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Abstract

Self-supervised depth estimators have recently shown results comparable to the
supervised methods on the challenging single image depth estimation (SIDE) task,
by exploiting the geometrical relations between target and reference views in the
training data. However, previous methods usually learn forward or backward image
synthesis, but not depth estimation, as they cannot effectively neglect occlusions be-
tween the target and the reference images. Previous works rely on rigid photometric
assumptions or on the SIDE network to infer depth and occlusions, resulting in
limited performance. On the other hand, we propose a method to “Forget About the
LiDAR” (FAL), with Mirrored Exponential Disparity (MED) probability volumes
for the training of monocular depth estimators from stereo images. Our MED repre-
sentation allows us to obtain geometrically inspired occlusion maps with our novel
Mirrored Occlusion Module (MOM), which does not impose a learning burden
on our FAL-net. Contrary to the previous methods that learn SIDE from stereo
pairs by regressing disparity in the linear space, our FAL-net regresses disparity by
binning it into the exponential space, which allows for better detection of distant
and nearby objects. We define a two-step training strategy for our FAL-net: It
is first trained for view synthesis and then fine-tuned for depth estimation with
our MOM. Our FAL-net is remarkably light-weight and outperforms the previous
state-of-the-art methods with 8× fewer parameters and 3× faster inference speeds
on the challenging KITTI dataset. We present extensive experimental results on
the KITTI, CityScapes, and Make3D datasets to verify our method’s effectiveness.
To the authors’ best knowledge, the presented method performs the best among all
the previous self-supervised methods until now.

1 Introduction

Single Image Depth Estimation (SIDE) is a critical computer vision task that has been pushed
forward by the recent advances in deep convolutional neural networks (DCNNs). In particular, the
self-supervised SIDE methods, which exploit geometrical dependencies in the training data, have
shown promising results [11, 12, 31], even compared to those of the methods that are supervised with
depth ground-truth [2,3,17,30]. However, the previous self-supervised SIDE methods [11,12,31] fail
because they are not trained directly for depth estimation, but indirectly for view synthesis. In these
methods, the occluded regions among the training images prevent them from learning precise depth.

We present a self-supervised method that can accurately learn the SIDE with our novel Mirrored
Exponential Disparity (MED) probability volumes. We show that our self-supervised SIDE method
achieves superior performance than the state-of-the-art (SOTA) self-, semi- and fully-supervised meth-
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Figure 1: Our proposed FAL-net with and without our novel Mirror Occlusion Module (MOM).

ods on the challenging KITTI [5] dataset. Hence, we propose to “Forget About the LiDAR”(FAL), or
3D laser scanning, for the supervised training of SIDE DCNNs. We recognize that instead of focusing
our efforts on developing unnecessary complex (and large) DCNN architectures, it is more worthwhile
to focus on loss functions and training strategies that can better exploit the geometrical dependencies
in the data for effective self-supervision. Our network, which we call FAL-net, incorporates our
proposed MED Probability Volumes into SIDE and achieves higher performance than all the most
recent SOTA methods of [11, 12], with almost 8× fewer model parameters. Moreover, our proposed
method performs inference of full-resolution depth maps more than 3× faster than [11,12]. The main
contributions of our work are summarized as follows:

1. A novel Mirrored Occlusion Module (MOM), which is a multi-view occlusion mask generation
module. The generated masks are very realistic and are used to filter the invalid image regions due
to parallax for two images with known (or estimated) camera positions (see Fig.1-(a)).

2. A new two-stage training strategy: Firstly, we train our FAL-net for stereoscopic view synthesis
penalizing the synthetic right-view in all image regions (see Fig.1-(b)); Secondly, we train our
FAL-net for SIDE using our MOM to remove the burden of learning the synthesis of right-occluded
contents which are not related to depth, and to provide self-supervision signals for the left-occluded
regions which are ignored in the photometric reconstructions (see Fig.1-(c)).

3. We shed light on the effectiveness of Mirrored Exponential Disparity (MED) representations
for self-supervised SIDE. This small change from the linear to the exponential domain makes our
FAL-net, even without MOM, perform surprisingly well, compared to the current SOTA methods.

In the following section, we quickly review the most recent related works, followed by our method in
Section 3, and our experimental results in Section 4. We conclude our work in Section 5.

2 Related Works

Many recent works have tackled the SIDE task. These can be divided into supervised methods [2, 3,
15, 17, 30], which use the hard-to-obtain depth ground-truth, and the self-supervised methods, which
usually learn SIDE from left-right (LR) stereo pairs [7–9, 20, 22, 26, 31, 32] or video [6, 11, 12, 34, 35].

