O\left(n T_{1}(m)+m c\right)$.

Equipped with LearnWeightedDist (Algo. B.1), we evaluate $\widehat{\mathcal{W}^{*}}$ by running wID (Algo. 1) while invoking LearnWeightedDist whenever wID calls Lemma 1. The time complexity of evaluating $\widehat{\mathcal{W}^{*}}$ is given as follows:
Lemma B. 4 (Time complexity for evaluating $\widehat{\mathcal{W}^{*}}$). Let \mathcal{W}^{*} denote the weight estimand defined in Line 8 (or Line 7) of wID (Algo. 1) such that $P(\mathbf{y} \mid d o(\mathbf{x}))=P^{\mathcal{W}^{*}}(\mathbf{y} \mid \mathbf{r})$. Let $n \equiv|\mathbf{V}|$. Let K denote the number of C-components in $G_{\mathbf{D}}$ (in Algo. 1]. Let $T_{1}(m)$ denote the time complexity for
learning $\widehat{P}^{\mathcal{W}}(\cdot \mid \cdot)$ from samples $\mathcal{D}^{\mathcal{W}}$. Assume all weights satisfy $0<\mathcal{W}<c$ for some constant $c>0$. Suppose we evaluate $\widehat{\mathcal{W}^{*}}$ by running wID and invoking LearnWeightedDist (Algo. B.I) whenever wID calls Lemma 1. Then, evaluating $\widehat{\mathcal{W}^{*}}$ takes $O\left(n K\left(m c+n T_{1}(m)\right)\right)$.

Proof. We note that the number of C-components of $G_{\mathbf{D}}$ is K. In identifying $Q\left[\mathbf{D}_{i}\right]$, LearnWeightedDist is called at most n times. Therefore, by LemmaB.3, it takes $O(K \times n(m c+$ $\left.n T_{1}(m)\right)$) to evaluate $\widehat{\mathcal{W}^{*}}$.

C Proofs

C. 1 Background Results

C.1.1 Multi-outcome Sequential Back-door (mSBD) Criterion

Definition C. 1 (Multi-outcome sequential back-door (mSBD) criterion [3]). Given the pair of sets (\mathbf{X}, \mathbf{Y}), let $\mathbf{X}=\left\{X_{1}, X_{2}, \cdots, X_{n}\right\}$ be topologically ordered as $X_{1}<X_{2}<\cdots<X_{n}$. Let $\mathbf{Y}_{0}=\mathbf{Y} \backslash D e(\mathbf{X})$ and $\mathbf{Y}_{i}=\mathbf{Y} \cap\left(D e\left(X_{i}\right) \backslash D e\left(\mathbf{X}^{\geq i+1}\right)\right)$ for $i=1, \cdots, n$. A sequence $\mathbf{Z}=\left(\mathbf{Z}_{1}, \cdots, \mathbf{Z}_{n}\right)$ is mSBD admissible relative to (\mathbf{X}, \mathbf{Y}) if it holds that $\mathbf{Z}_{i} \subseteq N D\left(\mathbf{X} \geq^{i}\right)$, and $\left(\mathbf{Y}^{\geq i} \Perp X_{i} \mid \mathbf{Y}^{(i-1)}, \mathbf{Z}^{(i)}, \mathbf{X}^{(i-1)}\right)_{G_{\underline{X_{i}} \overline{\mathrm{x} \geq i+1}}}$ for $i=1, \cdots, n$.
Theorem C. 1 (mSBD adjustment [3, Thm. 1]). If \mathbf{Z} is mSBD admissible relative to (\mathbf{X}, \mathbf{Y}), then $P(\mathbf{y} \mid d o(\mathbf{x}))$ is identifiable and given by

$$
\begin{equation*}
P(\mathbf{y} \mid d o(\mathbf{x}))=\sum_{\mathbf{z}} \prod_{k=0}^{n} P\left(\mathbf{y}_{k} \mid \mathbf{x}^{(k)}, \mathbf{z}^{(k)}, \mathbf{y}^{(k-1)}\right) \times \prod_{j=1}^{n} P\left(\mathbf{z}_{j} \mid \mathbf{x}^{(j-1)}, \mathbf{z}^{(j-1)}, \mathbf{y}^{(j-1)}\right) . \tag{C.8}
\end{equation*}
$$

Theorem C. 2 (Representation of mSBD adjustment as a weighted distribution [3, Thm. 2]). If \mathbf{Z} is mSBD admissible relative to (\mathbf{X}, \mathbf{Y}), then

$$
\begin{equation*}
P(\mathbf{y} \mid \operatorname{do}(\mathbf{x}))=P^{\mathcal{W}}(\mathbf{y} \mid \mathbf{x}), \text { where } \mathcal{W}=\frac{P(\mathbf{x})}{\prod_{k=1}^{n} P\left(x_{k} \mid \mathbf{x}^{(k-1)}, \mathbf{y}^{(k-1)}, \mathbf{z}^{(k)}\right)} \tag{C.9}
\end{equation*}
$$

Lemma C. 1 (mSBD adjustment and C-factor identification). Let \mathbf{S} denote a union of some C-components of G. If $\mathbf{W} \subseteq \mathbf{S}$ satisfies $\mathbf{W}=\operatorname{An}(\mathbf{W})$ in $G_{\mathbf{S}}$, then (1) $(\mathbf{S} \backslash \mathbf{W}) \cap$ $A n(\mathbf{W})$ is $m S B D$ admissible relative to $((\mathbf{V} \backslash \mathbf{S}) \cap A n(\mathbf{W}), \mathbf{W})$; and (2) $P(\mathbf{w} \mid d o(\mathbf{v} \backslash \mathbf{w}))=$ $P(\mathbf{w} \mid \operatorname{do}((\mathbf{v} \backslash \mathbf{s}) \cap A n(\mathbf{w})))$, which is identifiable by the mSBD adjustment by Thm. C.I.

Proof. Two things that we will prove are following:

1. $(\mathbf{S} \backslash \mathbf{W}) \cap A n(\mathbf{W})$ satisfies the mSBD criterion relative to $((\mathbf{V} \backslash \mathbf{S}) \cap A n(\mathbf{W}), \mathbf{W})$; and
2. $P(\mathbf{w} \mid d o((\mathbf{v} \backslash \mathbf{s}) \cap A n(\mathbf{w})))=P(\mathbf{w} \mid d o(\mathbf{v} \backslash \mathbf{w}))=Q[\mathbf{W}]$.

We start by proving the first statement. For the notational convenience, let $\mathbf{Z} \equiv(\mathbf{S} \backslash \mathbf{W}) \cap \operatorname{An}(\mathbf{W})$. Let $\mathbf{R} \equiv(\mathbf{V} \backslash \mathbf{S}) \cap A n(\mathbf{W})$. Let $\mathbf{R}=\left\{R_{1}, R_{2}, \cdots, R_{n}\right\}$ where $R_{1} \prec R_{2} \prec \cdots \prec R_{n}$. Let $\mathbf{W}_{0}=\mathbf{W} \backslash D e(\mathbf{R})$, and $\mathbf{W}_{i}=\mathbf{W} \cap\left(D e\left(R_{i}\right) \backslash D e\left(\mathbf{R}^{\geq i+1}\right)\right)$ for $i=1,2, \cdots, n$.

We first partition $\mathbf{Z}=\left\{\mathbf{Z}_{1}, \cdots, \mathbf{Z}_{n}\right\}$ as follow: $\mathbf{Z}_{1}=\mathbf{Z} \cap N D(\mathbf{R})$, and $\mathbf{Z}_{k} \equiv\left(\mathbf{Z} \backslash \mathbf{Z}^{(k-1)}\right) \cap$ $N D\left(\mathbf{R}^{\geq k}\right)$. To witness that such partition is possible, it suffices to show that there exists no $Z_{k} \in \mathbf{Z}$ that is a descendent of R_{n}. Suppose there exists such Z_{k}; i.e., there exists a path $R_{n} \rightarrow \cdots \rightarrow Z_{k}$. Since Z_{k} is an ancestor of some $W_{j} \in \mathbf{W}, Z_{k} \rightarrow \cdots \rightarrow W_{j}$. Note $W_{j} \in \mathbf{W}_{n}$ since $R_{n} \rightarrow \cdots \rightarrow$ $Z_{k} \rightarrow \cdots \rightarrow W_{j}$. We note that there should be some variables $C_{i} \in \mathbf{V} \backslash \mathbf{S}$ on the path from Z_{k} to W_{j}; Otherwise, all internal nodes on the path (other than R_{n}) belongs to \mathbf{S}, implying that Z_{k} should be included in \mathbf{W} (since Z_{k} should be included in the ancestral set of \mathbf{S}), which is a contradiction. Suppose the path includes such C_{i}. This implies that C_{i} is a parent of some nodes on \mathbf{S}, which contradicts that the path stems from R_{n} such that $R_{1} \prec \cdots \prec R_{n}$. Therefore, there are no such Z_{k}. This implies that we can partition \mathbf{Z} as $\mathbf{Z}=\left\{\mathbf{Z}_{1}, \cdots, \mathbf{Z}_{n}\right\}$.

