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Abstract

The scalability of Distributed Stochastic Gradient Descent (SGD) is today limited
by communication bottlenecks. We propose a novel SGD variant: Communication-
efficient SGD with Error Reset, or CSER. The key idea in CSER is first a new
technique called “error reset” that adapts arbitrary compressors for SGD, produc-
ing bifurcated local models with periodic reset of resulting local residual errors.
Second we introduce partial synchronization for both the gradients and the models,
leveraging advantages from them. We prove the convergence of CSER for smooth
non-convex problems. Empirical results show that when combined with highly
aggressive compressors, the CSER algorithms accelerate the distributed training by
nearly 10× for CIFAR-100, and by 4.5× for ImageNet.

1 Introduction

In recent years, the sizes of both machine-learning models and datasets have been increasing rapidly.
To accelerate the training, it is common to distribute the computation on multiple machines. We
focus on Stochastic Gradient Descent (SGD). SGD and its variants are commonly used for training
large-scale deep neural networks. A common way to distribute SGD is to synchronously compute
the gradients at multiple worker nodes, and then aggregate the global average. This is akin to
single-threaded SGD with large mini-batch sizes [5, 27–29]. Increasing the number of workers is
attractive because it holds the potential to reduce training time. However, more workers also means
more communication, and overwhelmed communication links hurt scalability.

The state-of-the-art work in communication-efficient SGD is called QSparse-local-SGD [3], which
combines two prevailing techniques: message compression and infrequent synchronization. Message
compression methods use compressors such as quantization [2, 4, 9, 17, 21, 26, 33] and sparsifica-
tion [1, 8, 20] to reduce the number of bits in each synchronization round. This necessitates error
feedback (EF-SGD) [9, 33] to correct for the residual errors incurred by the compressors, and to
guarantee theoretical convergence. On the other hand, infrequent synchronization methods such as
local SGD [13, 19, 25, 30, 31] would decrease the overall number of synchronization rounds. The
former, QSparse-local-SGD, periodically synchronizes the model parameters like local SGD, and
compresses the synchronization messages to further reduce the communication overhead. Similar to
EF-SGD, it also uses error feedback to correct for the residual errors of compression.
∗The work was done when Cong Xie was a (part-time) intern in Amazon Web Services.
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QSparse-local-SGD reduces more bidirectional communication overhead (in both aggregation and
broadcasting) than its ancestors EF-SGD and local SGD. However, it also inherits weaknesses
from both ancestor algorithms, especially when compression ratios are increased. For instance, our
experiments reveal that QSparse-local-SGD fails to converge at a compression ratio of 256×.

In this paper, we introduce a new algorithm called Communication-efficient SGD with Error Reset,
or CSER. The key idea in CSER is a new technique called error reset that corrects for the local model
using the compression errors, and we show this converges better than the error feedback technique
used in QSparse-local-SGD. On top of the error reset, we also introduce partial synchronization,
leveraging advantages from both gradient and model synchronizations. These two techniques together
allow the proposed method to scale up the compression ratio to as high as 1024× and significantly
outperform the existing approaches.

The main contributions of our paper are as follows:

• We propose a novel communication-efficient SGD algorithm, called Communication-efficient SGD
with Error Reset (CSER) as well as its variant with Nesterov’s momentum [15]. CSER includes a
new technique that adapts arbitrary compressors for SGD, and achieves better convergence than
the baselines when aggressive compressors are used.

• We add a second compressor to partially synchronize the gradients between the resets of errors on
local models. We show that tuning the compression ratios between the gradient synchronization
and model synchronization improves the convergence.

• We show empirically that with appropriate compression ratios, CSER accelerates distributed
training by nearly 10× for CIFAR-100, and by 4.5× for ImageNet.

2 Related work

Recently, Basu et al. (2019) proposed QSparse-local-SGD, which combines local SGD [13, 19, 25,
30, 31] and EF-SGD [9, 33], and reduces more communication overhead than any single one of them.
The detailed algorithm of QSparse-local-SGD is shown in Algorithm 1. In the algorithm, xi,t is the
local model on the ith worker in the tth iteration, and x̂t is the globally synchronized model in the
tth iteration. Note that x̂t is always the same across different workers, which is used to track the
synchronized part of the local model xi,t. In Line 9, the local residual error ei,t−1 from the previous
synchronization round is added to the accumulated local update xi,t− 1

2
− x̂t−1. In Line 10, the

message pi,t is compressed into p′i,t. Line 11 produces the residual error ei,t of the compression, and
synchronizes the compressed messages. Finally, in Line 12, the synchronized update is accumulated
to the local models. When H = 1, the algorithm is reduced to EF-SGD. If the message compression
in Line 10 is an identity mapping (i.e., C1(pi,t) = pi,t), then the algorithm is reduced to local SGD.

Algorithm 1 Qsparse-local-SGD
1: Input: C1 - compressor, H > 0 - synchronization interval
2: Initialize xi,0 = x̂0 ∈ Rd, ei,t = 0,∀i ∈ [n]
3: for all iteration t ∈ [T ] do
4: for all Workers i ∈ [n] in parallel do
5: xi,t− 1

2
← xi,t−1 − η∇f(xi,t−1; zi,t)

6: if mod (t,H) 6= 0 then
7: xi,t ← xi,t− 1

2
, x̂t ← x̂t−1, ei,t ← ei,t−1

8: else
9: pi,t ← ei,t−1 + xi,t− 1

2
− x̂t−1

10: p′i,t ← C1(pi,t)

11: ei,t ← pi,t − p′i,t, p̄′t ← 1
n

∑
i∈[n] p

′
i,t . Synchronization

12: xi,t ← x̂t−1 + p̄′t, x̂t ← x̂t−1 + p̄′t
13: end if
14: end for
15: end for
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In QSparse-local-SGD, the residual error ei,t are left aside from gradient computation in the H
local steps. It is not applied to the local models until synchronization. Thus, the staleness of the
residual error is at least H iterations. Such staleness in the error feedback grows with the compression
ratio RC1 and synchronization interval H , which causes potential convergence issues when the
overall compression ratio RC = RC1 × H is large. As a result, we observe bad convergence of
QSparse-local-SGD in our experiments whenRC ≥ 256. On the other hand, EF-SGD usesH = 1 but
also shows relatively bad performance using random sparsifiers in both previous work [20] and our
experiments. When C1 is an identity mapping, QSparse-local-SGD reduces to local SGD, in which
the differences between the local models still grow with the synchronization interval H , resulting in
slow convergence when H is large.

3 Methodology

We consider the following optimization problem with n workers: minx∈Rd F (x), where F (x) =
1
n

∑
i∈[n] Fi(x) = 1

n

∑
i∈[n] Ezi∼Di

f(x; zi), ∀i ∈ [n], and zi is sampled from the local data Di on
the ith device. Furthermore, we assume Di 6= Dj ,∀i 6= j.

We solve this optimization problem using distributed SGD and its variants. To reduce the communi-
cation overhead, we compress the messages via δ-approximate compressors.

Definition 1 (Karimireddy et al. [9]). An operator C : Rd → Rd is a δ-approximate compressor for
δ ∈ [0, 1] if ‖C(v)− v‖2 ≤ (1− δ)‖v‖2,∀v ∈ Rd.

Note that in the original definition of the compressor, it is required that δ ∈ (0, 1]. In this paper, we
extend this assumption by allowing δ = 0, where C(v) = 0 in some cases.

3.1 Communication-efficient SGD with error reset

We propose a new procedure to apply arbitrary δ-approximate compressors to distributed SGD, which
achieves good accuracy when using aggressive compressors and fixes the potential convergence
issues of QSparse-local-SGD. Our procedure directly applies the residuals to the local models, then
uses the local models to compute the gradients in the next iteration, which results in bifurcated local
models similar to local SGD. Observe that in contrast, QSparse-local-SGD has the local models fully
synchronized across the workers after each synchronization round, and puts the residuals aside from
the gradient computation during the local updates.

The proposed algorithm periodically resets the errors that are locally accumulated on the models on
workers. Thus, we denote this algorithm as communication-efficient SGD with error reset (CSER).
In Table 1, we summarize the techniques used in CSER, and how this differs from existing work.

Table 1: Our approach (CSER) vs. Existing Techniques (EF-SGD, QSparse-local-SGD)

Message
compression

Infrequent
synchronization

Momentum with
provable convergence

Aggressive
compressor Error reset

EF-SGD X X
QSparse-local-SGD X X
CSER (this paper) X X X X X

In Algorithm 3, we define a sub-routine which partially synchronizes the tensors. Given any com-
pressor C, on any worker i, the sub-routine takes the average only over the compressed part of the
messages, and locally combines the residual with the averaged value.

Applying the sub-routine (Algorithm 3) to distributed SGD, we propose a new algorithm with two
arbitrary compressors: C1 and C2, with approximation factor δ1 ∈ (0, 1] and δ2 ∈ [0, 1], respectively.
The detailed algorithm is shown in Algorithm 2. In the algorithm, xi,t is the local model on the
ith worker in the iteration t. In Line 11 and 12, the first compressor C1 flushes the local error ei,t
by partial synchronization, i.e., the local errors are (partially) reset for every H iterations, which is
similar to QSparse-local-SGD. Between the error-reset rounds, we add a second compressor C2 to
partially synchronize the gradients (Line 6), and accumulate both the synchronized values and the
residuals to the local models (Line 7).
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The locally accumulated residual error ei,t maintains the differences between the local models, which
causes additional noise to the convergence. Formally, we have
Lemma 1. xi,t − ei,t is the same across different workers: xi,t − ei,t = xj,t − ej,t,∀i, j ∈ [n], t.

Different from the error feedback of QSparse-local-SGD, the error reset of CSER applies the residual
errors immediately to the local models without delay, and thus avoids the issue of staleness and
improves the convergence. Additionally, by utilizing both gradient and model synchronization, and
balancing the communication budget between them, CSER achieves a better trade-off between the
accuracy and the reduction of bidirectional communication. When all the budget is on C1, the local
models bifurcate too much, which leads to bad accuracy as local SGD. Instead, we trade off some
budget of C1 for the partial synchronization of gradients with C2, thus mitigate the weaknesses.
Furthermore, with specially designed sparsifiers, the proposed algorithms no longer need to maintain
the variables ei,t. The resultant implementation reduces the memory footprint and the corresponding
overhead of memory copy. Details are introduced in Section 3.3 and Appendix A.4.