2.1 Supervised Methods

Among the top-performing fully-supervised SIDE methods, we can find the works of [3, 17]. Fu et al.
in their DORN [3] proposed to learn SIDE not as a regression task, but as a classification task by
discretizing depth predictions and ground-truths (GTs) in N intervals (quantized levels). On the other
hand, Luo et al. [17] proposed to train a SIDE network with both depth GT and stereo pairs. They
first synthesized a right-view from a left-view with a Deep3D-like [33] network, and then, similar
to [18], trained a stereo matching network in a fully-supervised manner.

2.2 Unsupervised Methods

Learning to predict depth without labels is a powerful concept, as the commodity cameras are not
limited by resolution nor distance as much as the expensive LiDAR equipment. Learning depth in a
self-supervised fashion is possible, thanks to the geometrical relationships between multiple captures
of the same scene. For the stereo case, some of the most prominent recent works include [22, 26, 31].
For the video case, the works of [10–12] are among the top-performing methods.

For the stereo case, Poggi et al. [22] proposed learning from a trinocular setup with center (C), left
(L), and right (R) views. Their 3Net [22] is trained with an interleaved protocol and has two decoders
to produce C↔L and C↔R respectively. During inference, the final center disparity is obtained by
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combining CL and CR disparities following the post-processing in [7]. On the other hand, the recent
works of Tosi et al. [26] and Watson et al. [31] explored incorporating classical stereo-disparity
estimation techniques, such as semi-global matching (SGM), as additional supervision for the SIDE
task. In these works, the SGM proxy labels are distilled either by LR-consistency checks [26] or by
analyzing the photometric reconstruction errors [31].

For the monocular video case, the work of Gordon et al. [10] proposed to learn not only camera
pose and depth (in a similar way as in the early work of Zhou et al. [35]), but also camera intrinsics
and lens distortion. Additionally, a segmentation network was used to predict and potentially ignore
likely-moving objects (truck, bike, car, etc.), as these do not contribute to the learning process. On
the other hand, Guizilini et al. proposed Pack-net [11], which is a powerful auto-encoder network
with ∼120M parameters, and 3D packing and unpacking modules. These modules utilize sub-pixel
convolutions and deconvolutions [24] instead of striding or pooling, and process the resulting channels
with standard 3D and 2D convolutions. Learning from video is carried out in a similar way to [6],
with an optional velocity supervision loss for scale-aware structure-from-motion. Supported by a
pre-trained semantic segmentation network and a PackNet [11] backbone, the later work of Guizilini
et al. [12] also learns from videos. Their method injects segmentation-task features into the decoder
side of their network, which helps to generate structurally better predictions.

3 Method

It has been shown that DCNNs can learn to predict depth from a single image in a self-supervised
manner when two or more views with known (or estimated) camera positions are available [4, 6–9,
11, 20, 22, 32, 35]. Learning is commonly carried out by minimizing reconstruction errors between
depth-guided synthesized images and available views. However, reducing such an objective loss
function involves estimating the contents in the occluded regions, which degrades the networks’
performance on the depth estimation task. Previous works have attempted to handle such occluded
areas by learning uncertainty masks [8, 35], analyzing the photometric reconstruction errors during
training time [6, 10–12, 32], and by letting the network hallucinate the occluded regions in the image
synthesis task [9, 33]. All these methods fail in effectively making the occluded regions transparent
to the networks, as the geometrical dependencies of the given views are not taken into account.
Moreover, these methods become overloaded with the task of generating such uncertainty masks
or occluded contents, thus leading to the waste of their learning capacities for depth estimation
during training time. To solve this issue, our FAL-net with Mirrored Exponential Disparity (MED)
probability volumes and our new two-step training strategy are proposed.

