
A Proofs

A.1 Safe Transformations

In this section we prove the claims from Section 4.1, in the same order as stated there. Even though the
main part of the paper is considering Y = {0, 1} only, which is the usual setting when convergence
rates of a kNN classifier are discussed, we suppose that Y = {1, . . . , C}, for some integer C � 2,
until Section A.1.1.

Safe Transformations via Injectivity

We discuss injective functions in Section 4.1, and provide examples of safe transformations that arise
from injectivity, such as x 7! (x, f(x)), for any map f , and x 7! (x+

, x
�). We will now prove this

by providing a sufficient condition for a function to be �-safe. We call this condition �-injectivity.

Definition A.1. Let (X ,A, p) and be a finite probability space, and let (X̃ , Ã) be a finite measurable
space. We say that a measurable function f : X ! X̃ is �-injective if there exists a subset IX (f) ✓ X

on which f is injective, and that satisfies

p(IX (f)) � 1� �.

Lemma A.2. Let fi : X ! X̃i, for i = 0, . . . , n, be functions such that there exist
IX (f0), . . . , IX (fn) ✓ X , sets on which f0, . . . , fn are injective, respectively, and such that

p

n[

i=0

IX (fi)

!
� (1� �).

Then (f0, . . . , fn) : X !
Qn

i=0 X̃i is �-safe.

In particular, if f0 is �-injective, then (f0, f1, . . . , fn) is �-safe.

PROOF: We first prove the claim for n = 0 and then extend it to n 2 N.

(1) n = 0:
In this case, we ought to prove that if f is �-injective, then f is �-safe. Let IX (f) be a set
on which f is injective and that satisfies p(IX (f)) � 1 � �. Motivated by (4.5), we define
Xl := {x 2 X : yx 6= yf(x)}. With the above definition, note that (4.5) can be reduced to

�⇤
f,X = Ex⇠X

⇥�
p(yx|x)� pf�1(yf(x)|f(x))

�
· 1{x 2 Xl}

⇤
 p(Xl). (A.1)

We will now modify IX (f) to get IXl that is of the same mass, and is disjoint from Xl. If
Xl \ IX (f) = ;, then we are done. Therefore, let xl 2 Xl \ IX (f), implying yxl 6= yf(xl).
Note that there has to exist x 2 f

�1({f(xl)}) such that yx = yf(xl) = yf(x), as otherwise yf(x)

would not be the winning y for f(x). We place x into IXl , noting that x /2 Xl, and repeat this for
every element in Xl \ IX (f). Finally, we add to IXl all the elements that are in IX (f) \ Xl. By
the construction we see that IXl is a set on which f is injective, since we always choose only one
representative from each f

�1(ex), and

p(IXl) = p(Xl t (IX (f) \ Xl)) = p(IX (f)) � 1� �,

where t denotes a disjoint union. Since Xl and IXl are disjoint, this yields p(Xl) < �, which
together with (A.1) finishes the proof.

(2) n > 0:
Let IX (f0, . . . , fn) :=

Sn
i=0 IX (fi). It suffices to prove that (f0, . . . , fn) is injective on

IX (f0, . . . , fn), since we already have p(IX (f0, . . . , fn)) � (1� �).
Define I

0
X (f0), . . . , I 0X (fn) inductively by I

0
X (f0) := IX(f0), and

I
0
X (fk) := IX (fk) \

0

@
k�1[

j=0

IX (fj)

1

A , k = 1, . . . , n.

13

Then

IX (f0, . . . , fn) =
n[

i=0

IX (fi) =
nG

i=0

I
0
X (fi).

Therefore, it suffices to prove that (f0, . . . , fn) is injective on
Fn

=0 I
0
X (fi).

Let x, x̃ 2
Fn

i=0 I
0
X (fi), x 6= x̃, and let k, l be such that x 2 I

0
X (fk), x̃ 2 I

0
X (fl).

Then fmax{k,l}(x) 6= fmax{k,l}(x̃), for which we use that I
0
X (fmax{k,l}) is injective, if

x̃ 2 I
0
X (fmax{k,l}), or that I 0X (fmax{k,l}) is disjoint from all the previous ones. This proves that

(f0, . . . , fn)(x) 6= (f0, . . . , fn)(x̃), so (f0, . . . , fn) is injective on
Fn

i=0 I
0
X (fi).