Algorithm 2 allows great freedom in tuning the two different compressors C1 and C2, as well as the
error-reset interval H . By specifying the hyperparameters, we recover some important special cases
of CSER. Some existing approaches are similar to these special cases, though the differences often
turn out to be important. The details can be found in Appendix A.

Algorithm 2 CSER
1: Input: C1, C2 - compressors, H > 0 - error-reset interval
2: Initialize xi,0 = x̂0 ∈ Rd, ei,0 = 0,∀i ∈ [n]
3: for all iteration t ∈ [T ] do
4: for all Workers i ∈ [n] in parallel do
5: gi,t ← ∇f(xi,t−1; zi,t), zi,t ∼ Di
6: g′i,t, ri,t ← PSync(gi,t, C2)
7: xi,t− 1

2
← xi,t−1− ηg′i,t, ei,t− 1

2
← ei,t−1− ηri,t

8: if mod (t,H) 6= 0 then
9: xi,t ← xi,t− 1

2
, ei,t ← ei,t− 1

2

10: else
11: e′

i,t− 1
2

, ei,t ← PSync(ei,t− 1
2
, C1)

12: xi,t ← xi,t− 1
2
− ei,t− 1

2
+ e′

i,t− 1
2

13: end if
14: end for
15: end for

Algorithm 3 Partial Synchroniza-
tion (PSync)

1: Input: vi ∈ Rd, C - compres-
sor

2: function PSYNC(vi, C)
3: On worker i:
4: v′i = C(vi)
5: ri = vi − v′i
6: Partial synchronization:
7: v̄′ = 1

n

∑
i∈[n] v

′
i

8: v′i = v̄′ + ri
9: return v′i, ri

10: end function

3.2 Momentum variant

Nesterov’s momentum [15] is a variant of SGD that has been widely used to accelerate the conver-
gence. Sutskever et al. (2013) show that Nesterov’s momentum can be expressed in terms of a classic
momentum update as:

mt = βmt−1 + gt,

xt = xt−1 − η(βmt + gt),

where β is the momentum parameter, gt is the gradient. Nesterov’s momentum moves the model
parameters in the direction of the accumulated gradient. Very recently, Zheng et al. (2019) incorporate
Nesterov’s momentum into EF-SGD with bidirectional communication and obtains faster convergence.
In this section, we introduce M-CSER that adopts Nesterov’s momentum in CSER. Compared to
Algorithm 2, the momentum variant simply adds momentum to the gradients before applying the
second compressor C2, as shown in Algorithm 4.

3.3 Globally-randomized blockwise sparsifier (GRBS)

There are two sparsifiers widely used with SGD: random-k and top-k sparsifiers. Random-k sparsifiers
select random elements for synchronization, while top-k sparsifiers select the most significant
elements. Top-k sparsifiers typically achieve better convergence [20], but also incur heavier overhead.
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Algorithm 4 Distributed Momentum SGD with Error-Reset (M-CSER, implementation I)
1: Input: C1, C2 - compressors, H > 0 - synchronization interval
2: Initialize xi,0 = x̂0 ∈ Rd, ei,0 = 0,mi,0 = 0,∀i ∈ [n]
3: for all iteration t ∈ [T ] do
4: for all Workers i ∈ [n] in parallel do
5: gi,t ← ∇f(xi,t−1; zi,t), zi,t ∼ Di
6: mi,t ← βmi,t−1 + gi,t
7: pi,t ← η(βmi,t + gi,t)
8: p′i,t, ri,t ← PSync(pi,t, C2)
9: xi,t− 1

2
← xi,t−1 − p′i,t, ei,t− 1

2
← ei,t−1 − ri,t

10: if mod (t,H) 6= 0 then
11: xi,t ← xi,t− 1

2
, ei,t ← ei,t− 1

2

12: else
13: e′

i,t− 1
2

, ei,t ← PSync(ei,t− 1
2
, C1) . error reset

14: xi,t ← xi,t− 1
2
− ei,t− 1

2
+ e′

i,t− 1
2

15: end if
16: end for
17: end for

In this paper, we use a blockwise random sparsifier with synchronized random seed, which is also
mentioned in [23].
Definition 2. (Globally-Randomized Blockwise Sparsifier, GRBS) Given any tensors vi ∈ Rd, i ∈ [n]
distributed on the n workers, the compression ratio RC , and the number of blocks B, GRBS partitions
each vi into B blocks. In each iteration, GRBS globally picks B

RC
random blocks for synchronization,

and GRBS is a 1/RC-approximate compressor in expectation.

Compared to the other compressors, GRBS has the following advantages:

• Adaptivity to AllReduce and parameter server: Due to the synchronized random seed, different
workers always choose the same blocks for synchronization. Thus, GRBS is compatible with
AllReduce [18, 24] and parameter server [7, 11, 12]. Other compressors such as random sparsifier
and quantization cannot be directly employed with Allreduce or parameter server since their
compressed gradients cannot be directly summed without first be decompressed.

• Less memory footprint: With GRBS, CSER can further reduce the memory footprint and the
corresponding overhead of memory copy. Implementation details are shown in Appendix A.4.

Although GRBS has less communication and computation overhead, it is too aggressive for the
existing algorithms such as QSparse-local-SGD when we consider a large RC . In Section 5.2, we
show that CSER improves the convergence when the overall compression ratio is as large as 1024×.

4 Convergence analysis

In this section, we present the convergence guarantees of CSER.

4.1 Assumptions

First, we introduce some assumptions for our convergence analysis.
Assumption 1. Fi(x),∀i ∈ [n] areL-smooth: Fi(y)−Fi(x) ≤ 〈∇Fi(x), y − x〉+L

2 ‖y−x‖2,∀x, y.

Assumption 2. For any stochastic gradient gi,t = ∇f(xi,t−1; zi,t), zi,t ∼ Di, we assume bounded
variance and expectation: E[‖gi,t − ∇Fi(xi,t−1)‖2] ≤ V1, ‖E[gi,t]‖2 ≤ V ′1 ,∀i ∈ [n], t ∈ [T ].
Furthermore, gradients from different workers are independent from each other.

Note that this implies the bounded second moment: E[‖gi,t‖2] ≤ V2 ≡ V1 + V ′1 ,∀i ∈ [n], t ∈ [T ].
Assumption 3. There exists at least one global minimum x∗, where F (x∗) ≤ F (x),∀x.
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4.2 Main results

Based on the assumptions above, we have the following convergence guarantees. The detailed proof
can be found in Appendix B. To analyze the proposed algorithms, we introduce auxiliary variables:

x̄t =
1

n

∑
i∈[n]

xi,t.

We show that the sequence {x̄t−1 : t ∈ [T ]} converge to a critical point.
Theorem 1. Taking η ≤ 1

L , after T iterations, Algorithm 2 (CSER) has the following error bound:

1

T

T∑
t=1

E
[
‖∇F (x̄t−1)‖2

]
≤ O

(
1

ηT

)
+O

(
ηLV1

n

)
+ 2

[
4(1− δ1)

δ2
1

+ 1

]
(1− δ2)η2H2L2V2.

The following corollary shows that CSER has a convergence rate of O
(

1√
nT

)
, leading a linear

speedup using more workers.

Corollary 1. Taking η = min

{
γ√

T/n+[4(1−δ1)/δ21+1]
1/3

21/3(1−δ2)1/3H2/3T 1/3
, 1
L

}
for some γ > 0,

after T � n iterations, Algorithm 2 (CSER) converges to a critical point:

1

T

T∑
t=1

E
[
‖∇F (x̄t−1)‖2

]
≤ O

(
1√
nT

)
.

To compare the error bounds between CSER and QSparse-local-SGD, we quote the following results
(reformatted to match the notations in this paper) from Theorem 1 of [3] without proof.
Lemma 2. [3] Taking η ≤ 1

2L , QSparse-local-SGD has the error bound:

1

T

T∑
t=1

E
[
‖∇F (x̄t−1)‖2

]
≤ O

(
1

ηT

)
+O

(
ηLV1

n

)
+ 8

[
4(1− δ2

1)

δ2
1

+ 1

]
η2H2L2V2.

Comparing Lemma 2 with Theorem 1, CSER shows a better error bound than QSparse-local-SGD.
Remark 1. Taking δ2 = 0, and the same δ1 as QSparse-local-SGD, CSER reduces the compression
error to 2

[
4(1−δ1)
δ21

+ 1
]
η2H2L2V2, compared to 8

[
4(1−δ21)

δ22
+ 1
]
η2H2L2V2 of QSparse-local-

SGD. Ignoring the constant factors, the error caused by C1 is reduced from 4(1−δ21)

δ21
to 4(1−δ1)

δ21
.

Though the eliminated factor (1+δ1) seems small, it could lead to significant gaps in the convergence.
For example, taking H = 8 and δ1 = 1/2, CSER reduces the compression error from 832 to 576.

Furthermore, note that error reset utilizes the local residuals ei,t in a way different from error feedback.
Diving deep into the proofs, we find that their compression errors have different sources.
Remark 2. The compression error term of the error reset comes from the variance of the local

models: 1
n

∑
i∈[n]

∥∥∥ 1
n

∑
j∈[n] xj,t − xi,t

∥∥∥2

, which equals to 1
n

∑
i∈[n]

∥∥∥ 1
n

∑
j∈[n] ej,t − ei,t

∥∥∥2

≤
1
n

∑
i∈[n] ‖ei,t‖

2 using Lemma 1. This variance vanishes when n = 1. However, for error feedback,

the compression error is bounded by 1
n

∑
i∈[n] ‖ei,t‖

2, which does not vanish when n = 1.

The remark above shows that error reset always has a smaller error bound compared to error feedback.
Especially, when using a single worker, CSER is equivalent to SGD with no compression error, while
QSparse-local-SGD has the compressor error even using a single worker with H = 1.

Besides error reset, CSER introduces partial synchronization for both the gradients and the models.
By carefully tuning the communication budget between them, the convergence can be improved.