3.1 Network Architecture

Before delving into our training strategy, it is worth to review our simple, yet effective FAL-net
architecture with Mirrored Exponential Disparity (MED) probability volumes. The FAL-Net is a
6-stage auto-encoder with one residual block after each strided convolution stage in the encoder
side and skip-connections between the encoder and the decoder. More details can be found in the
Supplemental. Our FAL-net maps a single left-view image IL to a N -channel disparity logit volume
DLL, f : IL 7→ DLL. DLL can be passed through a softmax operation along the channel axis to obtain
the left-view MED probability volume DPLL . A sum of the N channels of DPLL , weighted by the
exponential disparity level value dn, reveals the final predicted disparity map D′L, as given by

D′L =

N∑
n=0

dnDPLLn
(1)

dn = dmaxe
ln
dmax
dmin

(
n

N
−1

)
(2)

where dmin and dmax are the minimum and maximum disparity hyper-parameters respectively.
Each n-channel of DLL can be warped (shifted) into the right view camera by the warping operation
g(·, dn)L→R, and the resulting N -channel stack soft-maxed along the channel axis to obtain the
right-from-left MED probability volume DPRL . The element-wise multiplication, denoted by �, of
DPRL with equally warped N versions of IL, followed by a sum-reduction operation, produces a
synthetic right view I′R. This process is shown in the top-left of Fig. 3 and is described by

I′R =

N∑
n=0

g (IL, dn)L→R � DPRLn
(3)
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Figure 2: Effects of exponential disparity discretization.

The resulting left view depth D′L and synthetic right view I′R can be used to train the FAL-net in a
self-supervised fashion. Still, more importantly, the MED probability volumes (DPLL , DPRL , DPRR ,
and DPLR ) can be used in our novel Mirrored Occlusion Module (MOM) for accurate SIDE learning.

3.1.1 Exponential Disparity Discretization

Disparity probability volumes can be understood as the kernel elements of adaptive convolutions [9]
or as a way of depth discretization [3]. When interpreted as adaptive convolutions for the task of new
view synthesis as in [9, 17, 33], it might be reasonable to use linear quantization disparity levels as
they produce equally spaced kernel sampling positions. However, due to the inverse relation between
disparity and depth, linear quantization of disparity implies that most sampling positions will be used
for the very close-by objects, as depicted with the orange curve in Figure 2-(a). Linear quantization
in depth units is also not adequate, as it assigns very few sampling positions for the very close-by
objects as depicted with the blue curve in Fig. 2-(a). In a similar spirit to [3], we propose exponential
disparity discretization, which is described by Eq. 2 and depicted in Figure 2-(a) in yellow and
gray curves for N = 49 and N = 33 levels respectively. The effect of training our FAL-net with
33-linear, 33-exponential, and 49-exponential disparity quantization levels is shown in Fig. 2-(b,c,d)
respectively. In contrast with [3] our MED probability volumes are allowed to take any value from 0
to 1 (guided by the channel-wise softmax), as we do not impose a one-hot encoding classification
loss. This freedom allows our MED probability volumes to softly blend when computing the final
disparity map, which helps in obtaining higher accuracy than [3] with fewer quantization levels.

3.2 Training Strategy

We define a two-step training strategy. In the first step, we train our FAL-net for view synthesis
with l1, perceptual [14], and smoothness losses, and keep a fixed copy of the trained model. In the
second step, enabled by our Mirrored Occlusion Module, we fine-tune our FAL-net for inverse depth
(disparity) estimation with an occlusion-free reconstruction loss, smoothness loss, and a “mirror loss”.
Our mirror loss uses a mirrored disparity prediction D′LM , generated by the fixed model, to provide
self-supervision only to the regions that are occluded in the right view but visible in the left view.

3.2.1 Mirrored Occlusion Module

Our novel Mirrored Occlusion Module (MOM) is a multi-view occlusion mask generation module
which allows our FAL-net to directly learn SIDE by cross-generating occlusion maps from the MED
probability distributions of two training images with known (or estimated) camera positions. These
generated occlusion maps get improved as the network learns better depth. Our second training step
with the MOM is depicted in Figure 3. At each iteration, the FAL-net runs the forward pass for each
left and right view to obtain the MED probability volumes DPLL , DPRL , DPRR , and DPLR . In our MOM,
all the channels of each probability volume are warped to their opposite camera views by g(·, dn)
correspondingly, and reduced to one single channel via summation to give rise to four sub-occlusion
masks (two for each input view). The sub-occlusion masks that are aligned to their respective input
view are more detailed, and can be further refined by an element-wise multiplication with their
homologous (or “mirror”) sub-occlusion generated by the opposite view, as can be observed in the
bottom of Fig. 3. These operations yield the two final occlusion masks OL and OR. The occlusion

4



Figure 3: Our proposed training strategy and novel Mirrored Occlusion Module (MOM).

masks can be given as a function of DPLL and DPLR by (OL is described by swapping R↔L)

OR = max

[
N∑
n=0

g
(

DPLLn
, dn

)
L→R

]
�

[
N∑
n=0

g
(

DPLRn
, dn

)
L→R

]
, 1 (4)

Please note that the sum-reduction operation on the sub-occlusion masks is not bounded between 0
and 1, as the planes of the probability distributions are first warped (shifted) to the target view by g(·)
in Eq. (4). This shifting not only generates “holes”, which are the occluded regions, but also areas
where the summation is > 1. The latter is the reason why the “max” operator (not shown in Fig. 3) is
applied to cap the final occlusion masks OL and OR between 0 and 1.