To finish the proof, we note that if f0 is �-injective, then

p

n[

i=0

IX (fi)

!
� p(IX (f0)) � (1� �),

implying that (f0, . . . , fn) is �-safe, by the results in the previous paragraph.

Safe Transformations via Information Theory

In this section we prove Lemmas 4.3 and 4.4. The mutual information between random variables X
and Y , taking values in finite sets X and Y , is defined as

I(X;Y) := DKL(p(x, y) || p(x)p(y)) =
X

x2X

X

y2Y
p(x, y) log

p(x, y)

p(x)p(y)
,

where the logarithm is in base 2. Lemma 4.3 can be understood as the bound on the allowed loss in
the mutual information, by noting that

I(X;Y)� I(f(X);Y) = DKL(p(x, y) || p(x)p(y))�DKL(pf�1(f(x), y) || pf�1(f(x))pf�1(y))

= Ep(x,y) log
p(x, y)

p(x)p(y)
� Ep(x,y) log

pf�1(f(x), y)

pf�1(f(x))pf�1(y)

= Ep(x,y) log
p(y|x)

pf�1(y|f(x))
= DKL

�
p(y|x) || pf�1(y|f(x))

�
, (A.2)

since pf�1(y) = p(y). The proof of Lemma 4.3 starts by connecting the change in the Bayes error
with the L

1-norm of the distance between probability distributions, which, in a finite space, equals
twice the total variation distance. We conclude the proof by applying Pinsker’s inequality. For a
detailed analysis of all of these terms we refer an interested reader to Chapter 11 in [11].

PROOF OF LEMMA 4.3: Note that (4.5) and the definitions of yx and yf(x) yield

�⇤
f,X = Ex⇠X

⇥
p(yx | x)� pf�1(yf(x)|f(x))

⇤

= Ex⇠X

⇥
p(yx | x)� pf�1(yx|f(x))

⇤
+ Ex⇠X

⇥
pf�1(yx|f(x))� pf�1(yf(x)|f(x))

⇤
| {z }

0


1

2

��Ex⇠X

⇥
p(yx | x)� pf�1(yx|f(x))

⇤��+ 1

2

������
Ex⇠X

X

y 6=yx

⇥
p(y | x)� pf�1(y|f(x))

⇤
������


1

2
Ex⇠X

X

y2Y

��p(y | x)� pf�1(y | f(x))
��

=
1

2

����p(x, y)�
p(x)

pf�1(f(x))
pf�1(f(x), y)

����
1

,

where we introduced the sum by expanding

1 = p(yx|x) +
X

y 6=yx

p(y|x) = pf�1(yx|f(x)) +
X

y 6=yx

pf�1(y|f(x)),

14

whilst using the triangle inequality. Pinsker’s inequality implies that
����p(x, y)�

p(x)

pf�1(f(x))
pf�1(f(x), y)

����
1



q
(2 ln 2)DKL

�
p(y | x) || pf�1(y | f(x))

�
 2�,

finishing the proof after dividing by 2.

Finally, we provide a construction which shows that the bound in Lemma 4.3 is of the right order.

PROOF OF LEMMA 4.4: Recall that we define ⌘(x) = p(1 | x). We start with |X | = 2, since the
general case will be a straightforward extension of it.

Let X = {x0, x1} and X̃ = {x̃}. We define p on X⇥Y by p(x0) = p(x1) = 1/2, and ⌘(x0) =
1
2��,

⌘(x1) =
1
2 + �, which defines p(x, y). For the change in the Bayes error we have

�⇤
f,X =

1

2
�

X

x2{x0,x1}

p(x)min{⌘(x), 1� ⌘(x)} = �.

For the KL-divergence, note that

DKL(p(y | x) || pf�1(y | f(x))) =
X

x2{x0,x1}

X

y2{0,1}

p(x, y) log
p(y | x)

pf�1(y | f(x))

=
X

x2{x0,x1}

p(x)
X

y2{0,1}

p(y | x) log 2p(y | x)

=
X

x2{x0,x1}

p(x) (⌘(x0) log 2⌘(x0) + ⌘(x1) log 2⌘(x1))

=
1

2
((1� 2�) log(1� 2�) + (1 + 2�) log(1 + 2�)) ,

where we used ⌘(x0) =
1
2 � � = 1� ⌘(x1). Taylor expansion for |x| < 1 gives

(1 + x) ln(1 + x) + (1� x) ln(1� x) = 2
X

k2N

1

(2k � 1)2k
x
2k
,

which implies

DKL(p(y | x) || pf�1(y | f(x))) =
1

ln 2

X

k2N

22k

(2k � 1)2k
�
2k

=
2

ln 2
�
2 +

4

3 ln 2
�
4 +

32

15 ln 2
�
6 + . . . = (2/ ln 2)�2 +O(�4),

finishing the proof for |X | = 2.