For example, assume that we use CGRBS introduced in Definition 2 that has a compression
ratio RC and satisfies E[‖CGRBS(v) − v‖22] ≤ (1 − 1

RC
)‖v‖22. If we put all the budget to
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model synchronization, and take H = 4, δ1 = 1/3, δ2 = 0, the compression error is[
4(1−δ1)
δ21

+ 1
]
η2H2L2V2 = 400η2L2V2. However, if we move some budget to gradient synchro-

nization and take H = 12, δ1 = 7/8, δ2 = 1/96, the overall compression budget remains the same,
but the error term is reduced to less than 236η2L2V2.

We also establish the convergence analysis for CSER with Nesterov’s momentum.

Theorem 2. Taking η ≤ min{ 1
2 ,

1−β
2L }, after T iterations, Algorithm 4 (M-CSER) has the following

error bound:

1

T

T∑
t=1

E
[
‖∇F (x̄t−1)‖2

]
≤ 2(1− β) [F (x̄0)− F (x∗)]

ηT

+
η2β4L2V2

(1− β)4
+

ηLV1

n(1− β)
+

(
4(1− δ1)

δ2
1

+ 1

)
2(1− δ2)η2H2L2V2

(1− β)2
.

Note that larger β leads to faster escape from the initial point, but worse asymptotic performance.

Corollary 2. Taking η = min

{
γ√

T/n+[2(4(1−δ1)/δ21+1)(1−δ2)H2+1]
1/3

T 1/3
, 1

2

}
for some γ > 0,

after T ≥ 4γ2L2n
(1−β)2 iterations, Algorithm 4 (M-CSER) converges to a critical point:

1

T

T∑
t=1

E
[
‖∇F (x̄t−1)‖2

]
≤ O

(
1√
nT

)
.

Similar to CSER, Corollary 2 shows that Algorithm 4 (M-CSER) converges to a critical point at the
rate O

(
1√
nT

)
. Increasing the number of workers n accelerates the convergence.

5 Experiments

In this section, we report the empirical results in a distributed environment.

5.1 Evaluation setup

We compare our algorithms with 3 baselines: SGD with full precision (SGD in brief), EF-SGD, and
QSparse-local-SGD. We use momentum to accelerate the training in all the experiments, though
QSparse-local-SGD with momentum does not have convergence guarantees in its original paper [3].

We conduct experiments on two image classification benchmarks: CIFAR-100 [10], and ImageNet
dataset [16], in a cluster of 8 machines where each machine has 1 NVIDIA V100 GPU and up to 10
Gb/s networking bandwidth. Each experiment is repeated 5 times.

For CIFAR-100, we use the wide residual network (Wide-ResNet-40-8, [32]). We set weight decay
to 0.0005, momentum to 0.9, and minibatch size to 16 per worker. We decay the learning rates
by 0.2 at 60, 120 and 160 epochs, and train for 200 epochs. The initial learning rate is varied in
{0.05, 0.1, 0.5, 1.0}.
For ImageNet, we use a 50-layer ResNet [6]. We set weight decay to 0.0001, momentum to 0.9, and
minibatch size to 32 per worker. We use a learning rate schedule consisting of 5 epochs of linear
warmup, followed by a cosine-annealing learning-rate decay [14], and train for total 120 epochs. We
enumerate the initial learning rates in {0.025, 0.05, 0.1, 0.5}.
For all the algorithms, we test the performance with different overall compression ratios (RC). We use
the globally-randomized blockwise sparsifier (GRBS) as the compressor, as proposed in Section 3.3.
Note that CSER has not only two different compressors with compression ratios RC1 and RC2
respectively, but also the synchronization interval H . The overall compression ratio RC of CSER is

1
1/RC2+1/(RC1×H) . For QSparse-local-SGD, its overallRC isRC1×H . Note that QSparse-local-SGD
is reduced to local SGD when taking RC1 = 1, which is also tested in our experiments. The detailed
configurations of of H , RC1 , and RC2 can be found in Appendix C.

Due to brevity we show only high compression ratio results. Appendix D shows further results.
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5.2 Empirical results

Table 2 presents the test accuracy on CIFAR-100 with various compression ratios. We evaluate not
only CSER, but also the other two special cases: CSEA and CSER-PL. The details of the special cases
could be found in Appendix A. Note that for CSER, CSER-PL, and QSparse-local-SGD with the same
overall RC , the configurations of H , RC1 , and RC2 are not unique. We try multiple configurations
and report the ones perform best on the training loss.

Table 2: Testing accuracy (%) on CIFAR-100 with different overall compression ratios (RC). Note
that fully synchronous SGD does not have compression, thus RC = 1, and all the other algorithms do
not have the fully synchronous cases, thus RC ≥ 2.

Baseline Proposed algorithm
Optimizer/ SGD EF-SGD QSparse-local CSEA CSER CSER-PL

RC -SGD
1 87.01±0.11
2 87.20±0.10 87.16±0.03 87.17±0.21 87.47±0.03
4 86.97±0.08 87.08±0.22 87.25±0.23 87.22±0.03 87.33±0.05
8 86.61±0.23 87.15±0.10 87.14±0.05 87.09±0.05 87.27±0.04

16 85.69±0.31 87.02±0.13 87.15±0.09 87.28±0.04 86.72±0.05
32 85.17±0.12 86.70±0.04 86.83±0.20 86.90±0.15 86.92±0.26
64 84.65±0.07 80.64±0.47 86.63±0.16 86.78±0.11 86.91±0.15

128 83.50±0.87 70.27±2.37 86.30±0.15 86.81±0.17 86.36±0.21
256 83.92±0.55 diverge 86.34±0.20 86.68±0.07 86.27±0.02
512 76.05±0.56 diverge 85.75±0.34 86.20±0.09 85.68±0.12

1024 diverge diverge 85.13±0.13 85.66±0.07 84.94±0.37
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Figure 1: Testing accuracy with different algorithms, for WideResNet-40-8 on CIFAR-100.

In Figure 1 and Figure 2, we show the test accuracy on CIFAR-100 and ImageNet respectively,
with the overall compression ratios in {32, 256, 1024}. Since the experiments on ImageNet are
expensive, we do not tune different configurations of compressors (H,RC1 , RC2 ) for each overall RC
on ImageNet, but directly use the best configurations tuned on CIFAR-100.

5.3 Discussion

We can see that in all the experiments, with the same compression ratio, CSER shows better perfor-
mance than the baselines. When the compression ratio is small enough (≤ 16), the test accuracy
is even better than fully synchronous SGD on CIFAR-100. When RC ≤ 32, for CIFAR-100,
QSparse-local-SGD has comparable performance to CSER or its special cases. Even with very large
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Figure 2: Testing accuracy with different algorithms, for ResNet-50 on ImageNet.

compression ratio (≈ 256), the proposed algorithm can achieve comparable accuracy to SGD with
full precision. CSER accelerates training by 10× for CIFAR-100, and 4.5× for ImageNet.

Compared to EF-SGD, CSER shows much better performance when the compression ratio is
large (RC ≥ 64). We can see that CSER fixes the convergence issue in EF-SGD and QSparse-
local-SGD when aggressive compressors are used, as discussed in Section 3.1. For ImageNet with
RC = 1024, even if we decrease the learning rates to 0.025, EF-SGD and QSparse-local-SGD still
diverge, while CSER still converges well with even larger learning rates.

Note that in most cases, CSER performs better than CSEA and CSER-PL. The reason is that CSER
uses both gradient partial synchronization and model partial synchronization. With finely tuned
compression ratios, the local models will not be too far away from each other between the model
synchronization rounds, which results in better convergence. Note that although CSEA has slightly
worse performance compared to CSER and CSER-PL, it has less hyperparameters to be tuned for the
compressors, which is more user-friendly in practice.

6 Conclusion

We proposed a novel communication-efficient SGD algorithm called CSER. We introduce error
reset and partial synchronization that enable an aggressive compression rate as high as 1024×.
Theoretically, we show that the proposed algorithm enjoys a linear speedup using more workers. Our
empirical results show that the proposed algorithm accelerates the training of deep neural networks.
In future work, we will apply our algorithms to other datasets and applications.

Broader Impact

As this work is mainly algorithmic, the impact is mainly in scientific aspects rather than ethical
and societal aspects. Hopefully, our work would enable faster training of machine learning models
without regression in accuracy. It would save not only the time but also the expense cost by training
large and complex models. On the other hand, there are some related aspects that we have not studied
in this work. For example, we do not know how our approaches impact fairness and privacy of the
model training, which will be our future work.
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Appendix

A Special cases

In this section, we introduce some important special cases of CSER, as well as the memory-efficient
implementation of CSER with GRBS as the compressor. The corresponding experiments are shown
in Appendix D.

A.1 Special cases of CSER

By specifying δ1, δ2 and H , we recover some important special cases of CSER. Some existing
approaches are similar to these special cases, though the differences often turn out to be important.

A.1.1 SGD with error assimilation

Taking C2(v) = 0 and H = 1, we recover a special case similar to EF-SGD [9]. However, different
from EF-SGD, our special case directly assimilates the remaining error into the local model used for
gradient computation in the next iteration. We name this special case “communication-efficient SGD
with error assimilation” (CSEA). Importantly, “error assimilation” results in bifurcated local models
without staleness in the local residuals– in contrast, “error feedback” of EF-SGD always produces
synchronized local models but delayed local residuals. Thus, CSEA trades off the synchronization of
the local models for the elimination of the staleness in the local residuals, and potentially mitigates
the noise caused by staleness when high compression ratios are used.