By such partition, the condition $\mathbf{Z}_{i} \subseteq N D\left(\mathbf{R}^{\geq i}\right)$ is automatically satisfied. Thus, We focus on showing

$$
\begin{equation*}
\left(\mathbf{W}^{\geq i} \Perp R_{i} \mid \mathbf{W}^{(i-1)}, \mathbf{Z}^{(i)}, \mathbf{R}^{(i-1)}\right)_{G_{\underline{R_{i}} \overline{\mathrm{R}} \geq i+1}} \tag{C.10}
\end{equation*}
$$

On $G^{\prime} \equiv G_{\underline{R_{i}}} \overline{\mathbf{R} \geq i+1}$, we consider the latent projected graph $G^{\prime \prime} \equiv G^{\prime}\left[\mathbf{W}, \mathbf{R}^{(i)}, \mathbf{Z}^{(i)}\right]$ (i.e., the latent projection of \mathbf{V} onto $\mathbf{W}, \mathbf{R}^{(i)}, \mathbf{Z}^{(i)}$ [4] Def. 1]) without loss of generality, since the projected graph preserves the independence between $\mathbf{W}, \mathbf{R}^{(i)}, \mathbf{Z}^{(i)}$ on G^{\prime}. On $G^{\prime \prime}$, suppose there exists a path p connecting $R_{i} \in \mathbf{R}=(\mathbf{V} \backslash \mathbf{S}) \cap A n(\mathbf{W})$ to $W_{j} \in \mathbf{W}^{\geq i}$ conditioned on $\mathbf{W}^{(i-1)}, \mathbf{Z}^{(i)}, \mathbf{R}^{(i-1)}$.
The path has the following form. Let $R_{j} \in P a\left(R_{i}\right) \backslash\left\{R_{i}\right\}$. Let $R_{p} \in A n\left(R_{i}\right) \backslash P a\left(R_{i}\right)$.

$$
R_{i}\{\leftarrow \vee\{\leftrightarrow, \emptyset\}\} R_{j}\{\leftarrow \vee\{\leftrightarrow, \emptyset\}\} R_{p}\{\leftarrow \vee \rightarrow \vee \emptyset\} S_{k}\{\leftrightarrow \wedge\{\rightarrow \vee \leftarrow \vee \emptyset\}\} W_{j},
$$

where $S_{k} \in \mathbf{S} \backslash\left\{W_{j}\right\} \subseteq \mathbf{W} \cup \mathbf{Z}^{(i)}$. Suppose $R_{p} \leftarrow S_{k}$. This means that $S_{k} \in\left(\mathbf{W} \cup \mathbf{Z}^{(i)}\right) \cap A n\left(R_{p}\right)$. Since this S_{k} is conditioned, the path is blocked. Even if there are no such R_{p} and R_{j}, the path is still blocked by the conditioned S_{k}. If there exists no such S_{k}, then the path contains the bidirected edge between R_{i} and W_{j}, or the directed path from W_{j} to R_{i}, which both are contradictions. In conclusion, either (1) there are no such path; or (2) such path is blocked.
Suppose $R_{p} \rightarrow S_{k}$. This path is then blocked by conditioning on R_{p}. If there exists no R_{p} and R_{j}, we can block this path by conditioning on S_{k}, since there should be no bidirected path between R_{i} and S_{k}. Therefore, either (1) there are no such path; or (2) such path is blocked. This implies that the condition in Eq. C. 10 holds.
We will now prove the second statement. We first show

$$
\begin{equation*}
P(\mathbf{w} \mid d o(\mathbf{v} \backslash \mathbf{w}))=P(\mathbf{w} \mid d o(\mathbf{v} \backslash \mathbf{s}))=\sum_{\mathbf{s} \backslash \mathbf{w}} P(\mathbf{s} \mid d o(\mathbf{v} \backslash \mathbf{s})) . \tag{C.11}
\end{equation*}
$$

Let $\mathbf{W}^{\prime} \equiv \mathbf{S} \backslash \mathbf{W}$. Then

$$
\begin{align*}
Q[\mathbf{W}]=P(\mathbf{w} \mid d o(\mathbf{v} \backslash \mathbf{w})) & =P\left(\mathbf{w} \mid d o\left(\mathbf{v} \backslash \mathbf{s}, \mathbf{w}^{\prime}\right)\right) \tag{C.12}\\
& =P(\mathbf{w} \mid d o(\mathbf{v} \backslash \mathbf{s})) \tag{C.13}\\
& =\sum_{\mathbf{w}^{\prime}} P(\mathbf{s} \mid d o(\mathbf{v} \backslash \mathbf{s})) \tag{C.14}\\
& =\sum_{\mathbf{s} \backslash \mathbf{w}} P(\mathbf{s} \mid d o(\mathbf{v} \backslash \mathbf{s})) \tag{C.15}
\end{align*}
$$

Eq. C.13) follows by applying Rule 3 of do-calculus using the independence $\left(\mathbf{W} \Perp \mathbf{W}^{\prime} \backslash \mathbf{V} \backslash \mathbf{S}\right)_{G_{\overline{\mathbf{V} \backslash \mathbf{S}, \mathbf{W}^{\prime}}}}$. We can show that the independence condition holds using contradiction: Assume there exists a path in $G_{\overline{\mathbf{V} \backslash \mathbf{S}, \mathbf{W}^{\prime}}}$ between $V_{i} \in \mathbf{W}$ and $V_{j} \in \mathbf{W}^{\prime}$. Such path must have arrows going out of V_{j}, the following node in the path must be in \mathbf{W} for the edge in the path to be in $G_{\overline{\mathbf{V} \backslash \mathbf{S}, \mathbf{W}^{\prime}}}$. But if this is the case, V_{j} is a parent of some $V_{k} \in \mathbf{W}$; then \mathbf{W} is not an ancestral set in $G_{\mathbf{S}}$, a contradiction. This completes the proof that $P(\mathbf{w} \mid d o(\mathbf{v} \backslash \mathbf{w}))=P(\mathbf{w} \mid d o(\mathbf{v} \backslash \mathbf{s}))=\sum_{\mathbf{s} \backslash \mathbf{w}} P(\mathbf{s} \mid d o(\mathbf{v} \backslash \mathbf{s}))$. Note $P(\mathbf{w} \mid \operatorname{do}(\mathbf{v} \backslash \mathbf{s}))=P(\mathbf{w} \mid d o((\mathbf{v} \backslash \mathbf{s}) \cap A n(\mathbf{w})))$ by the Rule 3 of do-calculus [5]. This completes the proof.

C.1.2 Background Results on Weighted Distributions

Lemma C.2. In Lemma 1 supposing \mathcal{W} satisfies $\mathbb{E}_{P}[\mathcal{W}(\mathbf{V})]=1$, then $\mathbb{E}_{P}\left[\mathcal{W}(\mathbf{V}) \times \mathcal{W}^{\prime}(\mathbf{V})\right]=1$.
Proof. We first note that $P^{\mathcal{W}}(\mathbf{v})$ is a valid weighted distribution such that $P^{\mathcal{W}}(\mathbf{v})>0$ and $\sum_{\mathbf{v}} P^{\mathcal{W}}(\mathbf{v})=1$.
Let $\mathbf{X} \equiv(\mathbf{A} \backslash \mathbf{W}) \cap \operatorname{An}(\mathbf{W})$. Let $\mathbf{Y} \equiv \mathbf{W}$. Then, $(\mathbf{X}, \mathbf{Y})=(\mathbf{X} \cup \mathbf{Y})=\mathbf{A} \cap$ $A n(\mathbf{W})$. Let $\mathbf{T} \equiv \mathbf{A} \backslash A n(\mathbf{W})$. Then, $(\mathbf{X}, \mathbf{Y}, \mathbf{T})=\mathbf{X} \cup \mathbf{Y} \cup \mathbf{T}=\mathbf{A}$. Note $\mathcal{W}^{\prime} \equiv \frac{P^{\mathcal{W}}((\mathbf{a} \backslash \mathbf{w}) \cap A n(\mathbf{w}) \mid \mathbf{r})}{\prod_{V_{i} \in(\mathbf{A} \backslash \mathbf{W}) \cap A n(\mathbf{w})} P^{\mathcal{W}}\left(v_{i} \mid \mathbf{v}^{(i-1)} \cap a \cap A n(\mathbf{w}), \mathbf{r}\right)}$, which is a function of $(\mathbf{R}, \mathbf{X}, \mathbf{Y})$; i.e., $\mathcal{W}^{\prime}=$ $\mathcal{W}^{\prime}(\mathbf{R}, \mathbf{X}, \mathbf{Y})$.