Also note that OL and OR are both needed for training on depth estimation. For a left input view
IL, OR is used to prevent the network from learning view synthesis, as OR effectively removes
right-occluded contents that are only visible in the right view. On the other hand, OL, in combination
with a mirrored disparity estimate D′LM , is used to provide self-supervision signals to the output
disparity values corresponding to the left-occluded regions that are only visible in the left view, as
shown in the top-right of Fig. 3. The dark regions in OL (not visible in the right view) are not affected
by the photometric reconstruction losses and often result in depth artifacts, as can be observed in Fig.
1-(b). D′LM is obtained by feeding the fixed FAL-net with a horizontally flipped version of IL, and
flipping the output disparity again. It is well-known that this operation is equivalent to making the
network treat IL as the right view, thus generating artifacts on the right-side instead of the left-side
of the objects [7, 9, 20, 22]. Note that contrary to [20, 22], the contribution of the fixed FAL-net
through D′LM is weighted by 1 − OL, which prevents the FAL-net under training from learning
over-smoothness.

3.2.2 Loss Functions

The total loss for learning inverse depth, as used in the second step of training, is given by:

l =
1

2
(lLrec + lRrec + lLm + lRm + αdsl

L
ds + αdsl

R
ds) (5)

where the total loss is divided by 2 as the network runs on the left and right views. αds weights the
contribution of the smoothness loss. αds was empirically found effective when set to 0.0008 during
the first training step and doubled to 0.0016 in the second step of MOM fine-tuning.

Occlusion-free reconstruction loss. The combination of l1 and perceptual loss [14] has shown to be
effective for multiple tasks that involve image reconstruction or view synthesis [9, 19, 36]. We adopt
this combination to enforce a similarity between the training views and their synthetic counterparts.
The first 3 maxpool layers, denoted by φl(·), from the pre-trained VGG19 [25] on the ImageNet
classification task were used on our occlusion-free reconstruction loss, which is given by

lRrec = ||O
R � (I′R − IR)||1 + αp

3∑
l=1

||φl(OR � I′R + (1−OR)� IR)− φl(IR)||22 (6)
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Table 1: Ablation studies on KITTI [5] (K). CS→K: Trained on CS and re-trained on K. K+CS:
Concurrent K and CS training. #Par: Parameters in millions. K+20e: fine tuned with +20 epochs

# Methods data #Par abs rel↓ sq rel↓ rmse↓ rmselog ↓ a1 ↑ a2 ↑ a3 ↑
7 FAL-netB49 K+CS 17 0.071 0.287 2.905 0.109 0.941 0.990 0.998

FAL-netB49 K 17 0.075 0.298 2.905 0.112 0.937 0.989 0.997
FAL-netB33 K 17 0.076 0.304 2.890 0.112 0.938 0.989 0.997
FAL-netA33 K 6.6 0.085 0.367 3.161 0.124 0.924 0.986 0.997
FAL-netB49 CS 17 0.112 0.559 3.950 0.158 0.876 0.974 0.993

6 FAL-netB33 (scratch) K 17 0.078 0.330 2.950 0.113 0.938 0.989 0.997
5 FAL-netB33 w/o MOM K+20e 17 0.081 0.349 3.259 0.120 0.928 0.987 0.997
4 FAL-netB49 w/o MOM K+CS 17 0.074 0.318 3.086 0.114 0.935 0.989 0.997

FAL-netB49 w/o MOM CS→K 17 0.085 0.391 3.229 0.125 0.924 0.985 0.996
FAL-netB49 w/o MOM CS 17 0.127 0.721 4.406 0.179 0.845 0.961 0.988

3 FAL-netB49 w/o MOM K 17 0.076 0.331 3.167 0.116 0.932 0.988 0.997
2 FAL-netA33 w/o MOM K 6.6 0.087 0.386 3.303 0.127 0.921 0.986 0.997

FAL-netB33 w/o MOM K 17 0.079 0.329 3.033 0.116 0.933 0.988 0.997
FAL-netC33 w/o MOM K 26 0.080 0.344 3.184 0.119 0.928 0.987 0.997

1 FAL-netBL33 w/o MOM K 17 0.109 0.890 6.118 0.190 0.845 0.950 0.982

where � is the hadamard product. Note that OR blends I′R with IR to be fed “occlusions-free” to
the VGG19. αp roughly balanced the contribution between the l1 and perceptual losses and was
empirically set to αp=0.01 for all our experiments. See Supplemental for results on αp=0. Setting
OR=OL=1 yields the vanilla reconstruction loss used in the first step of learning view synthesis.