Algorithm 5 CSER
1: Input: C1, C2 - compressors, H > 0 - syn-

chronization interval
2: Initialize xi,0 = x̂0 ∈ Rd, ei,0 = 0,∀i ∈ [n]
3: for all iteration t ∈ [T ] do
4: for all Workers i ∈ [n] in parallel do
5: gi,t ← ∇f(xi,t−1; zi,t), zi,t ∼ Di
6: g′i,t, ri,t ← PSync(gi,t, C2)
7: xi,t− 1

2
← xi,t−1 − ηg′i,t

8: ei,t− 1
2
← ei,t−1 − ηri,t

9: if mod (t,H) 6= 0 then
10: xi,t ← xi,t− 1

2
, ei,t ← ei,t− 1

2

11: else
12: e′

i,t− 1
2

, ei,t ← PSync(ei,t− 1
2
, C1)

13: xi,t ← xi,t− 1
2
− ei,t− 1

2
+ e′

i,t− 1
2

14: end if
15: end for
16: end for

Algorithm 6 Partial Synchronization (PSync)
1: function PSYNC(vi ∈ Rd, C - compressor)
2: On worker i:
3: v′i = C(vi)
4: ri = vi − v′i
5: Partial synchronization:
6: v̄′ = 1

n

∑
i∈[n] v

′
i

7: v′i = v̄′ + ri
8: return v′i, ri
9: end function

Algorithm 7 CSEA (Implementation I)
1: Input: C1 - compressor
2: Initialize xi,0 = x̂0 ∈ Rd, ei,0 = 0,∀i ∈ [n]
3: for all iteration t ∈ [T ] do
4: for all Workers i ∈ [n] in parallel do
5: pi,t ← ei,t−1 − η∇f(xi,t−1; zi,t)
6: e′i,t, ei,t ← PSync(pi,t, C1)
7: xi,t ← xi,t−1 + e′i,t − ei,t−1

8: end for
9: end for

Algorithm 8 CSER-PL (Implementation I)
1: Input: C1 - compressor, H > 0 - synchro-

nization interval
2: Initialize xi,0 = x̂0 ∈ Rd, ei,0 = 0,∀i ∈ [n]
3: for all iteration t ∈ [T ] do
4: for all Workers i ∈ [n] in parallel do
5: gi,t ← ∇f(xi,t−1; zi,t)
6: xi,t− 1

2
← xi,t−1 − ηgi,t

7: ei,t− 1
2
← ei,t−1 − ηgi,t

8: if mod (t,H) 6= 0 then
9: xi,t ← xi,t− 1

2
, ei,t ← ei,t− 1

2

10: else
11: e′i,t, ei,t ← PSync(ei,t− 1

2
, C1)

12: xi,t ← xi,t− 1
2

+ e′i,t − ei,t− 1
2

13: end if
14: end for
15: end for
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A.1.2 Partial-local-SGD

Taking C2(v) = 0, we recover a special case of CSER, which is similar to QSparse-local-SGD [3].
To distinguish it from Qsparse-local-SGD, we call this special case “Partial-local-SGD”, or CSER-
PL (partial-local special case of CSER) in brief. While QSparse-local-SGD keeps the local models
fully synchronized after every communication round, CSER-PL maintains different local models
across the workers. Taking δ1 = 1, CSER-PL recovers local SGD with synchronization interval H .

A.2 Comparision to the existing work

A.2.1 CSEA

If we take C2(v) = 0 (i.e., no synchronization at all) and H = 1, then we recover a special case
similar to EF-SGD, with the same communication overhead, if the same compressor C1 is used.

Algorithm 9 CSEA
1: Input: C1 - compressor
2: Initialize xi,0 = x̂0 ∈ Rd, ei,t = 0,∀i ∈ [n]
3: for all iteration t ∈ [T ] do
4: for all Workers i ∈ [n] in parallel do
5: pi,t ← ei,t−1 − η∇f(xi,t−1; zi,t)
6: p′i,t ← C1(pi,t)
7: ei,t ← pi,t − p′i,t
8: p̄′t ← 1

n

∑
i∈[n] p

′
i,t

9: xi,t ← xi,t−1 − ei,t−1 + ei,t + p̄′t
10: end for
11: end for

Algorithm 10 EF-SGD
1: Input: C1 - compressor
2: Initialize xi,0 = x̂0 ∈ Rd, ei,t = 0,∀i ∈ [n]
3: for all iteration t ∈ [T ] do
4: for all Workers i ∈ [n] in parallel do
5: pi,t ← ei,t−1 − η∇f(xi,t−1; zi,t)
6: p′i,t ← C1(pi,t)
7: ei,t ← pi,t − p′i,t
8: p̄′t ← 1

n

∑
i∈[n] p

′
i,t

9: xi,t ← xi,t−1 + p̄′t
10: end for
11: end for

A.3 CSER-PL

By taking C2(v) = 0 (i.e., no partial synchronization of gradients), we recover a special case of
CSER, which is similar to Qspars-local-SGD. To distinguish it from Qsparse-local-SGD, we call
this special case “CSER-PL”, or CSER-PL in brief. The major differences between CSER-PL and
Qspars-local-SGD are shown below.

Note that we rewrite both algorithms into a new format for an easier comparison. Some notations are
inconsistent to Algorithm 2.

CSER-PL is more memory-efficient compared to Qsparse-local-SGD, since it does not maintain the
variable ri,t during the local updates.

13



Algorithm 11 CSER-PL
1: Input: C1 - compressor, H > 0 - synchro-

nization interval
2: Initialize xi,0 = x̂0 = 0,∀i ∈ [n]

3: Pass Initialize ri,0 = 0,∀i ∈ [n]

4: for all iteration t ∈ [T ] do
5: for all Workers i ∈ [n] in parallel do
6: xi,t− 1

2
← xi,t−1 − η∇f(xi,t−1; zi,t)

7: if mod (t,H) 6= 0 then
8: xi,t ← xi,t− 1

2

9: x̂t ← x̂t−1

10: Pass
11: else
12: pi,t ← xi,t− 1

2
− x̂t

13: p′i,t ← C1(pi,t)
14: ei,t ← pi,t − p′i,t
15: p̄′t ← 1

n

∑
i∈[n] p

′
i,t

16: xi,t ← x̂t−1 + p̄′t + ei,t

17: x̂t ← x̂t−1 + p̄′t
18: end if
19: end for
20: end for

Algorithm 12 Qsparse-local-SGD
1: Input: C1 - compressor, H > 0 - synchro-

nization interval
2: Initialize xi,0 = x̂0 = 0,∀i ∈ [n]

3: Initialize ei,0 = 0,∀i ∈ [n]

4: for all iteration t ∈ [T ] do
5: for all Workers i ∈ [n] in parallel do
6: xi,t− 1

2
← xi,t−1 − η∇f(xi,t−1; zi,t)

7: if mod (t,H) 6= 0 then
8: xi,t ← xi,t− 1

2

9: x̂t ← x̂t−1

10: ei,t ← ei,t−1

11: else
12: pi,t ← ei,t−1 + xi,t− 1

2
− x̂t−1

13: p′i,t ← C1(pi,t)
14: ei,t ← pi,t − p′i,t
15: p̄′t ← 1

n

∑
i∈[n] p

′
i,t

16: xi,t ← x̂t−1 + p̄′t
17: x̂t ← x̂t−1 + p̄′t
18: end if
19: end for
20: end for

A.4 Special implementations with GRBS

Using GRBS as the compressor, the implementation of CSER can be simplified. For any block,
its local residual is either already assimilated into the local model, or reset to 0. Thus, we can
directly do partial synchronization on the local models xi,t, instead of the residuals ei,t. The detailed
implementations are shown in Algorithm 13, 14, and 15.

Algorithm 13 CSER (implementation II)
1: Input: C1, C2 - randomized sparsifiers, H >

0 - synchronization interval
2: xi,0 = x̂0 ∈ Rd,mi,0 = 0,∀i ∈ [n]
3: for all iteration t ∈ [T ] do
4: for all Workers i ∈ [n] in parallel do
5: pi,t ← Get_p(xi,t−1,mi,t−1)
6: p′i,t, _← PSync(pi,t, C2)
7: xi,t− 1

2
← xi,t−1 − p′i,t

8: if mod (t,H) 6= 0 then
9: xi,t ← xi,t− 1

2

10: else
11: xi,t, _← PSync(xi,t− 1

2
, C1)

12: end if
13: end for
14: end for

Algorithm 14 CSER-PL (implementation II)
1: Input: C1 - randomized sparsifier, H > 0 -

synchronization interval
2: xi,0 = x̂0 ∈ Rd,mi,0 = 0,∀i ∈ [n]
3: for all iteration t ∈ [T ] do
4: for all Workers i ∈ [n] in parallel do
5: pi,t ← Get_p(xi,t−1,mi,t−1)
6: xi,t− 1

2
← xi,t−1 − pi,t

7: if mod (t,H) 6= 0 then
8: xi,t ← xi,t− 1

2

9: else
10: xi,t, _← PSync(xi,t− 1

2
, C1)

11: end if
12: end for
13: end for

14



Algorithm 15 CSEA (implementation II)
1: Input: C1 - randomized sparsifier
2: xi,0 = x̂0 ∈ Rd,mi,0 = 0,∀i ∈ [n]
3: for all iteration t ∈ [T ] do
4: for all Workers i ∈ [n] in parallel do
5: pi,t ← Get_p(xi,t−1,mi,t−1)
6: xi,t− 1

2
← xi,t−1 − pi,t

7: xi,t, _← PSync(xi,t− 1
2
, C1)

8: end for
9: end for

Algorithm 16 Calculate update on worker i
1: function GET_P(xi,t−1,mi,t−1)
2: gi,t ← ∇f(xi,t−1; zi,t), zi,t ∼ Di
3: if use momentum then
4: mi,t ← βmi,t−1 + gi,t
5: pi,t ← η(βmi,t + gi,t)
6: else
7: pi,t ← ηgi,t
8: end if
9: return pi,t

10: end function

B Proofs

Lemma 1. (Bifurcated local models) ei,t,∀i ∈ [n], t maintains the differences between the local
models xi,t:

xi,t − ei,t = xj,t − ej,t,∀i, j ∈ [n], t.

Proof. We prove the lemma by induction.

For t = 0, we have xi,0 = x̂0, ei,0 = 0,∀i ∈ [n], thus xi,0 − ei,0 = xj,0 − ej,0,∀i, j ∈ [n].

Assume that

xi,t−1 − ei,t−1 = xj,t−1 − ej,t−1,∀i, j ∈ [n],

then we have 2 cases:

Case 1: mod (t,H) 6= 0. Then we have

xi,t = xi,t− 1
2

= xi,t−1 − η

 1

n

∑
k∈[n]

C2(gk,t) + ri,t

 ,
ei,t = ei,t− 1

2
= ei,t−1 − ηri,t.