$$
\begin{aligned}
& \text { Let } \mathcal{W}^{\prime \prime} \equiv \mathcal{W} \times \mathcal{W}^{\prime} \text {. Then, } \\
& \mathbb{E}_{P}\left[\mathcal{W}(\mathbf{V}) \times \mathcal{W}^{\prime}(\mathbf{V})\right] \\
& =\mathbb{E}_{P}\left[\mathcal{W}^{\prime \prime}(\mathbf{V})\right] \\
& =\sum_{\mathbf{v}} \mathcal{W}^{\prime \prime}(\mathbf{v}) P(\mathbf{v}) \\
& =\sum_{\mathbf{v}} \mathcal{W}(\mathbf{v}) P(\mathbf{v}) \cdot \mathcal{W}^{\prime}(\mathbf{v}) \\
& =\sum_{\mathbf{a}, \mathbf{r}} \underbrace{\left(\frac{\sum_{\mathbf{v} \backslash(\mathbf{a}, \mathbf{r})} \mathcal{W}(\mathbf{v}) P(\mathbf{v})}{\sum_{\mathbf{v} \backslash \mathbf{r}} \mathcal{W}(\mathbf{v}) P(\mathbf{v})}\right)}_{=P^{\mathcal{W}}(\mathbf{a} \mid \mathbf{r})=Q[\mathbf{A}]} \underbrace{\left(\sum_{\mathbf{v} \backslash \mathbf{r}} \mathcal{W}(\mathbf{v}) P(\mathbf{v})\right)}_{=P^{\mathcal{W}}(\mathbf{r})} \cdot \mathcal{W}^{\prime}(\mathbf{v}) \\
& =\sum_{\mathbf{r}} P^{\mathcal{W}}(\mathbf{r}) \sum_{\mathbf{a}} P^{\mathcal{W}}(\mathbf{a} \mid \mathbf{r}) \cdot \mathcal{W}^{\prime}(\mathbf{r}, \mathbf{x}, \mathbf{y}) \\
& =\sum_{\mathbf{r}} P^{\mathcal{W}}(\mathbf{r}) \sum_{\mathbf{x}, \mathbf{y}} \sum_{\mathbf{t}} P^{\mathcal{W}}(\mathbf{x}, \mathbf{y}, \mathbf{t} \mid \mathbf{r}) \cdot \mathcal{W}^{\prime}(\mathbf{r}, \mathbf{x}, \mathbf{y}) \\
& =\sum_{\mathbf{r}} P^{\mathcal{W}}(\mathbf{r}) \sum_{\mathbf{x}, \mathbf{y}} P^{\mathcal{W}}(\mathbf{x}, \mathbf{y} \mid \mathbf{r}) \cdot \mathcal{W}^{\prime}(\mathbf{r}, \mathbf{x}, \mathbf{y}) \\
& =\sum_{\mathbf{r}} P^{\mathcal{W}}(\mathbf{r}) \sum_{\mathbf{x}, \mathbf{y}} P^{\mathcal{W}}(\mathbf{x}, \mathbf{y} \mid \mathbf{r}) \cdot \frac{P^{\mathcal{W}}(\mathbf{x} \mid \mathbf{r})}{\prod_{V_{i} \in \mathbf{X}} P^{\mathcal{W}}\left(v_{i} \mid \mathbf{v}^{(i-1)} \cap(\mathbf{x}, \mathbf{y}), \mathbf{r}\right)} \\
& =\sum_{\mathbf{r}} P^{\mathcal{W}}(\mathbf{r}) \sum_{\mathbf{x}, \mathbf{y}} \prod_{V_{i} \in \mathbf{X}} P^{\mathcal{W}}\left(v_{i} \mid \mathbf{v}^{(i-1)} \cap(\mathbf{x}, \mathbf{y}), \mathbf{r}\right) \cdot \prod_{V_{k} \in \mathbf{Y}} P^{\mathcal{W}}\left(v_{k} \mid \mathbf{v}^{(k-1)} \cap(\mathbf{x}, \mathbf{y}), \mathbf{r}\right) \cdot \frac{P^{\mathcal{W}}(\mathbf{x} \mid \mathbf{r})}{\prod_{V_{i} \in \mathbf{X}} P^{\mathcal{W}}\left(v_{i} \mid \mathbf{v}^{(i-1)} \cap(\mathbf{x}, \mathbf{y}), \mathbf{r}\right)} \\
& =\sum_{\mathbf{r}} P^{\mathcal{W}}(\mathbf{r}) \sum_{\mathbf{x}} P^{\mathcal{W}}(\mathbf{x} \mid \mathbf{r})\left(\sum_{\mathbf{y}} \prod_{V_{k} \in \mathbf{Y}} P^{\mathcal{W}}\left(v_{k} \mid \mathbf{v}^{(k-1)} \cap(\mathbf{x}, \mathbf{y}), \mathbf{r}\right)\right) \\
& =1 \text {. }
\end{aligned}
$$

where the fourth equality holds by the definition of $Q[\mathbf{A}]$ in Lemma 1 and else equality holds since the $P^{\mathcal{W}}(\mathbf{v})$ is a valid distribution allowing the marginalization; i.e., $\sum_{\mathbf{v} \backslash \mathbf{c}} P^{\mathcal{W}}(\mathbf{v})=P^{\mathcal{W}}(\mathbf{c})$ for any subset $\mathbf{C} \subseteq \mathbf{V}$, by the definition of the weighted distribution.

Corollary C. 1 (Justification of $\mathbb{E}_{P}[\mathcal{W}]=1$ for \mathcal{W} in the line $\mathbf{8}$ of Algo. 1). The weight \mathcal{W} in the Line 8 of Algo. 1 satisfies $\mathbb{E}_{P}[\mathcal{W}(\mathbf{V})]=1$.

Proof. We first note that $\mathcal{W}=\frac{\prod_{i=1}^{K} P^{\mathcal{W}_{\mathbf{d}_{i}}}\left(\mathbf{d}_{i} \mid \mathbf{r}_{\mathbf{d}_{i}}\right)}{P(\mathbf{d} \mid \mathbf{r})}=\frac{\prod_{i=1}^{K} P^{\mathcal{W}_{\mathbf{d}_{i}}}\left(\mathbf{d}_{i} \mid \mathbf{r}_{\mathbf{d}_{i}}\right) P(\mathbf{v} \backslash \mathbf{d})}{P(\mathbf{v})}$ by the definition of \mathbf{R} in Line 8 of Algo. 1. We note that $P^{\mathcal{W}_{\mathbf{d}_{i}}}\left(\mathbf{d}_{i} \mid \mathbf{r}_{\mathbf{d}_{i}}\right)=Q\left[\mathbf{D}_{i}\right]=P\left(\mathbf{d}_{i} \mid \operatorname{do}\left(\mathbf{v} \backslash \mathbf{d}_{i}\right)\right)$. Also, $\prod_{i=1}^{K} P^{\mathcal{W}_{\mathbf{d}_{i}}}\left(\mathbf{d}_{i} \mid \mathbf{r}_{\mathbf{d}_{i}}\right)=\prod_{i=1}^{K} Q\left[\mathbf{D}_{i}\right]=Q[\mathbf{D}]=P(\mathbf{d} \mid d o(\mathbf{v} \backslash \mathbf{d}))$. Then,

$$
\begin{aligned}
\mathbb{E}_{P}[\mathcal{W}(\mathbf{V})] & =\sum_{\mathbf{v}} \mathcal{W}(\mathbf{v}) P(\mathbf{v}) \\
& =\sum_{\mathbf{v}} \prod_{i=1}^{K} P^{\mathcal{W}_{\mathbf{d}_{i}}}\left(\mathbf{d}_{i} \mid \mathbf{r}_{\mathbf{d}_{i}}\right) P(\mathbf{v} \backslash \mathbf{d}) \\
& =\sum_{\mathbf{v} \backslash \mathbf{d}} P(\mathbf{v} \backslash \mathbf{d}) \sum_{\mathbf{d}} \underbrace{\prod_{i=1}^{K} P^{\mathcal{W}_{\mathbf{d}_{i}}}\left(\mathbf{d}_{i} \mid \mathbf{r}_{\mathbf{d}_{i}}\right)}_{=P(\mathbf{d} \mid d o(\mathbf{v} \backslash \mathbf{d}))} \\
& =\sum_{\mathbf{v} \backslash \mathbf{d}} P(\mathbf{v} \backslash \mathbf{d}) \sum_{\mathbf{d}} P(\mathbf{d} \mid d o(\mathbf{v} \backslash \mathbf{d}))=1 .
\end{aligned}
$$

Lemma C. 3 (Recursion of Weighting). Let \mathbf{A}, \mathbf{B} be disjoint sets of variables. Let $\mathbf{C}, \mathbf{D} \subseteq \mathbf{A}$ be disjoint variables. Let $q(\mathbf{a}) \equiv P^{\mathcal{W}}(\mathbf{a} \mid \mathbf{b})$. Then $q^{\mathcal{W}^{\prime}}(\mathbf{c} \mid \mathbf{d})=P^{\mathcal{W} \times \mathcal{W}^{\prime}}(\mathbf{c} \mid \mathbf{b}, \mathbf{d})$.

