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S1 P-spline basis

We model the individual response functions fj , kj , hj using a penalized spline basis expansion. We
use a finite and local basis set of splines (piece-wise polynomials) of order m, interpolating between
a fixed set of knots. Each k-dimensional spline basis of order m with support between [xm+2, xk+1]
is specified by selecting k +m+ 2 interpolation knots x1 < x2 < ... < xm+k+2. Given the knots,
the basis set is defined recursively as [1]:

Bmi (x) =
x− xi

xi+m+1 − xi
Bm−1i (x) +

xi+m+2 − x
xi+m+2 − xi+1

Bm−1i+1 (x),

such that i = 1, ..., k and B0
i =

{
1 xi ≤ x < xi+1

0 otherwise
.

The basis has full support on [xm+2, xi+1), where
∑
iB

m
i (x) = 1, this interval will be the spline

evaluation domain. xm+2, ..., xi+1 are called internal knots, while the first and last m + 1 knots,
which are outside the evaluation domain, are needed only to define the first and initial spline basis
element, and can be chosen arbitrarily.

S2 The effects of penalization: effective degrees of freedom and the
smoothing bias

In this section we reparametrize a LS objective so that the estimator parameters have spherical
covariance in the absence of penalization [2]; thanks to this parametrization it will be easy to describe
how adding a penalty term constrains the model space. This will lead to the definition of the effective
degrees of freedom [9] that are used for the statistical testing of covariate significance [4]. For this
discussion,X will be the model matrix for a single smooth with penalization parameter λ and penalty
matrix S. Let’s suppose that we want to fit the smooth as a penalized least-squares (LS) objective:

‖y −Xβ‖2 − λβ>Sβ.
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Let’s first decompose QR decompose the model matrix X = QR, and set β′′ = Rβ, so that the
model matrix will beQ and the penalty becomesR−TSR−1. We can further apply an eigenvalue
decomposition to the penalty:

R−>SR−1 = UDU>,

and the eigenvalues Dii are arranged in decreasing order. Finally, we can apply a second
reparametrization β′ = U>β′′, so the corresponding model matrix becomesQU , and the penalty
reduces to the diagonal D. Since U is orthogonal and the columns of Q are orthogonal vectors,
under this reparametrization, the unpenalized ML covariace matrix will be:

Vβ = (U>Q>QU)−1σ2 = Iσ2, (1)

where σ2 is the data variance.
If we apply the penalty, the bayesian covariance matrix becomes:

Vβ = (I + λD)−1σ2. (2)
The penalized estimator is then

β̂′ = (I + λD)−1U>Q>y, (3)

and the unpenalized is just β̃′ = U>Q>y.

We can interpret the penalized estimate as a shrinked version of the unpenalized problem,

β̂′i = (1 + λDii)
−1β̃′i. (4)

The factor (1 +λDii)
−1 lies in (0, 1], and can be viewed as the effective degrees of freedom (EDF) of

β̂′i. Reversing the reparametrization, the total effective degrees of freedom can then be computed as:∑
i

(1 + λDii)
−1 = tr(I + λD)−1

= tr
(
(QU>(I + λD)−1UQ>)

)
= tr(Q(I + λUDU>)−1Q>)

= tr(Q(R−TR>Q>QRR−1 + λS)−1Q>)

= tr(QR(R>Q>QR+ λS)−1R>Q>)

= tr(X(X>X + λS)−1X>)

= tr((X>X + λS)−1X>X) = tr(F ). (5)

If λ→∞, then the effective EDF will be the multiplicity of the zero eigenvalue of the penalty matrix,
and the maximum EDF will be the number of parameters when λ = 0.
Since the unpenalized estimator is unbiased, E[β̂′i] = (1 + λDii)

−1βi, so the penalty represents
the relative smoothing bias. Reverting again the reparametrization we see that F represents the
smoothing bias. Using β′ = U>Rβ, therefore,

E[β̂] = R−1UE[β̂′]

= R−1U(I + λD)−1β′

= R−1(I + λUDU>)−1Uβ′

= R−1(I + λR−TSR−1)−1Uβ′

= (R>R+ λS)−1RTUβ′

= (X>X + λS)−1RTUU>Rβ

= (X>X + λS)−1X>Xβ

= Fβ.