Thus, we have

xi,t − ei,t = xi,t−1 − ei,t−1 − η
1

n

∑
k∈[n]

C2(gk,t) = xj,t−1 − ej,t−1 − η
1

n

∑
k∈[n]

C2(gk,t) = xj,t − ej,t

Case 2: mod (t,H) = 0. Note that in Case 1 we have already proved

xi,t− 1
2
− ei,t− 1

2
= xj,t− 1

2
− ej,t− 1

2
,∀i, j ∈ [n].

Then, we have

xi,t = xi,t− 1
2
− ei,t− 1

2
+ e′i,t− 1

2
= xi,t− 1

2
− ei,t− 1

2
+

[
1

n

∑
k

C1(ek,t− 1
2
) + ei,t

]
.

Thus, we get

xi,t − ei,t = xi,t− 1
2
− ei,t− 1

2
+

1

n

∑
k

C1(ek,t− 1
2
) = xj,t− 1

2
− ej,t− 1

2
+

1

n

∑
k

C1(ek,t− 1
2
) = xj,t − ej,t.

Lemma 3. (Error Reset of CSER) After every H steps, the local error will be reset to

E ‖ei,t‖2 ≤
(1− δ2)(1− δ1)η2H2V2(

1−
√

1− δ1
)2 ,

for ∀t ∈ [T ], mod (t,H) = 0.
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Proof. First, we establish the bound of the local error E‖ei,t− 1
2
‖2 before (partial) synchronization.

Case I: For t = 0, we have no local error:
ei,0 = 0.

Case II: For t = H , we have the local error:
E‖ei,t− 1

2
‖2

= E

∥∥∥∥∥−η
H∑
τ=1

ri,τ

∥∥∥∥∥
2

= η2E

∥∥∥∥∥
H∑
τ=1

ri,τ

∥∥∥∥∥
2

≤ η2H

H∑
τ=1

E ‖ri,τ‖2

= η2H

H∑
τ=1

E ‖gi,τ − C1 (gi,τ )‖2

≤ η2H(1− δ2)

H∑
τ=1

E ‖gi,τ‖2

≤ (1− δ2)η2H2V2.

Case III: For any t ∈ [T ] such that mod (t,H) = 0, t > H , we can bound the local error:

E‖ei,t− 1
2
‖2 = E

∥∥∥∥∥ei,t−H − η
t∑

τ=t−H+1

ri,τ

∥∥∥∥∥
2

.

Note that after (partial) synchronization, the local error is reset as ei,t−H = ei,t−H− 1
2
−

C2
(
ei,t−H− 1

2

)
.

Thus, we have
E‖ei,t− 1

2
‖2

= E

∥∥∥∥∥ei,t−H− 1
2
− C2

(
ei,t−H− 1

2

)
− η

t∑
τ=t−H+1

(gi,τ − C1 (gi,τ ))

∥∥∥∥∥
2

≤ (1 + a)E
∥∥∥ei,t−H− 1

2
− C2

(
ei,t−H− 1

2

)∥∥∥2

+ (1 + 1/a)E

∥∥∥∥∥η
t∑

τ=t−H+1

(gi,τ − C1 (gi,τ ))

∥∥∥∥∥
2

≤ (1 + a)(1− δ1)E
∥∥∥ei,t−H− 1

2

∥∥∥2

+ (1 + 1/a)η2H(1− δ2)

t∑
τ=t−H+1

E ‖gi,τ‖2

≤ (1 + a)(1− δ1)E
∥∥∥ei,t−H− 1

2

∥∥∥2

+ (1 + 1/a)(1− δ2)η2H2V2

≤ (1 + 1/a)(1− δ2)η2H2V2

+∞∑
τ=0

[(1 + a)(1− δ1)]
τ

≤ 1 + 1/a

1− (1 + a)(1− δ1)
(1− δ2)η2H2V2,

for any a > 0, such that (1 + a)(1 − δ1) ∈ (0, 1). The bound above is minimized when we take
a = 1√

1−δ1
− 1, which results in

E‖ei,t− 1
2
‖2 ≤ (1− δ2)η2H2V2(

1−
√

1− δ1
)2 .
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Combining all the 3 cases above, we obtain that for ∀t ∈ [T ] such that mod (t,H) = 0:

E‖ei,t− 1
2
‖2 ≤ (1− δ2)η2H2V2(

1−
√

1− δ1
)2 .

Then, after the (partial) synchronization, we have

E ‖ei,t‖2

≤ (1− δ1)E ‖ei,t‖2

≤ (1− δ2)(1− δ1)η2H2V2(
1−
√

1− δ1
)2 ,

for ∀t ∈ [T ], mod (t,H) = 0.

Theorem 1. Taking η ≤ 1
L , after T iterations, Algorithm 2 has the following error bound:

1

T

T∑
t=1

E
[
‖∇F (x̄t−1)‖2

]
≤ 2 [F (x̄0)− F (x∗)]

ηT
+

[
(1− δ1)(

1−
√

1− δ1
)2 + 1

]
2(1− δ2)η2L2H2V2 +

LηV1

n

≤ 2 [F (x̄0)− F (x∗)]

ηT
+

[
4(1− δ1)

δ2
1

+ 1

]
2(1− δ2)η2L2H2V2 +

LηV1

n
.

Proof. Conditional on the previous states (xi,t), using smoothness, we have

E [F (x̄t)] ≤ F (x̄t−1) + E [〈∇F (x̄t−1), x̄t − x̄t−1〉]︸ ︷︷ ︸
1©

+
L

2
E
[
‖x̄t − x̄t−1‖2

]︸ ︷︷ ︸
2©

.

We bound the terms step by step.

Note that E [gi,t] = ∇Fi(xi,t−1). Thus, we have

2©
= E‖x̄t − x̄t−1‖2

= E

∥∥∥∥∥∥ ηn
∑
i∈[n]

gi,t

∥∥∥∥∥∥
2

= η2E

∥∥∥∥∥∥ 1

n

∑
i∈[n]

(gi,t −∇Fi(xi,t−1) +∇Fi(xi,t−1))

∥∥∥∥∥∥
2

= η2E

∥∥∥∥∥∥ 1

n

∑
i∈[n]

(gi,t −∇Fi(xi,t−1))

∥∥∥∥∥∥
2

+ η2E

∥∥∥∥∥∥ 1

n

∑
i∈[n]

∇Fi(xi,t−1)

∥∥∥∥∥∥
2

≤ η2

n
V1 + η2E

∥∥∥∥∥∥ 1

n

∑
i∈[n]

∇Fi(xi,t−1)

∥∥∥∥∥∥
2

.

1©
= E [〈∇F (x̄t−1), x̄t − x̄t−1〉]

= −ηE

〈∇F (x̄t−1),
1

n

∑
i∈[n]

gi,t

〉
17



= −η
〈
∇F (x̄t−1),

1

n

∑
i∈[n]

∇Fi(xi,t−1)

〉

= −η
2
‖∇F (x̄t−1)‖2 − η

2

∥∥∥∥∥∥ 1

n

∑
i∈[n]

∇Fi(xi,t−1)

∥∥∥∥∥∥
2

+
η

2

∥∥∥∥∥∥∇F (x̄t−1)− 1

n

∑
i∈[n]

∇Fi(xi,t−1)

∥∥∥∥∥∥
2

︸ ︷︷ ︸
3©

.

Using smoothness, we have

3©

=

∥∥∥∥∥∥∇F (x̄t−1)− 1

n

∑
i∈[n]

∇Fi(xi,t−1)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1

n

∑
i∈[n]

∇Fi(x̄t−1)− 1

n

∑
i∈[n]

∇Fi(xi,t−1)

∥∥∥∥∥∥
2

≤ 1

n

∑
i∈[n]

E ‖∇Fi(x̄t−1)−∇Fi(xi,t−1)‖2

≤ L2

n

∑
i∈[n]

E ‖x̄t−1 − xi,t−1‖2 .

Without loss of generality, assume that the latest synchronized model is xi,t0 , where t0 ≤ t− 1.

Thus, we have

xi,t−1 = xi,t0 − η
t−1∑

τ=t0+1

g′i,τ ,

x̄t−1 =
1

n

∑
j∈[n]

xj,t0 − η
t−1∑

τ=t0+1

 1

n

∑
j∈[n]

g′i,τ

 ,

which implies that

x̄t−1 − xi,t−1 =
1

n

∑
j∈[n]

xj,t0 − xi,t0 + η

t−1∑
τ=t0+1

g′i,τ − 1

n

∑
j∈[n]

g′j,τ

 .

It is easy to check that
1

n

∑
j∈[n]

xj,t0 − xi,t0 =
1

n

∑
j∈[n]

ej,t0 − ei,t0 ,

and

g′i,τ −
1

n

∑
j∈[n]

g′j,τ

= ri,τ −
1

n

∑
j∈[n]

rj,τ

= gi,τ − C1 (gi,τ )− 1

n

∑
j∈[n]

(gj,τ − C1 (gi,τ )) .