Proof. We have the following:

$$
q^{\mathcal{W}^{\prime}}(\mathbf{c} \mid \mathbf{d})=\frac{\sum_{\mathbf{a} \backslash(\mathbf{c}, \mathbf{d})} \mathcal{W}^{\prime} q(\mathbf{a})}{\sum_{\mathbf{a} \backslash \mathbf{d}} \mathcal{W}^{\prime} q(\mathbf{a})}=\frac{\sum_{\mathbf{a} \backslash(\mathbf{c}, \mathbf{d}))} \mathcal{W}^{\prime} P^{\mathcal{W}}(\mathbf{a} \mid \mathbf{b})}{\sum_{\mathbf{a} \backslash \mathbf{d}} \mathcal{W}^{\prime} P^{\mathcal{W}}(\mathbf{a} \mid \mathbf{b})}=\frac{\sum_{\mathbf{a} \backslash(\mathbf{c}, \mathbf{d})} \mathcal{W}^{\prime} \frac{P^{\mathcal{W}}(\mathbf{a}, \mathbf{b})}{P^{\mathcal{W}}(\mathbf{b})}}{\sum_{\mathbf{a} \backslash \mathbf{d}} \mathcal{W}^{\prime} \frac{P^{\mathcal{W}}(\mathbf{a}, \mathbf{b})}{P^{\mathcal{W}}(\mathbf{b})}}
$$

Continuing,

$$
\begin{aligned}
\frac{\sum_{\mathbf{a} \backslash(\mathbf{c}, \mathbf{d})} \mathcal{W}^{\prime} \frac{\sum_{\mathbf{v} \backslash(\mathbf{a}, \mathbf{b})} \mathcal{W} P(\mathbf{v})}{\sum_{\mathbf{v} \backslash \mathbf{b}} \mathcal{W} P(\mathbf{v})}}{\sum_{\mathbf{a} \backslash \mathbf{d}} \mathcal{W}^{\prime} \frac{\sum_{\mathbf{v} \backslash(\mathbf{a}, \mathbf{b})} \mathcal{W} P(\mathbf{v})}{\sum_{\mathbf{v} \backslash \mathbf{b}} \mathcal{W} P(\mathbf{v})}} & =\frac{\frac{\sum_{\mathbf{a} \backslash(\mathbf{c}, \mathbf{d}), \mathbf{v} \backslash(\mathbf{a}, \mathbf{b})} \mathcal{W}^{\prime} \times \mathcal{W} \times P(\mathbf{v})}{\sum_{\mathbf{v} \backslash \mathbf{b}} \mathcal{W} P(\mathbf{v})}}{\frac{\sum_{\mathbf{a} \backslash \mathbf{d}, \mathbf{v} \backslash(\mathbf{a}, \mathbf{b})} \mathcal{W}^{\prime} \times \mathcal{W} \times P(\mathbf{v})}{\sum_{\mathbf{v} \backslash \mathbf{b}} \mathcal{W} P(\mathbf{v})}} \\
& =\frac{\sum_{\mathbf{a} \backslash(\mathbf{c}, \mathbf{d}), \mathbf{v} \backslash(\mathbf{a}, \mathbf{b})} \mathcal{W}^{\prime} \times \mathcal{W} \times P(\mathbf{v})}{\sum_{\mathbf{a} \backslash \mathbf{d}, \mathbf{v} \backslash(\mathbf{a}, \mathbf{b})} \mathcal{W}^{\prime} \times \mathcal{W} \times P(\mathbf{v})} \\
& =P^{\mathcal{W} \times \mathcal{W}^{\prime}}(\mathbf{c} \mid \mathbf{b}, \mathbf{d})
\end{aligned}
$$

Lemma C. 4 (Marginalization of Weighted Distributions). For $\mathbf{C} \subseteq \mathbf{T}, \mathbf{T} \cap \mathbf{X}=\emptyset$, $\sum_{\mathbf{c}} P^{\mathcal{W}}(\mathbf{t} \mid \mathbf{x})=P^{\mathcal{W}}(\mathbf{t} \backslash \mathbf{c} \mid \mathbf{x})$.

Proof. We first note $\sum_{\mathbf{c}} P^{\mathcal{W}}(\mathbf{t}, \mathbf{x})=\sum_{\mathbf{c}} \sum_{\mathbf{v} \backslash(\mathbf{t}, \mathbf{x})} P^{\mathcal{W}}(\mathbf{v})=\sum_{(\mathbf{v} \backslash(\mathbf{t}, \mathbf{x})) \cup \mathbf{c}} P^{\mathcal{W}}(\mathbf{v})=$ $P^{\mathcal{W}}(\mathbf{t} \backslash \mathbf{c}, \mathbf{x})$. Consider the following:

$$
\sum_{\mathbf{c}} P^{\mathcal{W}}(\mathbf{t} \mid \mathbf{x})=\sum_{\mathbf{c}} \frac{P^{\mathcal{W}}(\mathbf{t}, \mathbf{x})}{P^{\mathcal{W}}(\mathbf{x})}=\frac{\sum_{\mathbf{c}} P^{\mathcal{W}}(\mathbf{t}, \mathbf{x})}{P^{\mathcal{W}}(\mathbf{x})}=\frac{P^{\mathcal{W}}(\mathbf{t} \backslash \mathbf{c}, \mathbf{x})}{P^{\mathcal{W}}(\mathbf{x})}=P^{\mathcal{W}}(\mathbf{t} \backslash \mathbf{c} \mid \mathbf{x})
$$

Lemma C. 5 (Justification of Line 8 in wID). For \mathbf{D} and \mathbf{D}_{i} (for $i=1,2, \cdots, K$) in Algo. 1 and $Q\left[\mathbf{D}_{i}\right]=P^{\mathcal{W}_{\mathbf{d}_{i}}}\left(\mathbf{d}_{i} \mid \mathbf{r}_{\mathbf{d}_{i}}\right)$, let $\mathcal{W} \equiv\left(\prod_{i=1}^{K} P^{\mathcal{W}_{\mathbf{d}_{i}}}\left(\mathbf{d}_{i} \mid \mathbf{r}_{\mathbf{d}_{i}}\right)\right) / P(\mathbf{d} \mid \mathbf{r})$ where $\mathbf{R} \equiv \mathbf{V} \backslash \mathbf{D}$. Then, $P(\mathbf{y} \mid d o(\mathbf{x}))=P^{\mathcal{W}}(\mathbf{y} \mid \mathbf{r})$.

Proof. We recall that

$$
\begin{aligned}
P^{\mathcal{W}}(\mathbf{v}) \equiv \mathcal{W} \cdot P(\mathbf{v}) & =\mathcal{W} \cdot P(\mathbf{d} \mid \mathbf{r}) P(\mathbf{r}) \\
& =\left(\prod_{i=1}^{K} P^{\mathcal{W}_{\mathbf{d}_{i}}}\left(\mathbf{d}_{i} \mid \mathbf{r}_{\mathbf{d}_{i}}\right)\right) / P(\mathbf{d} \mid \mathbf{r}) \cdot P(\mathbf{d} \mid \mathbf{r}) P(\mathbf{r}) \\
& =P(\mathbf{r}) \prod_{i=1}^{K} P^{\mathcal{W}_{\mathbf{d}_{i}}}\left(\mathbf{d}_{i} \mid \mathbf{r}_{\mathbf{d}_{i}}\right)
\end{aligned}
$$