In the natural re-parametrization, the degree of penalizaiton of each parameter do not affect others
and Dii directly indicate the relative penalization of the i-th model component. Fixed the penalty S,
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D is uniquely defined, and the penalty’s action is to suppress some dimensions of the model space.
Which dimensions are effectively more suppressed depends on the penalty matrix, the penalty we
are using affects the wiggliness of the smooths, so that increasing λ lead to increasingly smoother
models.
In general, for a Poisson GAM with penalty matrix Sλ the EDF can be computed as:

tr(F ) = (X>WX + Sλ)−1X>WX, (6)

which as the same form of (5), but substitutingX with
√
WX and λS with Sλ andW is the weight

matrix from the PIRLS algorithm at convergence.

S3 Gradient and Hessian of the GCV

Here we provide gradient and Hessian of the GCV score, following the derivation proposed in [9].
First of let’s set y =

√
Wz andX ′ =

√
WX , so that,

GCV(λ) =
n‖y −Ay‖2

{n− tr(A)}2
,

andA = X ′(X ′>X ′ + Sλ)−1X ′>. We will drop the primes for what follows.

Let’s QR-decomposeX = QR, and find a square root of the matrix Sλ = B>B, for example using
Cholesky decomposition.
After augumenting the matrixR withB, and applying a singular value decomposition we obtain:[

R
B

]
= UDV >.

The rank deficiency of the problem is dealt by removing the singular values that are too low, in respect
to the maximum singular value (if Dii < max(diag(D) ·

√
ε) , with ε the machine precision, remove

column and row i ofD, and remove columns i of V and U ).
Defining U1 as the sub-matrix of U such thatR = U1DV

>, we have

X = QU1DV
>

G = X>X + Sλ = V D2V >

A = XG−1X> = QU1U
>
1 Q

>.

This immediately leads to

tr(A) = tr(U1U
>
1 ). (7)

The only computationally expensive step is the QR decomposition, that has to be performed once,
but the rest is cheap. Setting ρj = log λj , we will find the gradient and hessian of the GCV in this
transformed parameters in order to force positive weights and handle more easily large penalties. We
first note thatG−1 = V D−2V >. Using standard multivariate calculus,

∂G−1

∂ρj
= −G−1 ∂G

∂ρj
G−1 = −λjV D−2V >SjV D−2V >

∂A

∂ρj
= X

∂G−1

∂ρj
X> = −λjQU1D

−1V >SjV D
−1U>1 Q

>. (8)

Using the chain rule, the second derivatives can be obtained as:

∂2G−1

∂ρj∂ρk
= G−1

∂G

∂ρj
G−1

∂G

∂ρk
G−1 −G−1 ∂2G

∂ρj∂ρk
G−1 +G−1

∂G

∂ρk
G−1

∂G

∂ρj
G−1

∂2G

∂ρj∂ρk
= δkj λjSj

∂2A

∂ρj∂ρk
= X

∂2G−1

∂ρj∂ρk
X>.
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Finally, we get:

∂2A

∂ρj∂ρk
= λjλkQU1D

−1V >
[
SkV D

−2V >Sj
]‡
V D−1U>1 Q

> + δkj
∂A

∂ρj
, (9)

whereM ‡ = M +M>, δkj = 1 if j = k and 0 otherwise.
Let’s define α = ‖y −Ay‖2, and δ = n − tr(A), y1 = U1Q

>y, Mj = D−1V >SjV D
−1, and

Fj = MjU
>
1 U1, we have,

∂δ

∂ρj
= λj tr(Fj)

∂2δ

∂ρj∂ρk
= −2λjλktr(MkFj)

∂α

∂ρj
= λjy

>
1

(
2Mj − Fj − F>j

)
y1

∂2α

∂ρj∂ρk
= −λjλky>1

(
2MkMj + 2MjMk −MjFk −MkFj

− F>k Mj − F>j Mk − 2FkMj

)
y1

+ δkj λjy
>
1

(
2Mj − F>j − Fj

)
y1,

1

Finally, we obtain:

GCV =
nα

δ2
(10)