Thus, we have

3©

18



≤ L2

n

∑
i∈[n]

E

∥∥∥∥∥∥ 1

n

∑
j∈[n]

xj,t0 − xi,t0 + η

t−1∑
τ=t0+1

g′i,τ − 1

n

∑
j∈[n]

g′j,τ

∥∥∥∥∥∥
2

≤ 2L2

n

∑
i∈[n]

E

∥∥∥∥∥∥ 1

n

∑
j∈[n]

xj,t0 − xi,t0

∥∥∥∥∥∥
2

+
2L2

n

∑
i∈[n]

E

∥∥∥∥∥∥η
t−1∑

τ=t0+1

g′i,τ − 1

n

∑
j∈[n]

g′j,τ

∥∥∥∥∥∥
2

≤ 2L2

n

∑
i∈[n]

E

∥∥∥∥∥∥ 1

n

∑
j∈[n]

ej,t0 − ei,t0

∥∥∥∥∥∥
2

+
2L2η2H

n

t−1∑
τ=t0+1

∑
i∈[n]

E

∥∥∥∥∥∥gi,τ − C1 (gi,τ )− 1

n

∑
j∈[n]

(gj,τ − C1 (gi,τ ))

∥∥∥∥∥∥
2

≤ 2L2

n

∑
i∈[n]

E ‖ei,t0‖2 +
2L2η2H

n

t−1∑
τ=t0+1

∑
i∈[n]

E ‖gi,τ − C1 (gi,τ )‖2

≤ (1− δ2)(1− δ1)η2H22L2V2(
1−
√

1− δ1
)2 +

2L2η2H(1− δ2)

n

t−1∑
τ=t0+1

∑
i∈[n]

E ‖gi,τ‖2

≤ 2(1− δ2)(1− δ1)η2H2L2V2(
1−
√

1− δ1
)2 + 2(1− δ2)η2L2H2V2

Put together all the ingredients above, using η ≤ 1
L , we have

E [F (x̄t)]

≤ F (x̄t−1) + 1©+
L

2
2©

≤ F (x̄t−1)− η

2
‖∇F (x̄t−1)‖2 − η

2

∥∥∥∥∥∥ 1

n

∑
i∈[n]

∇Fi(xi,t−1)

∥∥∥∥∥∥
2

+
η

2
3©+

L

2
2©

≤ F (x̄t−1)− η

2
‖∇F (x̄t−1)‖2 − η

2

∥∥∥∥∥∥ 1

n

∑
i∈[n]

∇Fi(xi,t−1)

∥∥∥∥∥∥
2

+
(1− δ2)(1− δ1)η3H2L2V2(

1−
√

1− δ1
)2 + (1− δ2)η3L2H2V2

+
L

2

η2

n
V1 + η2E

∥∥∥∥∥∥ 1

n

∑
i∈[n]

∇Fi(xi,t−1)

∥∥∥∥∥∥
2


= F (x̄t−1)− η

2
‖∇F (x̄t−1)‖2 +

Lη2 − η
2

∥∥∥∥∥∥ 1

n

∑
i∈[n]

∇Fi(xi,t−1)

∥∥∥∥∥∥
2

+
(1− δ2)(1− δ1)η3H2L2V2(

1−
√

1− δ1
)2 + (1− δ2)η3L2H2V2 +

Lη2

2n
V1

= F (x̄t−1)− η

2
‖∇F (x̄t−1)‖2 +

[
(1− δ1)(

1−
√

1− δ1
)2 + 1

]
(1− δ2)η3L2H2V2 +

Lη2

2n
V1.
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By telescoping and taking total expectation, after T iterations, we have

1

T

T∑
t=1

E
[
‖∇F (x̄t−1)‖2

]
≤ 2 [F (x̄0)− F (x∗)]

ηT
+

[
(1− δ1)(

1−
√

1− δ1
)2 + 1

]
2(1− δ2)η2L2H2V2 +

LηV1

n

≤ 2 [F (x̄0)− F (x∗)]

ηT
+

[
(1− δ1)(

1−
√

1− δ1
)2 + 1

]
2(1− δ2)η2L2H2V2 +

LηV1

n
.

Corollary 1. Taking η = min

{
γ√

T/n+[4(1−δ1)/δ21+1]
1/3

21/3(1−δ2)1/3H2/3T 1/3
, 1
L

}
for some γ > 0, after T � n iterations, Algorithm 2 (CSER) con-
verges to a critical point: 1

T

∑T
t=1 E

[
‖∇F (x̄t−1)‖2

]
≤ 1√

nT

[
Fo

γ + γLV1

]
+

[4(1−δ1)/δ21+1]
1/3

21/3(1−δ2)1/3H2/3

T 2/3

[
Fo

γ + γ2L2V2

]
≤ O

(
1√
nT

)
.

Proof. From Theorem 1, we have

1

T

T∑
t=1

E
[
‖∇F (x̄t−1)‖2

]
≤ 2 [F (x̄0)− F (x∗)]

ηT
+

[
4(1− δ1)

δ2
1

+ 1

]
2(1− δ2)η2L2H2V2 +

LηV1

n
.

Denote Fo = 2 [F (x̄0)− F (x∗)], and C =
[

4(1−δ1)
δ21

+ 1
]

2(1 − δ2)H2. Taking η =

min

{
γ√

T/n+C1/3T 1/3
, 1
L

}
, we have

1

T

T∑
t=1

E
[
‖∇F (x̄t−1)‖2

]
≤ Fo
ηT

+ Cη2L2V2 +
LηV1

n

≤ Fo
T

√
T/n+ C1/3T 1/3

γ
+ CL2V2

γ2

C2/3T 2/3
+
LV1

n

γ√
T/n

≤ Fo

γ
√
nT

+
FoC

1/3

γT 2/3
+
C1/3γ2L2V2

T 2/3
+
γLV1√
nT

≤ 1√
nT

[
Fo
γ

+ γLV1

]
+
C1/3

T 2/3

[
Fo
γ

+ γ2L2V2

]
.

Lemma 4. (Bounded update) For any local update, we have E ‖pi,t‖2 ≤ η2

(1−β)2V2, ∀i, t.

Proof. It is easy to check that

mi,t =

t∑
τ=1

βt−τgi,τ .

Thus, taking st =
∑t
τ=0 β

τ , we have

E ‖pi,t‖2
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= η2E ‖βmi,t + gi,t‖2

= η2E

∥∥∥∥∥
(
β

t∑
τ=1

βt−τgi,τ

)
+ gi,t

∥∥∥∥∥
2

= η2s2
tE

∥∥∥∥∥
(

t∑
τ=1

βt−τ+1

st
gi,τ

)
+

1

st
gi,t

∥∥∥∥∥
2

≤ η2s2
t

[(
t∑

τ=1

βt−τ+1

st
E ‖gi,τ‖2

)
+

1

st
E ‖gi,t‖2

]
. Jensen’s inequality

≤ η2s2
t

[(
t∑

τ=1

βt−τ+1

st
V2

)
+

1

st
V2

]
. Assumption 2

= η2st

[(
t∑

τ=1

βt−τ+1V2

)
+ V2

]

= η2st

[(
t∑

τ=1

βt−τ+1V2

)
+ V2

]

= η2st

(
t+1∑
τ=1

βt−τ+1V2

)
= η2s2

tV2

≤ η2

(1− β)2
V2.

Lemma 5. (Error Reset of M-CSER) With momentum, after every H steps, the local error will be
reset to

E ‖ei,t‖2 ≤
(1− δ2)(1− δ1)η2H2V2(
1−
√

1− δ1
)2

(1− β)2
,

for ∀t ∈ [T ], mod (t,H) = 0.

Proof. First, we establish the bound of the local error E‖ei,t− 1
2
‖2 before (partial) synchronization.

Case I: For t = 0, we have no local error:

ei,0 = 0.

Case II: For t = H , we have the local error:

E‖ei,t− 1
2
‖2

= E

∥∥∥∥∥−
H∑
τ=1

ri,τ

∥∥∥∥∥
2

= E

∥∥∥∥∥
H∑
τ=1

ri,τ

∥∥∥∥∥
2

≤ H
H∑
τ=1

E ‖ri,τ‖2

= H

H∑
τ=1

E ‖pi,τ − C1 (pi,τ )‖2
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≤ H(1− δ2)

H∑
τ=1

E ‖pi,τ‖2

≤ (1− δ2)η2H2

(1− β)2
V2. . Lemma 4

Case III: For any t ∈ [T ] such that mod (t,H) = 0, t > H , we can bound the local error:

E‖ei,t− 1
2
‖2 = E

∥∥∥∥∥ei,t−H −
t∑

τ=t−H+1

ri,τ

∥∥∥∥∥
2

.

Note that after (partial) synchronization, the local error is reset as ei,t−H = ei,t−H− 1
2
−

C2
(
ei,t−H− 1

2

)
.

Thus, we have

E‖ei,t− 1
2
‖2

= E

∥∥∥∥∥ei,t−H− 1
2
− C2

(
ei,t−H− 1

2

)
−

t∑
τ=t−H+1

(pi,τ − C1 (pi,τ ))

∥∥∥∥∥
2

≤ (1 + a)E
∥∥∥ei,t−H− 1

2
− C2

(
ei,t−H− 1

2

)∥∥∥2

+ (1 + 1/a)E

∥∥∥∥∥
t∑

τ=t−H+1

(pi,τ − C1 (pi,τ ))

∥∥∥∥∥
2

≤ (1 + a)(1− δ1)E
∥∥∥ei,t−H− 1

2

∥∥∥2

+ (1 + 1/a)η2H(1− δ2)

t∑
τ=t−H+1

E ‖pi,τ‖2

≤ (1 + a)(1− δ1)E
∥∥∥ei,t−H− 1

2

∥∥∥2

+
(1 + 1/a)(1− δ2)η2H2

(1− β)2
V2

≤ (1 + 1/a)(1− δ2)η2H2

(1− β)2
V2

+∞∑
τ=0

[(1 + a)(1− δ1)]
τ

≤ 1 + 1/a

1− (1 + a)(1− δ1)

(1− δ2)η2H2

(1− β)2
V2,

for any a > 0, such that (1 + a)(1 − δ1) ∈ (0, 1). The bound above is minimized when we take
a = 1√

1−δ1
− 1, which results in

E‖ei,t− 1
2
‖2 ≤ (1− δ2)η2H2V2(

1−
√

1− δ1
)2

(1− β)2
.

Combining all the 3 cases above, we obtain that for ∀t ∈ [T ] such that mod (t,H) = 0:

E‖ei,t− 1
2
‖2 ≤ (1− δ2)η2H2V2(

1−
√

1− δ1
)2

(1− β)2
.

Then, after the (partial) synchronization, we have

E ‖ei,t‖2

= E
∥∥∥ei,t− 1

2
− C2

(
ei,t− 1

2

)∥∥∥2

≤ (1− δ1)E
∥∥∥ei,t− 1

2

∥∥∥2

≤ (1− δ2)(1− δ1)η2H2V2(
1−
√

1− δ1
)2

(1− β)2
,

for ∀t ∈ [T ], mod (t,H) = 0.
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Theorem 2. Taking η ≤ min{ 1
2 ,

1−β
2L }, after T iterations, Algorithm 4 has the following error

bound:

1

T

T∑
t=1

E
[
‖∇F (x̄t−1)‖2

]
≤ 2(1− β) [F (x̄0)− F (x∗)]

ηT
+
η2β4L2V2

(1− β)4
+

ηLV1

n(1− β)

+

(
1− δ1(

1−
√

1− δ1
)2 + 1

)
2(1− δ2)η2H2L2V2

(1− β)2

≤ 2(1− β) [F (x̄0)− F (x∗)]

ηT
+
η2β4L2V2

(1− β)4
+

ηLV1

n(1− β)

+

(
4(1− δ1)

δ2
1

+ 1

)
2(1− δ2)η2H2L2V2

(1− β)2
.