Suppose that |X | > 2. Since |X̃ | < |X |, we know that there exists a x̃ such that |f�1(x̃)| � 2, so
let x0, x1 2 f

�1(x̃) be distinct. We define p on X ⇥ Y as p(x, y) = 0 for x /2 {x0, x1}, while for
p(x0, y), p(x1, y) we do the above construction, which proves the lemma.

For |X | > 2 we used the most simple construction, however, one can extend the idea behind the
proof for |X | = 2 into a more general one. For example, we can define a probability distribution
in which for all x 2 X one has ⌘(x) 2 {

1
2 � �,

1
2 + �}, with the same proportion of each. In other

words, each x is a bucket with either 1
2 � � values being 1, or 1

2 + � values being 1. Let

X0 :=

⇢
x 2 X : ⌘(x) =

1

2
� �

�
, X1 :=

⇢
x 2 X : ⌘(x) =

1

2
+ �

�
,

thus X = X0 t X1. Now f can either merge buckets of the same type, in which case neither do the
Bayes error nor the KL-divergence change, or buckets of a different type, where the changes are �

and 2�2 + O(�4), respectively. Choosing the right proportion of each bucket in f
�1(x̃) is now an

easy task, yielding the construction.

15

Safe Transformations on Similar Probability Distributions

In this section we prove Theorem 4.5. As mentioned in the main body, transformations used for
estimating the Bayes error might have been trained on a distribution different then the target one, and
as such, might change the Bayes error in an unfavourable way when applied to the distribution of
interest. We investigate this in the next few paragraphs.

Let pS(x, y) be the source probability distribution based on random variables XS 2 XS and YS 2 YS ,
which is the probability distributions used for training a transformation fS . With pT (x, y) we denote
the target probability distribution, the one that serves as the basis for random variables XT 2 XT

and YT 2 YT . Theorem 4.5 provides a sufficient condition on the relationship between pS and pT ,
in terms of the Kullback-Leibler divergence, so that a �-safe transformation with respect to pS is a
�
0-safe transformation with respect to pT .

Before we start with the proof, let us argue why it makes sense to set XS = XT = X and YS =
YT = Y , as it is assumed in Theorem 4.5, even when we have more then two classes. When it
comes to X , any pre-trained feature transformation comes with a fixed input dimension. Therefore,
in order to apply a feature transformation one usually needs to modify the input vector. When dealing
with images, this often means resizing the image, whether it is by scaling the image, or by adding
white/black pixels. This is an injective process as long as we do not reduce the dimension, which is
reasonable to assume as we usually use transformations trained on larger inputs. Therefore, instead
of XS we can consider a probability distribution mapped through an injective map g : XS ! X ,
which is a safe transformation. We will omit the mention of g for the ease of notation. For Y , we
first assume that YT ✓ YS , since we want to use feature transformations that work well on more
difficult tasks. When fS is safe with respect to pS on XS ⇥ YS , it is easy to see that fS is also safe
with respect to the restriction of pS to XS ⇥ YT . This does not necessarily hold when we weaken the
condition to �-safe. In that case, our assumption is that f is �-safe with respect to pS on XS ⇥ YT in
the first place, thus taking YT as the source Y .

PROOF OF THEOREM 4.5: Note that
R

⇤
f(XT) �R

⇤
XT



���R⇤
f(XT) �R

⇤
f(XS)

���
| {z }

I1

+
���R⇤

f(XS) �R
⇤
XS

���
| {z }

I2

+
��R⇤

XS
�R

⇤
XT

��
| {z }

I3

.

Since f is �-safe with respect to pS , we have I2  �.

For I1, let p̃S := p
(S)
f�1 and p̃T := p

(T)
f�1 denote the corresponding measures with respect to X̃ , and let

y
(S)
x̃ = argmax

y2Y
p̃S(x̃, y), y

(T)
x̃ = argmax

y2Y
p̃T (x̃, y).