Also,
$P^{\mathcal{W}}(\mathbf{r})=P^{\mathcal{W}}(\mathbf{v} \backslash \mathbf{d})=\sum_{\mathbf{d}} P^{\mathcal{W}}(\mathbf{v})=\sum_{\mathbf{d}} P(\mathbf{r}) \prod_{i=1}^{K} P^{\mathcal{W}_{\mathbf{d}_{i}}}\left(\mathbf{d}_{i} \mid \mathbf{r}_{\mathbf{d}_{i}}\right)=P(\mathbf{r}) \sum_{\mathbf{d}} \prod_{i=1}^{K} P^{\mathcal{W}_{\mathbf{d}_{i}}}\left(\mathbf{d}_{i} \mid \mathbf{r}_{\mathbf{d}_{i}}\right)=P(\mathbf{r})$.
Then,

$$
\begin{aligned}
& P(\mathbf{y} \mid d o(\mathbf{x}))=\sum_{\mathbf{d} \backslash \mathbf{y}} Q[\mathbf{D}]=\sum_{\mathbf{d} \backslash \mathbf{y}} \prod_{i=1}^{K} P^{\mathcal{W}_{\mathbf{d}_{i}}}\left(\mathbf{d}_{i} \mid \mathbf{r}_{\mathbf{d}_{i}}\right)=\frac{P(\mathbf{v} \backslash \mathbf{d})}{P(\mathbf{v} \backslash \mathbf{d})} \sum_{\mathbf{d} \backslash \mathbf{y}} \prod_{i=1}^{K} P^{\mathcal{W}_{\mathbf{d}_{i}}}\left(\mathbf{d}_{i} \mid \mathbf{r}_{\mathbf{d}_{i}}\right) \\
& =\sum_{\mathbf{d} \backslash \mathbf{y}} \frac{1}{P(\mathbf{v} \backslash \mathbf{d})} P(\mathbf{v} \backslash \mathbf{d}) \prod_{i=1}^{K} P^{\mathcal{W}_{\mathbf{d}_{i}}}\left(\mathbf{d}_{i} \mid \mathbf{r}_{\mathbf{d}_{i}}\right)=\sum_{\mathbf{d} \backslash \mathbf{y}} \frac{1}{P^{\mathcal{W}}(\mathbf{r})} P(\mathbf{v} \backslash \mathbf{d}) \prod_{i=1}^{K} P^{\mathcal{W}_{\mathbf{d}_{i}}}\left(\mathbf{d}_{i} \mid \mathbf{r}_{\mathbf{d}_{i}}\right)=\sum_{\mathbf{d} \backslash \mathbf{y}} \frac{1}{P^{\mathcal{W}}(\mathbf{r})} P^{\mathcal{W}}(\mathbf{v}) \\
& =\sum_{\mathbf{d} \backslash \mathbf{y}} \frac{1}{P^{\mathcal{W}}(\mathbf{r})} P^{\mathcal{W}}(\mathbf{v})=\sum_{\mathbf{d} \backslash \mathbf{y}} P^{\mathcal{W}}(\mathbf{d} \mid \mathbf{r})=P^{\mathcal{W}}(\mathbf{y} \mid \mathbf{r}) .
\end{aligned}
$$

C. 2 Proofs

Lemma C. 6 (Restated Lemma 11. Let a topological order over \mathbf{V} be $V_{1}<V_{2}<\cdots<V_{n}$. Suppose $Q[\mathbf{A}]$ is given by $Q[\mathbf{A}]=P^{\mathcal{W}}(\mathbf{a} \mid \mathbf{r})$ for some $\mathbf{R} \subseteq \mathbf{V}$ and weight function \mathcal{W}.

1. If \mathbf{W} is a C-component of $G_{\mathbf{A}}$, then $Q[\mathbf{W}]=P^{\mathcal{W} \times \mathcal{W}^{\prime}}\left(\mathbf{w} \mid \mathbf{r}^{\prime}\right)$, where $\mathbf{R}^{\prime} \equiv \mathbf{R} \cup$ $((\mathbf{A} \backslash \mathbf{W}) \cap A n(\mathbf{W}))$ and $\mathcal{W}^{\prime} \equiv \frac{P^{\mathcal{W}}((\mathbf{a} \backslash \mathbf{w}) \cap A n(\mathbf{w}) \mid \mathbf{r})}{\prod_{V_{i} \in(\mathbf{A} \backslash \mathbf{W}) \cap A n(\mathbf{W})} P^{\mathcal{W}}\left(v_{i} \mid \mathbf{v}^{(i-1)} \cap \mathbf{a} \cap A n(\mathbf{w}), \mathbf{r}\right)}$.
2. If $\mathbf{W} \subseteq \mathbf{A}$ satisfies $\mathbf{W}=A n(\mathbf{W})_{G_{\mathbf{A}}}$, then $Q[\mathbf{W}]=P^{\mathcal{W}}(\mathbf{w} \mid \mathbf{r})$.

Proof. First statement. Let P be the joint distribution compatible with G. For any subset of nodes $\mathbf{C} \subseteq \mathbf{V}$, let $G(\mathbf{C})$ denote the subgraph of G composing nodes in \mathbf{C}. Let $q(\mathbf{a}) \equiv Q[\mathbf{A}] \equiv$ $P(\mathbf{a} \mid d o(\overline{\mathbf{v}} \backslash \mathbf{a}))=P^{\mathcal{W}}(\mathbf{a} \mid \mathbf{r})$ denote a joint distribution over \mathbf{A}. We note that $q(\mathbf{a})$ is a valid distribution, since $\sum_{\mathbf{a}} q(\mathbf{a})=1$ and $q(\mathbf{a}) \geq 0$. Since $q(\mathbf{a}) \equiv P(\mathbf{a} \mid d o(\mathbf{v} \backslash \mathbf{a})), G_{\overline{\mathbf{V} \backslash \mathbf{A}}}(\mathbf{A})$ is a graph compatible with $q(\mathbf{a})$. For any nodes $\mathbf{B}, \mathbf{C} \subseteq \mathbf{A}$, we will note that $q(\mathbf{b} \mid d o(\mathbf{c}))$ denote the distribution over \mathbf{B} induced by not only fixing $\mathbf{V} \backslash \mathbf{A}=\mathbf{v} \backslash \mathbf{a}$ in G (which induced $q(\mathbf{a})$), but also fixing $\mathbf{C}=\mathbf{c}$ in G. That is, $q(\mathbf{b} \mid d o(\mathbf{c}))=P(\mathbf{b} \mid d o(\mathbf{v} \backslash \mathbf{a}, \mathbf{c}))$.

Let \mathbf{W} be a C-component of $G_{\mathbf{A}}$ (i.e., $G(\mathbf{A})$). We note that this \mathbf{W} is also a C-component of $G_{\overline{\mathbf{V} \backslash \mathbf{A}}}(\mathbf{A})$ since no edges between nodes in \mathbf{A} are cut. Now, consider $Q[\mathbf{W}] \equiv P(\mathbf{w} \mid d o(\mathbf{v} \backslash \mathbf{w}))$. We note the following equality holds:
$Q[\mathbf{W}] \equiv P(\mathbf{w} \mid d o(\mathbf{v} \backslash \mathbf{w}))=P(\mathbf{w} \mid d o(\mathbf{v} \backslash \mathbf{a}, \mathbf{a} \backslash \mathbf{w}))=q(\mathbf{w} \mid d o(\mathbf{a} \backslash \mathbf{w}))=q(\mathbf{w} \mid d o((\mathbf{a} \backslash \mathbf{w}) \cap A n(\mathbf{w})))$.
The equality $P(\mathbf{w} \mid \operatorname{do}(\mathbf{v} \backslash \mathbf{a}, \mathbf{a} \backslash \mathbf{w}))=q(\mathbf{w} \mid d o(\mathbf{a} \backslash \mathbf{w}))$ holds by the above discussion about the definition of $q(\cdot)$. The equality $q(\mathbf{w} \mid d o(\mathbf{a} \backslash \mathbf{w}))=q(\mathbf{w} \mid d o((\mathbf{a} \backslash \mathbf{w}) \cap A n(\mathbf{w})))$ holds since

$$
\begin{aligned}
q(\mathbf{w} \mid \operatorname{do}(\mathbf{a} \backslash \mathbf{w})) & =P(\mathbf{w} \mid \operatorname{do}(\mathbf{a} \backslash \mathbf{w}, \mathbf{v} \backslash \mathbf{a})) \\
& =P(\mathbf{w} \mid \operatorname{do}((\operatorname{An}(\mathbf{w}) \cap \mathbf{a} \backslash \mathbf{w}), \mathbf{v} \backslash \mathbf{a})) \\
& =q(\mathbf{w} \mid \operatorname{do}((\mathbf{a} \backslash \mathbf{w}) \cap \operatorname{An}(\mathbf{w})))
\end{aligned}
$$

where the third equality holds by the above discussion about the definition of $q(\cdot)$. The second equality holds by

$$
(\mathbf{W} \Perp(\mathbf{A} \backslash \mathbf{W}) \backslash A n(\mathbf{W}) \mid A n(\mathbf{W}) \cap(\mathbf{A} \backslash \mathbf{W}), \mathbf{V} \backslash \mathbf{A})_{G_{\overline{\mathbf{A} \backslash \mathbf{W}, \mathbf{V} \backslash \mathbf{A}}} .} .
$$