Proof. To prove the convergence, we introduce 2 sequences of auxiliary variables: {x̄t, t ≥ 0} and
{z̄t, t ≥ 0}, where

x̄t =
1

n

∑
i∈[n]

xi,t,∀t ≥ 0,

z̄t =

{
x0, t = 0,

x̄t − ηβ2

1−β
1
n

∑
i∈[n]mi,t, t ≥ 1.

For t = 0, we have

z̄t+1 − z̄t
= z̄1 − z̄0

= x̄1 −
ηβ2

1− β
1

n

∑
i∈[n]

mi,1 − x̄0

= − 1

n

∑
i∈[n]

pi,1 −
ηβ2

1− β
1

n

∑
i∈[n]

mi,1

= −η 1

n

∑
i∈[n]

(βmi,1 + gi,1)− ηβ2

1− β
1

n

∑
i∈[n]

mi,1

= −η 1

n

∑
i∈[n]

[
(β +

β2

1− β )mi,1 + gi,1

]

= −η 1

n

∑
i∈[n]

[
β

1− β gi,1 + gi,1

]
= − η

1− β
1

n

∑
i∈[n]

gi,t+1

For t ≥ 1, we have

z̄t+1 − z̄t

= x̄t+1 −
ηβ2

1− β
1

n

∑
i∈[n]

mi,t+1 − x̄t +
ηβ2

1− β
1

n

∑
i∈[n]

mi,t

= − 1

n

∑
i∈[n]

pi,t+1 −
ηβ2

1− β
1

n

∑
i∈[n]

mi,t+1 +
ηβ2

1− β
1

n

∑
i∈[n]

mi,t
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= −η 1

n

∑
i∈[n]

(βmi,t+1 + gi,t+1)− ηβ2

1− β
1

n

∑
i∈[n]

mi,t+1 +
ηβ2

1− β
1

n

∑
i∈[n]

mi,t

= −η 1

n

∑
i∈[n]

gi,t+1 −
ηβ

1− β
1

n

∑
i∈[n]

mi,t+1 +
ηβ2

1− β
1

n

∑
i∈[n]

mi,t

= −η 1

n

∑
i∈[n]

gi,t+1 −
ηβ

1− β
1

n

∑
i∈[n]

(βmi,t + gi,t+1) +
ηβ2

1− β
1

n

∑
i∈[n]

mi,t

= − η

1− β
1

n

∑
i∈[n]

gi,t+1

Thus, for ∀t ≥ 0, we have

z̄t+1 − z̄t = − η

1− β
1

n

∑
i∈[n]

gi,t+1. (1)

Conditional on all the states previous to xi,t, using smoothness, we have

E [F (z̄t)] ≤ F (z̄t−1) + E [〈∇F (z̄t−1), z̄t − z̄t−1〉]︸ ︷︷ ︸
1©

+
L

2
E
[
‖z̄t − z̄t−1‖2

]︸ ︷︷ ︸
2©

.

We bound the terms step by step.

Note that E [gi,t] = ∇Fi(xi,t−1). Thus, for 2©, we have

2©
= E‖z̄t − z̄t−1‖2

= E

∥∥∥∥∥∥ η

1− β
1

n

∑
i∈[n]

gi,t

∥∥∥∥∥∥
2

=
η2

(1− β)2
E

∥∥∥∥∥∥ 1

n

∑
i∈[n]

(gi,t −∇Fi(xi,t−1) +∇Fi(xi,t−1))

∥∥∥∥∥∥
2

=
η2

(1− β)2
E

∥∥∥∥∥∥ 1

n

∑
i∈[n]

(gi,t −∇Fi(xi,t−1))

∥∥∥∥∥∥
2

+
η2

(1− β)2
E

∥∥∥∥∥∥ 1

n

∑
i∈[n]

∇Fi(xi,t−1)

∥∥∥∥∥∥
2

=
η2

n(1− β)2
V1 +

η2

(1− β)2
E

∥∥∥∥∥∥ 1

n

∑
i∈[n]

∇Fi(xi,t−1)

∥∥∥∥∥∥
2

.

Then, for 1©, we have

1©
= E [〈∇F (z̄t−1), z̄t − z̄t−1〉]

= E

〈∇F (z̄t−1),− η

1− β
1

n

∑
i∈[n]

gi,t

〉
= − η

1− βE
〈
∇F (z̄t−1),

1

n

∑
i∈[n]

∇Fi(xi,t−1)

〉
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= − η

1− βE
〈
∇F (z̄t−1)−∇F (x̄t−1),

1

n

∑
i∈[n]

∇Fi(xi,t−1)

〉
︸ ︷︷ ︸

3©

− η

1− βE
〈
∇F (x̄t−1),

1

n

∑
i∈[n]

∇Fi(xi,t−1)

〉
︸ ︷︷ ︸

4©

.

For 3©, we have

3©

= − η

1− βE
〈
∇F (z̄t−1)−∇F (x̄t−1),

1

n

∑
i∈[n]

∇Fi(xi,t−1)

〉

= − 1

1− βE
〈
∇F (z̄t−1)−∇F (x̄t−1),

η

n

∑
i∈[n]

∇Fi(xi,t−1)

〉

≤ 1

2(1− β)
E ‖∇F (z̄t−1)−∇F (x̄t−1)‖2︸ ︷︷ ︸

5©
+

η2

2(1− β)
E

∥∥∥∥∥∥ 1

n

∑
i∈[n]

∇Fi(xi,t−1)

∥∥∥∥∥∥
2

,

where (using smoothness)

5©
= E ‖∇F (z̄t−1)−∇F (x̄t−1)‖2

≤ L2E ‖z̄t−1 − x̄t−1‖2

= L2E

∥∥∥∥∥∥ ηβ2

1− β
1

n

∑
i∈[n]

mi,t−1

∥∥∥∥∥∥
2

=
L2η2β4

(1− β)2

∥∥∥∥∥∥ 1

n

∑
i∈[n]

mi,t−1

∥∥∥∥∥∥
2

≤ L2η2β4

(1− β)4
V2.

For 4©, we have

4©

= − η

1− βE
〈
∇F (x̄t−1),

1

n

∑
i∈[n]

∇Fi(xi,t−1)

〉

= − η

1− β

1

2
E ‖∇F (x̄t−1)‖2 +

1

2
E

∥∥∥∥∥∥ 1

n

∑
i∈[n]

∇Fi(xi,t−1)

∥∥∥∥∥∥
2

− 1

2
E

∥∥∥∥∥∥∇F (x̄t−1)− 1

n

∑
i∈[n]

∇Fi(xi,t−1)

∥∥∥∥∥∥
2


= − η

2(1− β)
E ‖∇F (x̄t−1)‖2 − η

2(1− β)
E

∥∥∥∥∥∥ 1

n

∑
i∈[n]

∇Fi(xi,t−1)

∥∥∥∥∥∥
2

+
η

2(1− β)
E

∥∥∥∥∥∥∇F (x̄t−1)− 1

n

∑
i∈[n]

∇Fi(xi,t−1)

∥∥∥∥∥∥
2

︸ ︷︷ ︸
6©

,

where

6©
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= E

∥∥∥∥∥∥∇F (x̄t−1)− 1

n

∑
i∈[n]

∇Fi(xi,t−1)

∥∥∥∥∥∥
2

= E

∥∥∥∥∥∥ 1

n

∑
i∈[n]

∇Fi(x̄t−1)− 1

n

∑
i∈[n]

∇Fi(xi,t−1)

∥∥∥∥∥∥
2

≤ 1

n

∑
i∈[n]

E ‖∇Fi(x̄t−1)−∇Fi(xi,t−1)‖2

≤ L2

n

∑
i∈[n]

E ‖x̄t−1 − xi,t−1‖2 .

Without loss of generality, assume that the latest synchronized model is xi,t0 , where t0 ≤ t − 1,
mod (t0, H) = 0. Thus, we have

xi,t−1 = xi,t0 −
t−1∑

τ=t0+1

p′i,τ ,

x̄t−1 =
1

n

∑
j∈[n]

xj,t0 −
t−1∑

τ=t0+1

 1

n

∑
j∈[n]

pi,τ

 ,

which implies that

x̄t−1 − xi,t−1 =
1

n

∑
j∈[n]

xj,t0 − xi,t0 +

t−1∑
τ=t0+1

p′i,τ − 1

n

∑
j∈[n]

pj,τ

 .

It is easy to check that

1

n

∑
j∈[n]

xj,t0 − xi,t0

=
1

n

∑
j∈[n]

ej,t0 − ei,t0 ,

and

p′i,τ −
1

n

∑
j∈[n]

pj,τ

= ri,τ −
1

n

∑
j∈[n]

rj,τ

= pi,τ − C1(pi,τ )− 1

n

∑
j∈[n]

(pj,τ − C1(pj,τ ))

Then, we have

6©
≤ L2

n

∑
i∈[n]

E ‖x̄t−1 − xi,t−1‖2

≤ 2L2

n

∑
i∈[n]

E

∥∥∥∥∥∥ 1

n

∑
j∈[n]

ej,t0 − ei,t0

∥∥∥∥∥∥
2

26



+
2L2

n

∑
i∈[n]

E

∥∥∥∥∥∥
t−1∑

τ=t0+1

pi,τ − C1(pi,τ )− 1

n

∑
j∈[n]

(pj,τ − C1(pj,τ ))

∥∥∥∥∥∥
2

≤ 2L2

n

∑
i∈[n]

E ‖ei,t0‖2 +
2L2H

n

∑
i∈[n]

t−1∑
τ=t0+1

E ‖pi,τ − C1(pi,τ )‖2

≤ 2(1− δ2)(1− δ1)η2H2L2V2(
1−
√

1− δ1
)2

(1− β)2
+

2L2H

n

∑
i∈[n]

t−1∑
τ=t0+1

E ‖pi,τ − C1(pi,τ )‖2 . Lemma 5

≤ 2(1− δ2)(1− δ1)η2H2L2V2(
1−
√

1− δ1
)2

(1− β)2
+

2(1− δ2)HL2

n

∑
i∈[n]

t−1∑
τ=t0+1

E ‖pi,τ‖2

≤ 2(1− δ2)(1− δ1)η2H2L2V2(
1−
√

1− δ1
)2

(1− β)2
+

2(1− δ2)η2H2L2V2

(1− β)2
. Lemma 4

≤
(

1− δ1(
1−
√

1− δ1
)2 + 1

)
2(1− δ2)η2H2L2V2

(1− β)2
.