∂ GCV
∂ρj

=
n

δ2
∂α

∂ρj
− 2nα

δ3
∂δ

∂ρj
(11)

∂2 GCV
∂ρj∂ρk

= −2n

δ3
∂δ

∂ρk

∂α

∂ρj
+
n

δ2
∂2α

∂ρj∂ρk
− 2n

δ3
∂α

∂ρk

∂δ

∂ρj
+

6nα

δ4
∂δ

∂ρk

∂δ

∂ρj
− 2nα

δ3
∂2δ

∂ρj∂ρk
. (12)

S4 Confidence interval average coverage probability

Here, we sketch the proof of the average coverage properties of the Bayesian confidence intervals
following the argument in [7]. What we want to show is that we can choose some constants
ci, i = 1, ..., n and d such as,

1

n

∑
i

P(|f̂(xi)− f(xi)| ≤ cid) = 1− α, (13)

for some level α, where f̂(xi) is the estimated smooth component at xi and f(xi) is the true value.
The same problem can be formulated by defining a variable I ∼ Uniform({1, ..., n}) and asking
requiring that

P(|f̂(xI)− f(xI)| ≤ cId). (14)

The following discussion holds for Gaussian distributed y with error variance σ2 and identity link;
the general exponential family case follows exactly the same steps with X ′ =

√
WX in place ofX

(whereW is the weight matrix from the PIRLS), and the scale parameter in place of σ2 [7].

Let’s define two random variables V := {f̂(xI)−E[f̂(xI)]}/cI and B := {E[f̂(xI)]− f(xI)}/cI ,
so that the variable whose distribution we want to find is V +B. Due to the results on the estimator
distribution, defining X̃ such as f̂ = X̃β̂, we have that β̂ is Gaussian (asymptotically Gaussian in
the general case), and therefore so is f̂ = X̃β̂. Since I is uniformly distributed, we can conclude
that V is a Gaussian mixture with 0 mean. If we choose ci appropriately, so that each Gaussian in
the mixture component has the same variance, V will be Gaussian. The confidence intervals are
computed under two main assumption:

1Modified from the original reference [9].
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• the bias B ≈ 0

• Var[B] is very small with respect to Var[V ].

Under this assumptions, we can approximate the distribution of V + B as a Gaussian with mean
approximately 0. Due to the gaussianity, in order to fully specify the distribution of V +B, all we
need to do is compute Var[V +B]. Setting C = diag(ci) we have,

Var[V +B] = E

[∑
i

(f̂(xi)− f(xi))
2

c2i
P (I = i)

]

=
1

n
E[‖C−1(f̂ − f)‖2]

=
1

n
E
[
‖C−1X̃(β̂ − β)‖2

]
, (15)

where the expectation is over the distribution of β̂.
For any matrixB, we have that

E
[
‖B(β̂ − β)‖2

]
= E

[
‖B(β̂ − E[β̂])‖2

]
+ ‖B(E[β̂]− β)‖2

= tr(BVβ̂B
>) + ‖B(F − I)β‖2

' tr(BVβ̂B
>) + Eπ[‖B(F − I)β‖2], (16)

with F = (X>X + Sλ)−1X>X and Vβ̂ = (X>X + Sλ)−1X>X(X>X + Sλ)−1σ2 and
π ∼ N (0,Sλσ

2) is the prior over the parameters. Noting that F − I = −(X>X + Sλ)−1Sλ, we
can conclude that

E
[
‖B(β̂ − β)‖2

]
' tr(BVβ̂B

>) + Eπ
[
tr
{
B(F − I)ββ>(F − I)>B>

}]
(17)

= tr(BVβ̂B
>) + σ2tr{B(F − I)S−1λ (F − I)>B>}

= σ2tr
{
B
[
(X>X + Sλ)−1X>X(X>X + Sλ)−1

+(X>X + Sλ)−1Sλ(X>X + Sλ)−1
]
B>

}
= σ2tr

{
B(X>X + Sλ)−1B>

}
= σ2tr

{
B>B(X>X + Sλ)−1

}
. (18)

Now, using (18) and settingB = C−1X̃ , we obtain,

E
[
‖B(β̂ − β)‖2

]
' tr

{
X̃>C−2X̃(X>X + Sλ)−1

}
σ2/n (19)