Specifically, in $G_{\overline{\mathbf{A} \backslash \mathbf{W}, \mathbf{V} \backslash \mathbf{A}}}$, for $W_{k} \in \mathbf{W}$ and $A_{j} \in(\mathbf{A} \backslash \mathbf{W}) \backslash A n(\mathbf{W})$, the only possible path between W_{k} and A_{j} is the path from A_{j} to W_{k}. However, such path is contradictory since A_{j} is not an ancestor of W_{k}. Then, by Rule 3 of $d o$-Calculus, the second equality holds.
We note that, in $G_{\overline{\mathbf{V} \backslash \mathbf{A}}}(\mathbf{A})$ (where the distribution $q(\mathbf{a})$ is compatible with), \emptyset satisfies mSBD criterion relative to $((\mathbf{A} \backslash \mathbf{W}) \cap A n(\mathbf{W}), \mathbf{W})$ by LemmaC.1. This means that, for the $q(\mathbf{a})$, the interventional distribution $q(\mathbf{w} \mid d o(\mathbf{a} \backslash \mathbf{w} \cap A n(\mathbf{w}))$) is given by the mSBD adjustment. Specifically, since since \emptyset satisfies mSBD criterion relative to $(\mathbf{A} \backslash \mathbf{W} \cap A n(\mathbf{W}), \mathbf{W})$ in $G_{\overline{\mathbf{V} \backslash \mathbf{A}}}(\mathbf{A})$ (where the graph $G_{\overline{\mathbf{V} \backslash \mathbf{A}}}$ induces the joint distribution $q(\mathbf{a})$, by Thm. C.2, $q(\mathbf{w} \mid \operatorname{do}(\mathbf{a} \backslash \mathbf{w} \cap A n(\mathbf{w})))=q^{\mathcal{W}^{\prime}}(\mathbf{w} \mid(\mathbf{a} \backslash \mathbf{w}) \cap$ $A n(\mathbf{w}))$ where $\mathcal{W}^{\prime} \equiv \frac{q((\mathbf{a} \backslash \mathbf{w}) \cap A n(\mathbf{w})}{\prod_{V_{i} \in(\mathbf{A} \backslash \mathbf{w}) \cap A n(\mathbf{w})} q\left(v_{i} \mid \mathbf{v}^{(i-1)} \cap \mathbf{A} \cap A n(\mathbf{w})\right)}$. Then, by Lemma C.3. given the fact that $q(\mathbf{a})=P^{\mathcal{W}}(\mathbf{a} \mid \mathbf{r})$,

$$
q^{\mathcal{W}^{\prime}}(\mathbf{w} \mid(\mathbf{a} \backslash \mathbf{w}) \cap A n(\mathbf{w}))=P^{\mathcal{W} \times \mathcal{W}^{\prime}}(\mathbf{w} \mid(\mathbf{a} \backslash \mathbf{w}) \cap A n(\mathbf{w}), \mathbf{r})
$$

where, by Lemma C. 3 .

$$
\begin{aligned}
\mathcal{W}^{\prime} & \equiv \frac{q((\mathbf{a} \backslash \mathbf{w}) \cap A n(\mathbf{w}))}{\prod_{V_{i} \in(\mathbf{A} \backslash \mathbf{W}) \cap A n(\mathbf{W})} q\left(v_{i} \mid \mathbf{v}^{(i-1)} \cap \mathbf{a} \cap A n(\mathbf{w})\right)} \\
& =\frac{P^{\mathcal{W}}((\mathbf{a} \backslash \mathbf{w}) \cap A n(\mathbf{w}) \mid \mathbf{r})}{\prod_{V_{i} \in(\mathbf{A} \backslash \mathbf{W}) \cap A n(\mathbf{W})} P^{\mathcal{W}}\left(v_{i} \mid \mathbf{v}^{(i-1)} \cap \mathbf{a} \cap A n(\mathbf{w}), \mathbf{r}\right)} .
\end{aligned}
$$

This completes the proof.
Second statement. Under the given condition, $Q[\mathbf{W}]=\sum_{\mathbf{a} \backslash \mathbf{w}} Q[\mathbf{A}]$ by [8, Lemma 3]. Therefore, $Q[\mathbf{W}]=\sum_{\mathbf{a} \backslash \mathbf{w}} P^{\mathcal{W}}(\mathbf{a} \mid \mathbf{r})=P^{\mathcal{W}}(\mathbf{w} \mid \mathbf{r})$.

Theorem C. 3 (Restated Theorem 1). A causal effect $P(\mathbf{y} \mid$ do $(\mathbf{x}))$ is identifiable if and only if $\mathrm{wID}(\mathbf{x}, \mathbf{y}, G, P)($ Algo. 1$]$ returns $P^{\mathcal{W}}(\mathbf{y} \mid \mathbf{r})$ such that $P(\mathbf{y} \mid$ do $(\mathbf{x}))=P^{\mathcal{W}}(\mathbf{y} \mid \mathbf{r})$.

Proof. Algo. 1 follows precisely Tian's algorithm (Alg. 2 in [8]) for identifying causal effects except that in Lines 3, 9, a.1, and a. 6 the Q-factors are expressed in the form of weighted distributions. The correctness of Lines 3, a.1, and a. 6 follows from Lemma 1. The correctness of Line 9 follows from Lemma C.5. Then the soundness and completeness of Algo. 1 follows from the soundness and completeness of Tian's algorithm [2].

Theorem C. 4 (Restated Theorem 2). Let $h^{*} \equiv \arg \min _{h \in \mathcal{H}} \mathcal{R}^{\mathcal{W}^{*}}(h)$, and $\left(\mathcal{W}_{m}, h_{m}\right) \equiv$ $\arg \min _{\mathcal{W} \in \mathcal{H}_{\mathcal{W}}, h \in \mathcal{H}} \mathcal{L}(\mathcal{W}, h)$, where $\mathcal{H}_{\mathcal{W}}$ is the model hypotheses class for \mathcal{W}. Suppose $\mathcal{H}_{\mathcal{W}}$ is correctly specified such that $\mathcal{W}^{*} \in \mathcal{H}_{\mathcal{W}}$. Then, h_{m} converges to h^{*} with a rate of $O_{p}\left(m^{-1 / 4}\right)$. Specifically, $\mathcal{R}^{\mathcal{W}^{*}}\left(h_{m}\right)-\mathcal{R}^{\mathcal{W}^{*}}\left(h^{*}\right) \leq O_{p}\left(m^{-1 / 4}\right)$.

Proof. We rewrite the objective function as follow:

$$
\begin{aligned}
& \mathcal{L}(\mathcal{W}, h) \\
& \equiv \widehat{\mathcal{R}}^{\mathcal{W}}(h)+\frac{\lambda_{h}}{m} C(h)+\sqrt{\frac{1}{m} \sum_{i=1}^{m}\left(\mathcal{W}\left(\mathbf{V}_{(i)}\right)-\mathcal{W}^{*}\left(\mathbf{V}_{(i)}\right)\right)^{2}+\frac{\lambda_{\mathcal{W}}}{m}\|\mathcal{W}\|_{2}} \\
& =\widehat{\mathcal{R}}^{\mathcal{W}}(h)+\underbrace{O_{p}\left(m^{-1}\right)}_{=\left(\lambda_{h} / m\right) C(h)}+\sqrt{\mathbb{E}_{P}\left[\left(\mathcal{W}\left(\mathbf{V}_{(i)}\right)-\mathcal{W}^{*}\left(\mathbf{V}_{(i)}\right)\right)^{2}\right]}+O_{p}\left(m^{-1 / 4}\right)+O_{p}\left(m^{-1 / 2}\right) \\
& =R^{\mathcal{W}}(h)+\sqrt{\mathbb{E}_{P}\left[\left(\mathcal{W}\left(\mathbf{V}_{(i)}\right)-\mathcal{W}^{*}\left(\mathbf{V}_{(i)}\right)\right)^{2}\right]}+O_{p}\left(m^{-1 / 4}\right)
\end{aligned}
$$

To see the above equality, let $A_{m} \equiv \frac{1}{m} \sum_{i=1}^{m}\left(\mathcal{W}\left(\mathbf{V}_{(i)}\right)-\mathcal{W}^{*}\left(\mathbf{V}_{(i)}\right)\right)^{2}$ and $\mu \equiv$ $\mathbb{E}_{P}\left[\left(\mathcal{W}\left(\mathbf{V}_{(i)}\right)-\mathcal{W}^{*}\left(\mathbf{V}_{(i)}\right)\right)^{2}\right]$. Then,

$$
P\left(\sqrt{m} \cdot\left|A_{m}-\mu\right| \geq t\right) \leq 2 \cdot \exp \left(-\frac{2 t^{2}}{c^{2}}\right)
$$

implying that $A_{m}-\mu=O_{P}\left(m^{-1 / 2}\right)$. Then, $\sqrt{A_{m}}=\sqrt{\mu+O_{P}\left(m^{-1 / 2}\right)}=\sqrt{\mu}+O_{P}\left(m^{-1 / 4}\right)$. Also, since $\frac{\lambda_{\mathcal{W}}}{m}\|\mathcal{W}\|_{2}=O_{P}\left(m^{-1}\right), \sqrt{\frac{\lambda_{\mathcal{W}}}{m}\|\mathcal{W}\|_{2}}=O_{P}\left(m^{-1 / 2}\right)$. This implies that $\mathcal{L}\left(\mathcal{W}^{*}, h\right)=$ $\mathcal{R}^{\mathcal{W}^{*}}(h)+O_{p}\left(m^{-1 / 4}\right)$.