Finally, combining all the ingredients above, we have
E [F (z̄t)− F (z̄t−1)]

≤ 1©+
L

2
2©

= 3©+ 4©+
L

2

 η2

n(1− β)2
V1 +

η2

(1− β)2
E

∥∥∥∥∥∥ 1

n

∑
i∈[n]

∇Fi(xi,t−1)

∥∥∥∥∥∥
2


≤ 1

2(1− β)
5©+

η2

2(1− β)
E

∥∥∥∥∥∥ 1

n

∑
i∈[n]

∇Fi(xi,t−1)

∥∥∥∥∥∥
2

− η

2(1− β)
E ‖∇F (x̄t−1)‖2 − η

2(1− β)
E

∥∥∥∥∥∥ 1

n

∑
i∈[n]

∇Fi(xi,t−1)

∥∥∥∥∥∥
2

+
η

2(1− β)
6©

+
L

2

 η2

n(1− β)2
V1 +

η2

(1− β)2
E

∥∥∥∥∥∥ 1

n

∑
i∈[n]

∇Fi(xi,t−1)

∥∥∥∥∥∥
2


≤ 1

2(1− β)

L2η2β4

(1− β)4
V2 +

η2

2(1− β)
E

∥∥∥∥∥∥ 1

n

∑
i∈[n]

∇Fi(xi,t−1)

∥∥∥∥∥∥
2

− η

2(1− β)
‖∇F (x̄t−1)‖2 − η

2(1− β)
E

∥∥∥∥∥∥ 1

n

∑
i∈[n]

∇Fi(xi,t−1)

∥∥∥∥∥∥
2

+
η

2(1− β)

(
1− δ1(

1−
√

1− δ1
)2 + 1

)
2(1− δ2)η2H2L2V2

(1− β)2

+
L

2

 η2

n(1− β)2
V1 +

η2

(1− β)2
E

∥∥∥∥∥∥ 1

n

∑
i∈[n]

∇Fi(xi,t−1)

∥∥∥∥∥∥
2


≤ 1

2(1− β)

L2η2β4

(1− β)4
V2 +

L

2

η2

n(1− β)2
V1 −

η

2(1− β)
‖∇F (x̄t−1)‖2

. using η ≤ min{ 1
2 ,

1−β
2L }
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+
η

2(1− β)

(
1− δ1(

1−
√

1− δ1
)2 + 1

)
2(1− δ2)η2H2L2V2

(1− β)2

≤ η2β4L2V2

2(1− β)5
+

η2LV1

2n(1− β)2
− η

2(1− β)
‖∇F (x̄t−1)‖2

+

(
1− δ1(

1−
√

1− δ1
)2 + 1

)
(1− δ2)η3H2L2V2

(1− β)3
.

By re-arranging the terms, we have

‖∇F (x̄t−1)‖2

≤ 2(1− β)E [F (z̄t−1)− F (z̄t)]

η
+
η2β4L2V2

(1− β)4
+

ηLV1

n(1− β)

+

(
1− δ1(

1−
√

1− δ1
)2 + 1

)
2(1− δ2)η2H2L2V2

(1− β)2
.

By telescoping and taking total expectation, after T iterations, we have

1

T

T∑
t=1

E
[
‖∇F (x̄t−1)‖2

]
≤ 2(1− β) [F (x̄0)− F (x∗)]

ηT
+
η2β4L2V2

(1− β)4
+

ηLV1

n(1− β)

+

(
1− δ1(

1−
√

1− δ1
)2 + 1

)
2(1− δ2)η2H2L2V2

(1− β)2

Corollary 2. Taking η = min

{
γ√

T/n+[(4(1−δ1)/δ21+1)2(1−δ2)H2+1]
1/3

T 1/3
, 1

2

}
for

some γ > 0, after T ≥ 4γ2L2n
(1−β)2 iterations, Algorithm 4 (CSERM) converges to a

critical point: 1
T

∑T
t=1 E

[
‖∇F (x̄t−1)‖2

]
≤ 1√

nT

[
2(1−β)[F (x̄0)−F (x∗)]

γ + γLV1

(1−β)

]
+

[(4(1−δ1)/δ21+1)2(1−δ2)H2+1]
1/3

T 2/3

[
2(1−β)[F (x̄0)−F (x∗)]

γ + γ2L2V2

(1−β)4

]
.

Proof. From Theorem 2, taking η ≤ min{ 1
2 ,

1−β
2L }, we have

1

T

T∑
t=1

E
[
‖∇F (x̄t−1)‖2

]
≤ 2(1− β) [F (x̄0)− F (x∗)]

ηT
+
η2β4L2V2

(1− β)4
+

ηLV1

n(1− β)

+

(
4(1− δ1)

δ2
1

+ 1

)
2(1− δ2)η2H2L2V2

(1− β)2
.

Denote Fo = 2 [F (x̄0)− F (x∗)], and C =
[

4(1−δ1)
δ21

+ 1
]

2(1 − δ2)H2 + 1. Taking η =

min

{
γ√

T/n+C1/3T 1/3
, 1

2

}
, and T ≥ 4γ2L2n

(1−β)2 , we have η ≤ 1−β
2L . Thus, we have

1

T

T∑
t=1

E
[
‖∇F (x̄t−1)‖2

]
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≤ (1− β)Fo
ηT

+
LηV1

n(1− β)
+
Cη2L2V2

(1− β)4

≤ (1− β)Fo
T

√
T/n+ C1/3T 1/3

γ
+

LV1

n(1− β)

γ√
T/n

+ CL2V2
γ2

C2/3T 2/3(1− β)4

≤ (1− β)Fo

γ
√
nT

+
(1− β)FoC

1/3

γT 2/3
+
C1/3γ2L2V2

T 2/3(1− β)4
+

γLV1

(1− β)
√
nT

≤ 1√
nT

[
(1− β)

Fo
γ

+
γLV1

(1− β)

]
+
C1/3

T 2/3

[
(1− β)Fo

γ
+

γ2L2V2

(1− β)4

]
.

C Compressor configurations

In Table 3, we show the best configurations of the hyperparameters H , RC1 , and RC2 for each
optimizer and overall compression ratio RC . When tuning the hyperparameters, given the overall
compression ratio RC , we enumerate the hyperparameters that satisfies RC = 1

1/RC2+1/(RC1×H) ,
such that H ≥ 2, RC1 ≥ 1, and RC2 ≥ 4 are all varied in {2c : c ∈ {0, 1, . . . , 10}}
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Table 3: Compressor configurations

Optimizer Overall RC RC2 RC1 H
EF-SGD 2 2
QSparse-local-SGD 2 1 2
CSEA 2 2
CSER 2 4 2 2
EF-SGD 4 4
QSparse-local-SGD 4 1 4
CSEA 4 4
CSER 4 8 2 4
CSER-PL 4 2 2
EF-SGD 8 8
QSparse-local-SGD 8 1 8
CSEA 8 8
CSER 8 16 2 8
CSER-PL 8 2 4
EF-SGD 16 16
QSparse-local-SGD 16 4 4
CSEA 16 16
CSER 16 32 8 4
CSER-PL 16 4 4
EF-SGD 32 32
QSparse-local-SGD 32 4 8
CSEA 32 32
CSER 32 64 8 8
CSER-PL 32 8 4
EF-SGD 64 64
QSparse-local-SGD 64 16 4
CSEA 64 64
CSER 64 128 8 16
CSER-PL 64 8 8
EF-SGD 128 128
QSparse-local-SGD 128 16 8
CSEA 128 128
CSER 128 256 4 64
CSER-PL 128 8 16
EF-SGD 256 256
QSparse-local-SGD 256 128 2
CSEA 256 256
CSER 256 512 16 32
CSER-PL 256 16 16
EF-SGD 512 512
QSparse-local-SGD 512 128 4
CSEA 512 512
CSER 512 1024 8 128
CSER-PL 512 16 32
EF-SGD 1024 1024
QSparse-local-SGD 1024 128 8
CSEA 1024 1024
CSER 1024 2048 32 64
CSER-PL 1024 32 32

D Additional experiments

In this section, we present additional experiments, including the results on the special cases CSEA
and CSER-PL. For CIFAR-100, we also report the results on relatively small overall compression
ratios (RC ∈ {2, 4, 8}). The training loss vs. the number of epochs is also reported for both CIFAR-
100 and ImageNet. Furthermore, we report the testing accuracy vs. the communication overhead (in
bits).
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Figure 3: Testing accuracy vs.# of epochs with different algorithms, for WideResNet-40-8 on
CIFAR-100.
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Figure 4: Testing accuracy vs. training time with different algorithms, for WideResNet-40-8 on
CIFAR-100.
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Figure 5: Testing accuracy vs. communication with different algorithms, for WideResNet-40-8 on
CIFAR-100.
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Figure 6: Training loss vs.# of epochs with different algorithms, for WideResNet-40-8 on CIFAR-100.
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(c) CR = 1024, accuracy vs. # epochs

Figure 7: Testing accuracy vs.# of epochs with different algorithms, for ResNet-50 on Imagenet.
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(a) CR = 32, accuracy vs. training time
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(b) CR = 256, accuracy vs. training time
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Figure 8: Testing accuracy vs. training time with different algorithms, for ResNet-50 on Imagenet.
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(b) CR = 256, accuracy vs. communication
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(c) CR = 1024, accuracy vs. communication

Figure 9: Testing accuracy vs. communication with different algorithms, for ResNet-50 on Imagenet.
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(a) CR = 32, loss vs. # epochs
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(b) CR = 256, loss vs. # epochs
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Figure 10: Training loss vs.# of epochs with different algorithms, for ResNet-50 on Imagenet.
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