Edge-preserving smoothness loss. We adopt the widely used edge-preserving smoothness loss
[7, 8, 11]. In our FAL-net, this term prevents the network from learning depth distributions that would
give rise to “too much occlusions” in our MOM. In contrast with the previous works, we add a
parameter γ = 2 to regulate the amount of edge preservation.

lLds = ||∂xD′L � e−γ|∂xIL|||1 + ||∂yD′L � e−γ|∂y IL|||1 (7)

Mirror loss. This term provides self-supervision signals to the visible contents in the left view that
are occluded in the right view, from a pass of the fixed FAL-net on a mirrored IL. As can be noted
from OL in Fig. 3, the contribution of the mirrored disparity map D′LM is very limited, and given by

lLm = (1/max(D′LM ))||(1−OL)� (D′L − D′LM )||1 (8)

where max(D′LM ) is the maximum disparity value in D′LM that weights down the mirror loss.

4 Experiments and Results

Experiments were mainly conducted on the benchmark dataset, KITTI [5], which contains stereo
images captured from a driving perspective with projected 3D laser scanner pseudo-ground-truths.
For training, the widely used Eigen train split [2] was adopted, which consists of 22,600 training LR
pairs. Using the metrics defined in [2], we evaluated our models on the two Eigen test split datasets:
the original [2] and the improved versions [28], consisting of 697 and 652 test images respectively.
We also trained and evaluated our FAL-net on the high-resolution CityScapes [1] driving dataset and
on the Make3D [23] dataset, respectively, to challenge the generalization power of our method.

4.1 Implementation Details

All our models were trained with the Adam optimizer with default betas with a batch size of 8 (4 left,
4 right). In the first training step (view synthesis), our FAL-net was updated via 50 epochs with an
initial learning rate (lr) of 1×10−4 that halves at epochs 30 and 40. In the second training step (depth
estimation), our model is trained for 20 epochs, with an initial lr of 5×10−5, that halves at epoch
10. Random data augmentations are performed on-the-fly with resize (with a factor of 0.75 to 1.5)
followed by a crop of size 192x640, horizontal flipping, and changes in gamma, brightness, and color
brightness. Training takes 3 days for the first step and 1 day for the second step on a Titan XP GPU.
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Figure 4: Qualitative comparison among recent SIDE methods. Our predictions are more detailed.

4.2 Ablation Studies

We present an extensive ablation study in Table 1 for our FAL-net trained on the KITTI Eigen
train split [2] (K) and tested on the improved KITTI Eigen test split [28]. Table 1 shows from
bottom to top: #1 Regressing disparity in the linear space yields very poor results; #2 The effect
of the numbers of parameters is shown. Our FAL-net without MOM fine-tuning seems to achieve
its performance with the relatively few parameters (17M) of the FAL-netB33; #3 The number of
quantized disparity levels is ablated, which surprisingly does not show a considerable difference,
at least in quantitative metrics. Qualitatively, it is shown in Fig. 2 that the use of 49 levels yields
smoother predictions; #4 We explored the traditional CityScapes (CS) pre-training [7] and the
concurrent K+CS training [9, 10]. Higher performance was obtained for K+CS; #5 We trained a
FAL-netB33 without MOM for additional 20 epochs, which did not bring improved performance.
This implies that the performance gain obtained from fine-tuning with MOM in the second training
step does not come from the additional epochs; #6 The use of our MOM is evaluated, but instead
of fine-tuning, we only keep the pre-trained weights for the fixed model and train the FAL-net from
“scratch” for 50 epochs. This yielded the same level of improvement as fine-tuning in (#7), but with
the additional training time; #7 Lastly, we fine-tuned with MOM and observed consistent gains across
all configurations. The models trained with CS and K+CS also presented consistent improvements in
all metrics, which indicate that the gains from MOM fine-tuning are not tied to a specific dataset.