= tr
{
C−2X̃(X>X + Sλ)−1X̃>

}
σ2/n = σ2, (20)

where the last equality holds by setting C = diag(X̃(X>X + Sλ)−1X̃>)1/2, this choice also
equalizes the variance of the mixture components. Finally, in order to satisfy (14), all we need to
do is set d = −σ2zα/2, with zα/2 the α/2 critical point of standard normal distribution. Since GCV
is asymptotically optimal in the MSE sense, the assumptions about the bias variance of estimates
should hold when of smoothing penalties are selected by GCV optimization.

S5 Statistical significance for individual input dimensions.

We want to test if individual response functions fj(x) are non-zero, and thus should be included in
the minimal model. Given the marginal posterior for β, f̂ = X̃β̂ ∼ N (f , X̃VβX̃

>), we start from
the standard approach using chi-squared statistics Tr = f̂>V r−

f f̂ , with Vf = X̃VβX̃
>, r the rank

of the covariance matrix and V r−
f its rank-r pseudo-inverse. This statistic is known to up-weight the
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dimensions of the response space that are most heavily penalized to zero [8], so we further correct
the estimate by setting r equal to the effective degrees of freedom of the response function [8].

The resulting test statistic is: Tr = f̂>M r−f̂ , with

M r− = U


λ−11

. . .
λ−1k−2

B
0

U>, B = ΛB̃Λ, Λ =

[
λ−1k−1 0

0 λ−1k

]
, B̃ =

[
1 ρ
ρ ν

]
,

B = ΛB̃ Λ, Λ =

[
λ−1k−1 0

0 λ−1k

]
, B̃ =

[
1 ρ
ρ ν

]
, where k = brc + 1, and λ1 ≥ λ2 · · · ≥ λn > 0

the sorted non-zero eigenvalues of Vf , with ν = τ − k + 1 and ρ =
√
ν(ν − 1)/2 and U the matrix

of eigenvectors sorted according to the eigenvalues magnitude. Under the hypothesis that f(x) = 0,
Tr ∼ χ2

k−2 + ν1χ
2
1 + ν2χ

2
1, with ν1 = [ν + 1 +

√
1− ν2]/2 and ν2 = ν + 1− ν1.

S6 Confidence interval quality

We tested the coverage properties of the approximated confidence intervals by means of numerical
simulations. In particular, we simulated a thousand 30 minutes long spike count vectors at 6ms
resolution according to the GAM generative model for the toy problem described in the main text.
We then fit the GAM to each independent spike count vector, and computed the corresponding
empirical 95 % confidence intervals as a bootstrap estimate of the ground truth. Results show that the
approximate confidence intervals estimated through our proposed procedure match very well to these
numerical estimates, (Fig. S1).
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Figure S1: Confidence interval quality. Approximate confidence intervals estimated by our theoretical
procedure (red shaded area) overlapped with bootstrap estimates (gray lines).

S7 Multidimensional filters.

P-spline based GAM can be readily extended to multidimensional response filters such as spatio-
temporal responses, or any other multivariate interaction. For notation simplicity we will describe
the case of a bivariate response function f(x, y). The approach that we take here is to expand the
function using a tensor product of the basis set {aj(x)} and {bj(y)} covering the x and y domain
respectively [6]. The expansion takes the form of,

f(x, y) ≈
∑
ij

βijai(x)bj(y).
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As in the univariate case, we assume that the likelihood of the GAM is that of a Poisson with mean,

log(µt) =

M∑
i=1

N∑
j=1

βijai(xt)bj(yt)

= Xtβ,

whereX ∈ RT×MN is the model matrix and can be derived by the model matrix of the marginals as
X = Xx �Xy , with � being the row-wise Kronecker product, see figure S2.
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0.35
0.40

tensor product basis element

Figure S2: Two-dimensional tensor product basis element.

In order to measure the wiggliness of the response function we could use,

J(f) = λx

∫ (
∂2f

∂x2

)
dxdy + λy

∫ (
∂2f

∂y2

)
dxdy,

Following [3], this integral can be approximated as,

J(f) ≈ λxβ> (Sx ⊗ I)β + λyβ
> (I ⊗ Sy)β,

where ⊗ is the Kronecker product and Sx and Sy are the penalty matrices of the marginals (e.g.
Sx =

∫
a′′a′′>dx).