Now, consider Prop. 1 with respect to m. Since $\log (m) \leq m^{-1 / 4}$ for $m \leq 10000$, we note

$$
F(p, m, \delta)=O\left((\log (m) / m)^{3 / 8}\right) \leq O\left(m^{3 / 32} / m^{-3 / 8}\right)=O_{P}\left(m^{-9 / 32}\right)
$$

Then, $m^{1 / 4} F(p, m, \delta)=O_{P}\left(m^{-1 / 32}\right)=O_{P}(1)$, implying that $F(p, m, \delta)=O_{P}\left(m^{-1 / 4}\right)$. Therefore, we can rewrite Prop. 1 with respect $\mathrm{O} m$ as $\mathcal{R}^{\mathcal{W}^{*}}(h) \leq \widehat{\mathcal{R}}^{\mathcal{W}}(h)+\mathbb{E}_{P}\left[\left|\mathcal{\mathcal { W } ^ { * }}-\mathcal{W}\right|\right]+O_{p}\left(m^{-1 / 4}\right)$. Then,

$$
\begin{aligned}
& \mathcal{R}^{\mathcal{W}^{*}}\left(h_{m}\right)-\mathcal{R}^{\mathcal{W}^{*}}\left(h^{*}\right) \\
& \leq \widehat{\mathcal{R}}^{\mathcal{W}_{m}}\left(h_{m}\right)+\mathbb{E}_{P}\left[\left(\mathcal{W}^{*}-\mathcal{W}_{m}\right)\right]+O_{p}\left(m^{-1 / 4}\right)-\mathcal{R}^{\mathcal{W}^{*}}\left(h^{*}\right) \\
& \leq \underbrace{\widehat{\mathcal{R}}^{\mathcal{W}_{m}}\left(h_{m}\right)+\sqrt{\mathbb{E}_{P}\left[\left(\mathcal{W}^{*}-\mathcal{W}_{m}\right)^{2}\right]}+O_{p}\left(m^{-1 / 4}\right)}_{=\mathcal{L}\left(\mathcal{W}_{m}, h_{m}\right)}+\mathbb{E}\left[\left|\mathcal{W}^{*}-\mathcal{W}_{m}\right|\right]-\sqrt{\mathbb{E}_{P}\left[\left(\mathcal{W}^{*}-\mathcal{W}_{m}\right)^{2}\right]}+O_{p}\left(m^{-1 / 4}\right)-\mathcal{R}^{\mathcal{W}^{*}}\left(h^{*}\right) \\
& =\mathcal{L}\left(\mathcal{W}_{m}, h_{m}\right)+\underbrace{\mathbb{E}\left[\left|\mathcal{W}^{*}-\mathcal{W}_{m}\right|\right]-\sqrt{\mathbb{E}_{P}\left[\left(\mathcal{W}^{*}-\mathcal{W}_{m}\right)^{2}\right]}}_{\leq 0 \text { By Hoelder's inequality }}+O_{p}\left(m^{-1 / 4}\right)-\underbrace{\mathcal{R}^{\mathcal{W}^{*}}\left(h^{*}\right)}_{=\mathcal{L}\left(\mathcal{W}^{*}, h^{*}\right)+O_{p}\left(m^{-1 / 4}\right)} \\
& \leq \underbrace{\mathcal{L}\left(\mathcal{W}_{m}, h_{m}\right)-\mathcal{L}\left(\mathcal{W}^{*}, h^{*}\right)}_{\leq 0 \text { by definition of }\left(h_{m}, \mathcal{W}_{m}\right)}+O_{p}\left(m^{-1 / 4}\right)+O_{p}\left(m^{-1 / 4}\right) . \\
& \leq O_{p}\left(m^{-1 / 4}\right) \text {. }
\end{aligned}
$$

This completes the proof.

Theorem C. 5 (Restated Theorem 3). Let $m=|\mathcal{D}|$ and $n \equiv|\mathbf{V}|$. Assume all weights satisfy $0<\mathcal{W}<c$ for some constant $c>0$. Let $T_{1}(m)$ denote the time complexity for estimating $\widehat{P}\left(v_{i} \mid \cdot\right)$ from sample $\mathcal{D} \sim P(\mathbf{v})$ for $V_{i} \in \mathbf{V}$. Let K denote the number of C-factors in G_{D} (in Algo. 1). Let $T_{2}(m)$ denote the time complexity of minimizing $\mathcal{L}_{\mathcal{W}}$ and \mathcal{L}_{h}. Then, Algo. 2 runs in $O\left(\operatorname{poly}(n)+n K\left(m c+n T_{1}(m)\right)+T_{2}(m)\right)$ time, where $O(\operatorname{poly}(n))$ is for running Algo. I $O\left(n K\left(m c+n T_{1}(m)\right)\right)$ for evaluating $\widehat{\mathcal{W}^{*}}$.

Proof. Algo. 1 is a precise replication of the identification algorithm in [8] which is known to have time complexity $O(\operatorname{poly}(n))$. That evaluating $\widehat{\mathcal{W}^{*}}$ takes $O\left(n K\left(m c+n T_{1}(m)\right)\right)$ is proved in Lemma B.4. Time complexities to optimize the loss functions $\mathcal{L}_{\mathcal{W}}, \mathcal{L}_{h}$ are $T_{2}(m)$. This completes the proof.

D Further Details in Experiments

Tuning hyperparameters. Throughout the experiments, the hyperparameters $\lambda_{\mathcal{W}}, \lambda_{h}$ in Eq. (6) are chosen using the grid-search method [6]. Specifically, the hyperparameter $\lambda_{\mathcal{W}}$ is chosen as follows: (1) Split the sample as $\mathcal{D}=\mathcal{D}_{t r} \cup \mathcal{D}_{t e}$ at random; (2) For each fixed $\lambda_{k} \in\{2,4, \cdots, 50\}$, learn $\mathcal{W}_{k} \equiv \arg \min _{\mathcal{W}^{\prime}} \mathcal{L}_{\mathcal{W}}\left(\mathcal{W}^{\prime}, \lambda_{k} ; \widehat{\mathcal{W}}^{*}\right)$ from $\mathcal{D}_{t r}$ and compute $\epsilon_{k, t e} \equiv \mathcal{L}_{\mathcal{W}}\left(\mathcal{W}_{k}, \lambda_{k} ; \widehat{\mathcal{W}}^{*}\right)$ on $\mathcal{D}_{t e}$; and (3) Choose $k^{\prime} \equiv \arg \min _{k}\left\{\epsilon_{k, t e}\right\}_{k \in\{2,4, \cdots, 50\}}$ and set $\lambda_{\mathcal{W}} \equiv \lambda_{k^{\prime}}$. With the fixed learned \mathcal{W}, we choose λ_{h} analogously.

D. 1 Structural Causal Models Used in the Experiments

Example 1. A data generating process written in R is given in the following:

```
varval = 2
c1 = rnorm(D,1,1)
c2 = rnorm(D, -2,1)
cz = rnorm(D,2,1)
U1mean = -8; U1Var = 10
U1 = rnorm(N,U1mean,U1Var)
U1.intv = rnorm(Nintv,U1mean,U1Var)
U2mean = 6; U2Var = 8
U2 = rnorm(N,U2mean, U2Var)
U2.intv = rnorm(Nintv,U2mean,U2Var)
fW = function(N,U1,U2){
    Uw = rnorm(N,0,0.5)
    W = matrix (0, ncol=D, nrow=N)
    for (idx in 1:D){
        W[,idx] = rbinom(N, size=1, prob=inv.logit(c1[idx]*UU1+c2[idx]*U2))
    }
    W = data.frame(W)
    colnames(W) = paste('W', 1:D, sep ='")
    return(W)
}
fZ = function(N,W){
    Uz = rnorm(N,0,0.5)
    Wmat = as.matrix (2*W-1)
    czmat = as.matrix(cz)
    Zval = inv.logit(Wmat %*% czmat)
    Z = round(inv.logit(-1*Zval + Uz-1 ))
```

```
    return(Z)
}
fX = function(N,U1,Z){
    Ux = rnorm(N,1,6)
    X = rbinom(N, size=1,inv.logit(1*U1 - 2*Z + Ux - 5 ))
    return(X)
}
fY = function(N, U2,X){
    Uy = rnorm(N, -2,1)
    ind.X = 2*X - 1
    Y = rbinom(N, size=1,inv.logit (0.5*U2 - 2*ind.X + Uy))
    return(Y)
}
```