Additionally, to further show that the effectiveness of the proposed “exponential disparity level”
representation is universal, we plugged MED and MOM into different network backbones, the
Monodepth [7] and the more recent SuperDepth [20]. The first has a simpler but heavier auto-encoder
backbone than our FAL-net, and the latter incorporates ESPCN [24] up-sampling modules in the
decoder stage. Their counterparts with MED representations are denoted in Table 3 as Monodepth-
MED1 and Superdepth-MED1, for the models in the first training stage; and as Monodepth-MED2
and Superdepth-MED2, for the models with MOM fine-tuning (second training stage). Incorporating
MED volumes and Fine-tuning with MOM showed steady improvements in both networks, which
further supports our overall method’s effectiveness.

4.3 Results

KITTI. Table 3 shows the performance of our method in comparison with the best results of
the previous SOTA. Our method performs favorably versus all previous fully- and self-supervised
methods, achieving the best results on the majority of the metrics in the original [2] and improved [28]
Eigen test splits. Results from [6,11,31] were obtained from their publicly available repositories. Fig.
4 shows that our FAL-net, even with much fewer parameters than [11, 12], infers depth of thin and
complex structures more consistently. Note that, in contrast with [6, 11, 12, 20] that obtain their best
results by training on full-resolution images, our method is trained on a 192×640 patch and evaluated
on the full-resolution 384×1280 image, on which our method performs inference in 19ms, more
than 3× faster than the SOTA of [11, 12]. Additionally, It is remarkable that our FAL-net with a low
parameter count outperforms previous methods that exploit other supervision signals, such as Depth,
SGM, or semantics. For a fairer comparison with [22, 26, 31], we adopt a post-processing step (PP),
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Figure 5: Textured point-clouds generated by our FAL-netB49 network predictions. Top row: Input
image, bottom row: point-cloud from different view points ([0m, 0.2m, 3m,−11◦, 0◦, 0◦] left two
columns, [−0.9m, 0m, 2m, 0◦, 0◦, 0◦] right two columns).

Table 2: Results on Make3D [23]. All self-supervised methods benefit from median scaling. Evalua-
tions with C1 [16] metrics (up to 70m). M3D: Train on the Make3D [23] dataset
Method Sup Data abs rel sq rel rmse Method Sup Data abs rel sq rel rmse
Liu et al. [16] D M3D 0.475 6.562 10.05 Laina et al. [15] D M3D 0.204 1.840 5.683
SFMLearner [35] V K 0.383 5.321 10.47 Monodepth (PP) [7] S CS 0.443 7.112 8.860
Monodepth2 [6] V K 0.322 3.589 7.417 Wang et al. [29] S K 0.387 4.720 8.090
Zhou et al. [34] V K 0.318 2.288 6.669 Glez. and Kim [8] S K 0.323 4.021 7.507
FAL-netB49 S K 0.297 2.913 6.810 FAL-netB49 S K+CS 0.256 2.179 6.201
FAL-netB49 (PP) S K 0.284 2.803 6.643 FAL-netB49 (PP) S K+CS 0.254 2.140 6.139

but instead of following [7], we implement a less-expensive multi-scale PP which further improves
our performance. More details on our PP in Supplemental. Results on the improved Eigen split [28]
without PP are not shown in Table 3, as they are already provided in Table 1. Note that our method
without PP already outperforms the SOTA in most metrics, specially sq rel [2] and RMSE. To further
assess the stability and metric alignment of our depth estimates, we present textured point-clouds
seen from novel camera view-points in Figure 5. It is worth noting that our proposed method can
generate accurate point-clouds, which are consistent when seen from camera positions (for example,
3m in Figure 5) that even exceed the camera baseline in the training dataset (0.54m).

CityScapes. The use of CityScapes [1] (CS) demonstrates our method can generalize well. Table 3
shows our model trained on CS only achieves better performance when evaluated on KITTI than [10].
Our method can also leverage more training data, as shown by our method trained with K+CS.

Make3D. Table 2 shows the performance of our FAL-net evaluated on the Make3D [23] dataset
following the protocol in [7]. Our method, not fine-tuned on Make3D, achieves the best performance
versus other self-supervised methods. More results available on the Supplementary materials.

5 Discussion

It was shown in Section 4 that when our network is fine-tuned with MOM, it can gradually correct
mistakes in occlusion and depth estimation, leading to considerable improvements versus the model
only with one stage of training. However, this leads to a question, if the computed occlusions in the
MOM are not accurate to begin with, how can the FAL-net get better? Please note that the MOM is
fed with the MED volumes from the FAL-net under training, not from the fixed FAL-net model from
the first training stage. This means that the generated occlusion maps in the MOM will get better
as the depth estimates from the FAL-net under training get better. In addition, the MOM obtains
the occlusion masks for each view from both views. That is, if one view fails to obtain an accurate
sub-occlusion map, the final occlusion mask has the chance to be fixed with the corresponding
sub-occlusion mask obtained from the opposite view.