We tested this approach on published data from tetrode recordings from rat CA1 neurons during
open field exploration (one example cell from the supplementary material of [5]; data includes spike
counts, LFP phase, speed and position recorded at 1250Hz, for a total of 18sec of activity). It is
well known that CA1 responses are modulated by both LFP theta phase and the position of the rat
on a linear track. Moreover, the interaction between the two variables can have significant effects
on neural responses [5]. Fitting a two-dimensional P-GAM on this data, we were able to correctly
capture this interaction (Fig. S3). Furthermore, model selection excluded additional contributions
of the animal’s speed on neural responses (p-value, 0.26), supporting the hypothesis that the speed
modulation of hippocampal responses can be explained by the speed modulation of theta alone [5].

More concretely, we fit two GAMs, one fully additive and another including the interaction between
phase and position,

logµ1 = f(x) + g(φ) + h(v) (21)
logµ2 = f(x, φ) + h(v), (22)

where x is the rat position, φ is the LFP phase and v is the speed.
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While the fully additive model clearly fails to capture phase-position interactions, the bivariate GAM
correctly reconstructs the tuning function of the unit, obtaining a filter that resembles closely the
one in [5] (Fig. S3). The fit results readily summarize some of the findings described in the original
paper, such as the presence of joint phase-position tuning and the absence of modulation due to speed,
without the need to make detailed parametric assumptions about the response shape.
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Figure S3: Multidimensional nonlinear filters. Fits on data from rat CA1 single unit for (A) the fully
additive model and, (B) a P-GAM with interactions. (C), Speed modulation of neural responses, not
significant.

S8 Filter comparison: PGAM vs. regularized GLM

We compared the tuning estimates obtained based on the monkey PFC neural responses for our
PGAM and the elastic net regularized GLM. We randomly selected a 50 minutes long recording
session and fit both models to this data with all task variables as regressors; we did not include the
coupling terms, as fitting a coupled model would be too time consuming for the GLM. We found
that response functions estimated over the full 50 minutes session look similar between the two
models (Fig. S4A, compare black lines in top and bottom rows). Overall, the fit quality, measured as
cross-validated pseudo-R2, is comparable between the two models (Fig. S4B). However, when we
restrict the data to the first 20 minute, GAM fits are more stable, consistently matching those obtained
from the full session (Fig. S4A top, compare red vs. black lines), whereas GLM fits are more noisy
(Fig. S4A top, compare blue vs. black lines) and sporadically underfit, see movement stop and target
(Fig. S4A bottom). To compare and summarize these difference across cells, we computed a stability
index as:

stability index = 2
‖fGLM,50 − fGLM,20‖2 − ‖fGAM,50 − fGAM,20‖2
‖fGLM,50 − fGLM,20‖2 + ‖fGAM,50 − fGAM,20‖2

, (23)

wherefGAM/GLM,20 and fGAM/GLM,50 are the P-GAM/GLM estimated responses using 20 and 50
minutes of recording respectively; the higher the stability index, the more robust are the tuning
functions estimated from the P-GAM relative to the GLM. Indeed, at the level of the population GLM
systematically results in more robust estimates with limited data (Fig. S4A).
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Figure S4: Filter stability. (A) Example of response filters estimated with GAM (top row) and GLM
with elastic net regularization (bottom row) for a full recording session (black lines) or a subset of 20
minutes (colored lines, red P-GAM, blue GLM, yellow shaded area represent time interval of the
target presentation). (B) cross-validated pseudo-R2 difference, not statistically significant. (C) Fit
stability. Percent variation of the stability index, equation (23), for the P-GAM estimates relative to
GLMs.
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Figure S5: Comparison of cross-validated pseudo-r2 values for P-GAM relative to a GLM with L1
regularization. Equivalent to Fig.2̃B, but for the L1-regularized GLM.
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Figure S6: Coupling probability as a function of tuning similarity for well-isolated single units.
Coupling probability and tuning similarity are estimated as described in the main text.
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