Example 2. A data generating process written in R is given in the following:

```
varval = 1
c1 = \boldsymbol{rnorm}(D,-2,0.5)
c2 = rnorm(D,1,0.5)
cx = rnorm(D,2,0.5)
cz = rnorm(D, -0.8,0.5)
cy = rnorm(D, 1.5,0.5)
U1 = rnorm(N,0, varval)
U2 = rnorm(N,0, varval)
U3 = rnorm(N,0,varval)
U1intv = rnorm(Nintv,0, varval)
U2intv = rnorm(Nintv,0, varval)
U3intv = rnorm(Nintv,0, varval)
fW = function(N,U1,U2){
    Uw}=\operatorname{rnorm}(\textrm{N},0,0.5
    W}=\operatorname{matrix}(0,ncol=D, nrow=N
    for (idx in 1:D){
        W[,idx] = rbinom(N, size=1, prob=inv. logit(c1[idx]*U1+c2[idx]*U2 +Uw))
    }
    W = data.frame(W)
    colnames(W) = paste('W', 1:D, sep=" ")
    return(W)
}
fX = function(N,W,U1,U3){
    Ux = rnorm(N,0,0.5)
    Wmat = as.matrix (2*W-1)
    cxmat = as.matrix(cx)
    Wval = inv.logit(Wmat %*% cxmat)
    X = rbinom(N, size=1,inv.logit(-1*Wval - 2*U1 + 0.5*U3*Wval + Ux - 2*U1*U3 ))
    return(X)
}
fZ = function(N,W,X){
    Uz = rnorm(N,0,1)
    Wmat = as.matrix (2*W-1)
    czmat = as.matrix(cz)
    Wval = inv.logit(Wmat %*% czmat)
    Z = rbinom(N,size=1,inv.logit(1*Wval - 2*(2*X-1) + Uz ))
    return(Z)
}
fY = function(N, U2,U3,Z,W){
    Uy = rnorm(N,0,0.5)
    Wval = myXOR(W)
    Y = rbinom(N, size=1,inv.logit(-U3-U2+Z-10*Wval+1))
    return(Y)
}
```

Example 3. A data generating process written in R is given in the following:

```
c.z.1 = rnorm(D, -2,0.5); c.z.2 = rnorm(D,1,0.5); c.z.3 = rnorm(D,0,1)
c.w.1 = rnorm(D,2,0.5); c.w.2 = rnorm(D, -1,0.5) ; c.w.3 = rnorm(D,1,0.5)
cx = rnorm(D,2,0.5); cr = rnorm(D, -1,1); cz = rnorm(D, -2,0.3)
U1 = \boldsymbol{rnorm}(N, -1,varval); U2 = rnorm(N, -0.5, varval);
U3 = rnorm(N,0.5, varval); U4 = rnorm(N,1, varval)
fW = function(N,U1, U2){
    Uw = rnorm(N,0,0.5)
    W = matrix (0, ncol=D, nrow=N)
    for (idx in 1:D){
        W[,idx] = rbinom(N, size=1,prob=inv.logit(c.w.1[idx]**U1+c.w.2[idx]*U2 + Uw))
    }
    W = data.frame (W)
    colnames(W) = paste('W', 1:D, sep="'")
    return(W)
}
fX = function(N,W,U1,U3){
    Ux = rnorm(N,0,0.5)
    Wmat = as.matrix (2*W-1)
    cxmat = as.matrix(cx)
    Wval = inv.logit(Wmat %*% cxmat)
    X = rbinom(N, size=1,inv.logit(-1*Wval + -0.5*U1 - 0.2*U3 + Ux-2 ))
    return(X)
}
fR = function(N,W,U4){
    Ur = rnorm(N,0,0.5)
    Wmat = as.matrix (2*W-1)
    crmat = as.matrix(cr)
    Wval = inv.logit(Wmat %*% crmat)
    R= rbinom(N, size=1,inv.logit(-1*Wval - 1.2*U4 + Ur - 2))
    return(R)
}
fZ = function(N,W,X,R,U4){
    Uz = rnorm(N,0,0.5)
    Wmat = as.matrix (2*W-1)
    czmat = as.matrix(cz)
    Wval = inv.logit(Wmat %*% czmat)
    Z = rbinom(N,size=1,inv.logit (0.5*Wval+U4 + 0.5*(2*X-1) -
    0.9*(2*R-1) + Uz-1 - log(abs(Wval)+1) ))
    return(Z)
}
fY = function(N,R,Z,U2,U3){
    Uy = rnorm(N,0,0.5)
    Y}=\operatorname{rbinom}(N,\mathrm{ size = 1, inv.logit ( - % * (2*R-1) *Z +
    0.5*(2*Z-1)*\operatorname{log}(\mathbf{abs}(\textrm{U}2*\textrm{U}3)+1)-
    R*U4- Uy +1))
    return(Y)
}
```


D. 2 Additional Experimental Results

In this section, we provide experimental results of evaluating the proposed WERM based estimators against Plug-in in Examples 1, 2, and 3 for $D \equiv|W| \in\{5,10\}$.
Example 1 (Fig. $\mathbf{1 b}$). We test on estimating $\mathbb{E}[Y \mid d o(x)]$ with $D \in\{5,10\}$ where the causal effect $P(y \mid d o(x))$ is given by Eq. A.1. The MAAE plots are given in Fig. D.1a D.1d. We observe that the WERM-based methods (WERM-ID/WERM-ID-R) significantly outperform Plug-in.

Figure D.1: (Top) MAAE plots comparing proposed WERM based estimators (WERM-ID and WERM-ID-R) with Plug-in on $D=5$. (Bottom) Plots on $D=10$.

Example 2 (Fig. 2a). We test on estimating $\mathbb{E}[Y \mid d o(x)]$ with $D \in\{5,10\}$ where the effect $P(y \mid d o(x))$ is given by Eq. A.2. The MAAE plots are given in Fig. D.1b D.1e We observe that the WERM-based methods (WERM-ID/WERM-ID-R) perform on par with Plug-in.
Example 3 (Fig. 2b). We test on estimating $\mathbb{E}[Y \mid d o(x, r)]$ with $D \in\{5,10\}$ where $P(y \mid d o(x, r))$ is given by Eq. (A.3). The MAAE plots are given in Fig. (D.1c|D.1f). We note that WERM-ID-R significantly outperforms WERM-ID, and both significantly outperform Plug-in.

D. 3 Comparison with potential outcome frameworks (For Reviewer 3)

Figure D.2: (For Reviewer 3) MAAE plots comparing the proposed vs. potential outcome based estimator for Example $(1,2,3)$ with $D=15$. Shades are standard deviations.

In this section, we compare the proposed estimator with the potential-outcome (PO) based estimator (specifically, the inverse probability weighting estimator) to address the question of Reviewer 3: "I am a bit curious about the comparison results with some recent causal inference methods under PO framework if simply seeing the whole other variables $\mathbf{V} \backslash\{\mathbf{X}, \mathbf{Y}\}$ as observed confounders." Comparison examples are given in Fig. (D.2a|D.2b|D.2c). As expected, the performances of the PO framework based estimator are inferior to the proposed estimator ('WERM-ID-R'). This result implies adjusting covariates without taking into account the causal graph might yield inaccurate estimates of the causal effect.

References

[1] J. Helske, S. Tikka, and J. Karvanen. Estimation of causal effects with small data under implicit functional constraints. arXiv preprint arXiv:2003.03187, 2020.
[2] Y. Huang and M. Valtorta. On the completeness of an identifiability algorithm for semi-markovian models. Annals of Mathematics and Artificial Intelligence, 54(4):363-408, 2008.
[3] Y. Jung, J. Tian, and E. Bareinboim. Estimating causal effects using weighting-based estimators. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, 2020.
[4] S. Lee and E. Bareinboim. Causal effect identifiability under partial-observability. In Proceedings of the 37th International Conference on Machine Learning, 2020.
[5] J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, New York, 2000. 2nd edition, 2009.
[6] J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel. Trust region policy optimization. In Proceedings of the 32nd International Conference on International Conference on Machine Learning-Volume 37, pages 1889-1897, 2015.
[7] J. Tian and J. Pearl. On the testable implications of causal models with hidden variables. In Proceedings of the 18th conference on Uncertainty in artificial intelligence, pages 519-527. Morgan Kaufmann Publishers Inc., 2002.
[8] J. Tian and J. Pearl. On the identification of causal effects. Technical Report R-290-L, 2003.