Suppose the occlusion masks obtained from the MOM are incorrect. In the worst-case scenario,
the total loss function will become either the same as that in the first training stage (with OR mask
all-ones) or will have its reconstruction term in Eq. 6 suppressed (with OR mask all-zeros and OL

mask all-ones). The latter will make the total loss function not convey any self-supervision signal
other than the flipped network output in the mirror loss of Eq. 8. This suggests that the network
cannot get worse than its initial state when fine-tuning with the MOM. Our FAL-net can only get
better until a certain point, which is also limited by the mirror disparity estimate from the fixed
FAL-net D′LM .
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Table 3: Performance comparison of existing SIDE methods. K: Eigen [2] train-split. CS: CityScapes
[1]. PP: post-processing. CS→K: CS pre-training. K+CS: Concurrent K and CS training. DoF and
D: Depth-of-field and depth supervision. S, SSGM, V, V+v, V+Se: Stereo, stereo+SGM, video, video
+ velocity, and video + semantics self-supervision. V methods benefit from median-scaling. LR: eval
at low-resolution. ↓↑ indicate the better metric. Best and second-best metrics. Results capped to 80m

Ref Methods PP Sup Data #Par abs rel↓ sq rel↓ rmse↓ rmselog ↓ a1 ↑ a2 ↑ a3 ↑
Original Eigen Test Split [2]

[13] Gur et al. DoF K - 0.110 0.666 4.186 0.168 0.880 0.966 0.988
[17] Luo et al. D+S K - 0.094 0.626 4.252 0.177 0.891 0.965 0.984
[10] Gordon et al. V K - 0.128 0.959 5.230 0.212 0.845 0.947 0.976
[34] Zhou et al. V K 34 0.121 0.837 4.945 0.197 0.853 0.955 0.982
[6] Monodepth2 V K 14 0.115 0.882 4.701 0.190 0.879 0.961 0.982

[11] PackNet V K 120 0.107 0.802 4.538 0.186 0.889 0.962 0.981
[10] Gordon et al. V K+CS - 0.124 0.930 5.120 0.206 0.851 0.950 0.978
[11] PackNet V CS→K 120 0.104 0.758 4.386 0.182 0.895 0.964 0.982
[11] PackNet V+v CS→K 120 0.103 0.796 4.404 0.189 0.881 0.959 0.980
[12] Guizilini et al. V+Se CS→K 140 0.100 0.761 4.270 0.175 0.902 0.965 0.982
[7] Monodepth S K 32 0.148 1.344 5.927 0.247 0.803 0.922 0.964
[20] SuperDepth S K - 0.112 0.875 4.958 0.207 0.852 0.947 0.977
[26] Tosi et al. 4 SSGM K 42 0.111 0.867 4.714 0.199 0.864 0.954 0.979
[21] Refine&Distill S K - 0.098 0.831 4.656 0.202 0.882 0.948 0.973
[31] DepthHints 4 SSGM K 35 0.096 0.710 4.393 0.185 0.890 0.962 0.981
[22] 3Net 4 S CS→K 48 0.111 0.849 4.822 0.202 0.865 0.952 0.978
[26] Tosi et al. 4 SSGM CS→K 42 0.096 0.673 4.351 0.184 0.890 0.961 0.981
[7] Monodepth-MED1 S K 32 0.112 0.751 4.500 0.196 0.868 0.954 0.980
[7] Monodepth-MED2 S K 32 0.107 0.684 4.311 0.187 0.878 0.960 0.982
[20] SuperDepth-MED1 S K 58 0.111 0.682 4.295 0.190 0.879 0.959 0.982
[20] SuperDepth-MED2 S K 58 0.108 0.647 4.180 0.184 0.886 0.962 0.983
our FAL-netB33 S K 17 0.099 0.633 4.074 0.177 0.894 0.965 0.984
our FAL-netB33 4 S K 17 0.094 0.597 4.005 0.173 0.900 0.967 0.985
our FAL-netB49 S K 17 0.097 0.590 3.991 0.177 0.893 0.966 0.984
our FAL-netB49 4 S K 17 0.093 0.564 3.973 0.174 0.898 0.967 0.985
our FAL-netB49 S K+CS 17 0.091 0.562 4.016 0.178 0.894 0.964 0.983
our FAL-netB49 4 S K+CS 17 0.088 0.547 4.004 0.175 0.898 0.966 0.984
[10] Gordon et al. V CS - 0.172 1.370 6.210 0.250 0.754 0.921 0.967
our FAL-netB49 S CS 17 0.144 0.871 4.796 0.215 0.811 0.947 0.979