For a fixed x̃ we can assume without loss of generality that p̃S(x̃, y
(S)
x̃) � p̃T (x̃, y

(T)
x̃). Then����max

y2Y
p̃S(x̃, y)�max

y2Y
p̃T (x̃, y)

���� = p̃S(x̃, y
(S)
x̃)� p̃T (x̃, y

(T)
x̃)

 p̃S(x̃, y
(S)
x̃)� p̃T (x̃, y

(S)
x̃)



X

y2Y
|p̃S(x̃, y)� p̃T (x̃, y)| .

Summing the above over all x̃ 2 X̃ yields

I1 =

������

X

x̃2X̃


max
y2Y

p̃S(x̃, y)�max
y2Y

p̃T (x̃, y)

�������



X

x̃2X̃

X

y2Y
|p̃S(x̃, y)� p̃T (x̃, y)|

4


X

x̃2X̃

X

y2Y

X

x2f�1(x̃)

|pS(x, y)� pT (x, y)|

=
X

x2X

X

y2Y
|pS(x, y)� pT (x, y)| = kpS � pT k1.

16

Repeating the same calculation for I3 implies I3  kpS � pT k1. Combining the bounds for I1, I2
and I3 yields

R
⇤
f(XT) �R

⇤
XT

 � + 2kpS � pT k1.

As in the previous section, Pinsker’s inequality implies

R
⇤
f(XT) �R

⇤
XT

 � + 2
p

(2 ln 2)DKL(pS || pT)  � + ",

concluding the proof.

A.1.1 Safety and the g-squared loss

In this section we provide a characterization of �-safe functions in terms of the g-squared loss of f ,
by proving Theorem 4.6. Since this will serve as a connecting point between the rates of convergence
of a kNN classifier and the safety of a transformation, from this point onwards we restrict ourselves
to binary classification, assuming that Y = {0, 1}.

We start by proving an auxiliary lemma that is used both in the proof of Theorem 4.6 and in the proof
of Theorem 4.1, presented in the main body, which is the main result of Section 4. It states that the
g-squared loss of f on X can only be reduced by performing a change of variables to the identity
function acting on f(X).
Lemma A.3. For any function f , one has Lg,f(X)(id)  Lg,X(f).

PROOF: Let X̃ = f(X). Note that for a fixed x̃ 2 X̃ ,

⌘f�1(x̃) = pf�1(1|x̃) = p
�
1|X 2 f

�1(x̃)
�
=

EX⌘(X)1{X2f�1(x̃)}

EX1{X2f�1(x̃)}
.

Hence,

Lg,f(X)(id) = Ex̃

⇣
(g � id)(X̃)� ⌘f�1(X̃)

⌘2

= EX̃

g(X̃)�

EX⌘(X)1{X2f�1(X̃)}

EX1{X2f�1(X̃)}

!2

= EX̃

EX((g � f)(X)� ⌘(X))1{X2f�1(X̃)}

EX1{X2f�1(X̃)}

!2

,

since for all x, x0
2 f

�1(x̃) one has (g � f)(x) = (g � f)(x0) = g(x̃). The Cauchy-Schwarz
inequality yields

Lg,f(X)(id)  EX̃

EX((g � f)(X)� ⌘(X))21{X2f�1(X̃)}

EX1{X2f�1(X̃)}

= EX((g � f)(X)� ⌘(X))2 = Lg,X(f),

proving the claim.

We conclude this section by proving Theorem 4.6, the final ingredient for connecting the convergence
rates of a kNN classifier with the Bayes error in the original space.

PROOF OF THEOREM 4.6: As in the proof of Lemma 4.3, we know that
�⇤

f,X  EX

�
p(yx | x)� pf�1(yx | f(x))

�
 EX

��⌘(X)� ⌘f�1(f(X))
�� .

The triangle and the Cauchy-Schwarz inequality, once for each term, yield
�⇤

f,X  EX |⌘(X)� (g � f)(X)|+ EX

��(g � f)(X)� ⌘f�1(f(X))
��

= EX |⌘(X)� (g � f)(X)|+ EX̃

���g(X̃)� ⌘f�1(X̃)
���


�
EX |⌘(X)� (g � f)(X)|2| {z }

Lg,X(f)

�1/2
+
�
EX̃

���g(X̃)� ⌘f�1(X̃)
���
2

| {z }
Lg,f(X)(id)

�1/2
.

The claim now follows by Lemma A.3.

17

A.2 Convergence Rates of a kNN Classifier over Transformed Features

We now present the proof of Theorem 4.8, mimicking the proof of Theorem 6.2 from [18]. We
insert our (weaker) probabilistic Lipschitz assumption where appropriate. It allows us to remove any
additional constraint on f , leaving us with a statement dependent only on Lg,X(f). As discussed
in Section 5, for g(x) = softmax(WT

x + b) this can be used to rank various transformations f

by simply reporting the mean squared error of the test set, denoted by MSEg(f,W, b). The price
we need to pay is an additional additive error term. However, since an unavoidable error term as a
function of Lg,X(f) already exists in Theorem 4.6, we accept it here, having in mind the flexibility it
gives us. Optimizing this additive error term could form an interesting path for further research.

PROOF OF THEOREM 4.8: It is well known (see Chapter 1 in [18]) that

En[(RX)n,k]�R
⇤
X  2EnEX |⌘n,k(X)� ⌘(X)|  2

q
EnEX |⌘n,k(X)� ⌘(X)|2, (A.3)

where the last inequality is a simple application of the Cauchy-Schwarz inequality. With the assump-
tions as above, it suffices to prove that for all w 2 Rd,

EnEX |⌘n,k(X)� ⌘(X)|2 
1

k
+ cL

✓
k

n

◆2/d

+ � + 2"2, (A.4)

for some c > 0. Let (X1, Y1), . . . , (Xn, Yn) be the set of n-samples distributed using p(x, y). For
x 2 X , let n(i, x) denote the index of the i-th nearest neighbor of x in X1, . . . , Xn. Then

En |⌘n,k(x)� ⌘(x)|2 = En

������
⌘n,k(x)�

1

k

X

i2[k]

⌘(Xn(i,x))

������

2

| {z }
J1(x)

+En

������
1

k

X

i2[k]

⌘(Xn(i,x))� ⌘(x)

������

2

| {z }
J2(x)

.

For J1(x) note that

J1(x) = En

������
1

k

X

i2[k]

�
⌘n,k(x)� ⌘(Xn(i,x))

�
������

2

=
1

k2

X

i2[k]

En

��Yn(i,x) � ⌘(Xn(i,x))
��2 

1

k
. (A.5)

For J2(x) we have

EXJ2(X) = EXEn

������
1

k

X

i2[k]

�
⌘(Xn(i,X))� ⌘(X)

�
������

2


1

k

X

i2[k]

EnEX

��⌘(Xn(i,X))� ⌘(X)
��2 ,

by the Cauchy-Schwarz inequality. Let GOOD",L := {(X,X
0) : |⌘(X)� ⌘(X 0)|  "+LkX �X

0
k}.

Since ⌘ is (", �, L)-probably Lipschitz and (a+ b)2  2a2 + 2b2, we have that

EXJ2(X) 
1

k

X

i2[k]

En

�
1� P

�
(X,Xn(i,X)) 2 GOOD",L

��
+

1

k

X

i2[k]

EnEX

�
2"2 + 2L2

kXn(i,X) �Xk
2
�

 � + 2"2 + 2L2EX En
1

k

X

i2[k]

��Xn(i,X) �X
��2

| {z }
J3(X)

.

The term J3(X) is exactly the same as the upper bound for I2(X) in the proof of Theorem 6.2 in
[18], where it is shown that there exists a c > 0 such that EXJ3(X)  c(k/n)2/d.

Combining the bounds for J1, J2 and J3 proves the claim.

The final result of this section establishes the probabilistic Lipschitz condition in terms of the g-
squared error of f . It is the glue that brings all the pieces together, having in mind that it is applied
on f(X).

18

PROOF OF LEMMA 4.9: Note that the triangle inequality implies

|⌘(X)� ⌘(X 0)|  |⌘(X)� g(X)|| {z }
I1(X)

+ |g(X)� g(X 0)|| {z }
I2

+ |g(X 0)� ⌘(X 0)|| {z }
I1(X0)

.

For I2 note that the fact that g is L-Lipschitz implies I2(X,X
0)  LkX �X

0
k.