Improved Eigen Test Split [28]
[3] DORN D K 51 0.072 0.307 2.727 0.120 0.932 0.984 0.995
[6] Monodepth2 V K 14 0.092 0.536 3.749 0.135 0.916 0.984 0.995
[11] PackNet (LR) V K 120 0.078 0.420 3.485 0.121 0.931 0.986 0.996
[11] PackNet V CS→K 120 0.071 0.359 3.153 0.109 0.944 0.990 0.997
[11] PackNet V+v CS→K 120 0.075 0.384 3.293 0.114 0.938 0.984 0.995
[6] Monodepth2 V+S K 14 0.087 0.479 3.595 0.131 0.916 0.984 0.996
[6] Monodepth2 S K 14 0.084 0.503 3.646 0.133 0.920 0.982 0.994
[31] DepthHints 4 SSGM K 35 0.074 0.364 3.202 0.114 0.936 0.989 0.997
our FAL-netA33 4 S K 6.6 0.076 0.335 3.122 0.116 0.934 0.989 0.997
our FAL-netB33 4 S K 17 0.071 0.282 2.859 0.106 0.944 0.991 0.998
our FAL-netB49 4 S K 17 0.071 0.281 2.912 0.108 0.943 0.991 0.998
our FAL-netB49 4 S K+CS 17 0.068 0.276 2.906 0.106 0.944 0.991 0.998

6 Conclusion

We have shown that state-of-the-art single image depth estimation (SIDE) can be achieved by light
and straightforward auto-encoder networks that incorporate Mirrored Exponential Disparity (MED)
probability volumes in their output layers. We showed that a two-step training strategy with our
Mirror Occlusion Module (MOM) aids in making the network learn precise depth instead of just view-
synthesis. Our method outperforms the DORN [3] supervised baseline by a large accuracy margin
and 3× fewer parameters, which suggests we can “forget about the LiDAR” for the supervision of
SIDE networks, provided the adequate capture conditions. We hope this work can shift the research
efforts towards faster and lighter network architectures for self-supervised SIDE. Moreover, any task
that requires proper handling of occluded regions caused by rigid motions such as learning of stereo
disparity, SIDE from monocular videos, and optical flow can benefit from our proposed method.
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Broader Impact

In this paper, we presented FAL-net, a method to “forget about the LiDAR” for the learning of
monocular depth from stereo images. Our approach incorporates our proposed mirrored exponential
disparity (MED) probability volumes and a two-stage learning strategy with our novel mirrored
occlusion module (MOM). Our MOM computes very realistic occlusion masks to filter out invalid
regions due to parallax. Our FAL-net showed superior performance and reduced number of parameters
and inference times than the SOTA fully-, semi-, and self- supervised methods.

Even though we focused on learning single image depth estimation (SIDE) from stereo pairs, our
method can be easily extended when learning from monocular videos. Our MOM can be adopted as
long as the network incorporates a disparity probability volume in its output layers and the relative
camera poses are known or estimated. The camera-pose information can be integrated into the
warping operation g(·) in Eq. (4) to obtain the mirrored occlusions for the corresponding frame pair.
What could be at stake here is the exponential quantization, as inverse depths in structure-from-motion
(SFM) are defined up to an unknown and inconsistent scale. The ambiguous scale could prevent the
network from taking advantage of all disparity levels. A turn-around for this issue is to incorporate
velocity supervision, as introduced in PackNet [11], or consistent SFM [27] to fully exploit the
exponential quantization.

Being depth estimation a low-level computer vision task, we authors do not consider that any ethical
implication is involved in our research. However, we believe it is crucial to know if the network
consistently under or overestimates depth. The second is considered more critical in robotics systems,
in particular, self-driving cars. In this regard, our FAL-net seems to be on the safer side. We measured
this by computing the mean median-scaling factor [35] between the GT and our depth estimates. We
obtained a mean scale factor of 1.016, indicating that our network detects objects slightly closer than
they are.

Finally, we would like to remind the reader that, if one wants to use software-based depth estimators
for safety-critical systems, all the necessary redundancy checks and safety norms must be followed.
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