For I1(X), I1(X 0) we start by defining GOODt := {x 2 X : |⌘(x)� g(x)|  t}. Note that Markov’s
inequality yields

P(X /2 GOODt) = P
�
|⌘(X)� g(X)|2 � t

2
�


Lg,X(id)

t2
.

Therefore,

P
�
|⌘(X)� ⌘(X 0)|  "+ LkX �X

0
k
�
� P(X,X

0
2 GOOD"/2)

�

✓
1�

4Lg,X(id)

"2

◆2

� 1�
8Lg,X(id)

"2
,

concluding the proof.

B Extended Experimental Evaluation

As described in the main body of the paper, in this section we report additional experiments and
outline the full experimental setup.

B.1 Experimental Setup

The code to reproduce the results and the graphs from the entire paper is made available in the
supplementary material.

Feature Transformations. We provide the list of all tested feature transformations, together with
their dimensionality, for the vision datasets and text classification datasets in Tables 2 and 3, re-
spectively. We were not able to export the BOW (and hence neither the BOW-TFIDF nor the PCA
transformed) feature representations for YELP due to the large amount of samples and their high
dimensionality. Additionally, calculating the NCA representations did not successfully terminate
for any of the text classification datasets, as this method does not scale to high dimensional and
large-sample-size inputs. All reported transformations are publicly available through either the
scikit-learn toolkit6, TensorFlow Hub7 or PyTorch Hub8.

Datasets. We use the standard splits provided by the datasets, as given in Table 1 in the main body.
We collected all the datasets but YELP from the Tensorflow Datasets collection9, whereas YELP can
be downloaded from https://www.yelp.com/dataset.

kNN Classifier. In order to illustrate the convergence rates, we subsample the training samples 10
times linearly (decreasingly), and perform 30 independent runs in order to report the variance. We
plot the 95% confidence intervals on all the convergence graphs.

Logistic Regression Classifier. We train all the logistic regression models (on all the datasets and
transformations mentioned earlier) using SGD with a momentum value of 0.9 and a batch size of
64 on the entire training set for 200 epochs, minimizing the cross entropy loss. We report the best
achieved test set error (misclassification error) and mean squared error (MSE) using different values
of L2 regularizer (0.0, 0.0001, 0.001, 0.01, 0.1) and initial learning rates (0.0001, 0.001, 0.01, 0.1).
We pre-process the input before training by normalizing the features to range between -1 and 1.

Training infrastructure. Training of the logistic regression models and evaluating kNN was executed
on a single NVIDIA Titan Xp GPU.

6https://scikit-learn.org/stable/
7https://tfhub.dev/
8https://pytorch.org/hub/
9https://www.tensorflow.org/datasets/

19

https://www.yelp.com/dataset
https://scikit-learn.org/stable/
https://tfhub.dev/
https://pytorch.org/hub/
https://www.tensorflow.org/datasets/

Table 2: Feature transformations for images as features.
Transformation Source MNIST CIFAR10 CIFAR100

Identity - Raw - 3 3 3
PCA (d=32) scikit-learn 3 3 3
PCA (d=64) scikit-learn 3 3 3
PCA (d=128) scikit-learn 3 3 3
NCA (d=64) scikit-learn 3 3 3
AlexNet(d=4096) PyTorch-Hub 3 3 3
GoogleNet (d=1024) PyTorch-Hub 3 3 3
VGG16 (d=4096) PyTorch-Hub 3 3 3
VGG19 (d=4096) PyTorch-Hub 3 3 3
ResNet50-V2 (d=2048) TF-Hub 3 3 3
ResNet101-V2 (d=2048) TF-Hub 3 3 3
ResNet152-V2 (d=2048) TF-Hub 3 3 3
InceptionV3 (d=2048) TF-Hub 3 3 3
EfficientNet-B0 (d=1280) TF-Hub 3 3 3
EfficientNet-B1 (d=1280) TF-Hub 3 3 3
EfficientNet-B2 (d=1408) TF-Hub 3 3 3
EfficientNet-B3 (d=1536) TF-Hub 3 3 3
EfficientNet-B4 (d=1792) TF-Hub 3 3 3
EfficientNet-B5 (d=2048) TF-Hub 3 3 3
EfficientNet-B6 (d=2304) TF-Hub 3 3 3
EfficientNet-B7 (d=2560) TF-Hub 3 3 3

Table 3: Feature transformations for natural language as features.
Transformation Source IMDB SST2 YELP

Identiy - BOW - 3 3 7
BOW-TFIDF scikit-learn 3 3 7
PCA (d=8) scikit-learn 3 3 7
PCA (d=16) scikit-learn 3 3 7
PCA (d=32) scikit-learn 3 3 7
PCA (d=64) scikit-learn 3 3 7
PCA (d=128) scikit-learn 3 3 7
ELMO (d=1024) TF-Hub 3 3 3
NNLM-EN (d=50) TF-Hub 3 3 3
NNLM-EN-WITH-NORMALIZATION (d=50) TF-Hub 3 3 3
NNLM-EN (d=128) TF-Hub 3 3 3
NNLM-EN–WITH-NORMALIZATION (d=128) TF-Hub 3 3 3
Universal Sentence Encoder (USE) (d=512) TF-Hub 3 3 3
BERT-Base (d=678) PyTorch-Hub 3 3 3

B.2 Convergence Plots

We provide convergence plots for an interesting subset of the datasets (CIFAR100 and IMDB) and
transformations in Figures 5 and 6. From the results and scripts that we made available through the
supplementary materials, one could simply create and analyze the plots for arbitrary combination
of considered datasets and transformations. We remark that on both plots the transformations that
achieve the best possible convergence in the finite sample regime do not have the lowest dimension.
Furthermore, the starting point of the convergence lines for such transformations is typically much
lower than the starting point of standard dimension-reduction techniques such as PCA. Having access
to much more (ideally infinitely many) training samples would result in every line converging to the
final, irreducible-bias term per transformation.

20

Figure 5: Impact of the dimension on CIFAR100 using all involved transformations (Left), and
PCA-based transformation only (Right).

Figure 6: Impact of the dimension on IMDB using all involved transformations (Left), and PCA-based
transformation only (Right).

B.3 On the Impact of the Hyper-Parameter k

It is well known that one can choose the hyper-parameter k to reach the best possible convergence in
the finite data regime depending on the dataset. We investigate this with respect to transformations by
showing that different transformations on the same dataset might have different optimal choices for k.
This tradeoff for a fixed dataset is not clearly visible in the main Theorem 4.1 due to the usage of
O(·) notation, hiding the constants. However, by exploring the proof outline and analyzing (A.5),
one realizes that the upper bound of J1 is dependent on the posterior in the transformed feature space,
which might change for a fixed input dataset. We report the empirically observed minimal kNN
test error for values of k ranging from 1 to 250 in Table 4, for all the feature transformations on
the computer vision datasets, and in Table 5, for the all the text classification datasets. In practice,
when using kNN, one would take a portion of the training set as a validation set to choose the best
hyper-parameter value for k and run an evaluation of the test set in order to control overfitting.

21

Table 4: Minimal kNN errors for the computer vision datasets.
Transformation MNIST CIFAR10 CIFAR100

Identiy - Raw 0.029 (k=3) 0.646 (k=1) 0.825 (k=1)
PCA (d=32) 0.025 (k=8) 0.575 (k=16) 0.811 (k=1)
PCA (d=64) 0.025 (k=3) 0.601 (k=18) 0.806 (k=1)
PCA (d=128) 0.028 (k=3) 0.619 (k=1) 0.810 (k=1)
NCA (d=64) 0.026 (k=5) 0.600 (k=18) 0.837 (k=39)
AlexNet 0.165 (k=13) 0.244 (k=13) 0.509 (k=19)
GoogleNet 0.113 (k=9) 0.171 (k=10) 0.431 (k=18)
VGG16 0.133 (k=16) 0.208 (k=19) 0.476 (k=15)
VGG19 0.138 (k=15) 0.205 (k=19) 0.470 (k=16)
ResNet50-V2 0.092 (k=5) 0.152 (k=9) 0.397 (k=17)
ResNet101-V2 0.092 (k=6) 0.126 (k=9) 0.371 (k=10)
ResNet152-V2 0.094 (k=3) 0.137 (k=6) 0.373 (k=14)
InceptionV3 0.049 (k=13) 0.150 (k=10) 0.407 (k=17)
EfficientNet-B0 0.535 (k=7) 0.159 (k=9) 0.410 (k=17)
EfficientNet-B1 0.691 (k=7) 0.125 (k=7) 0.368 (k=24)
EfficientNet-B2 0.630 (k=8) 0.120 (k=10) 0.352 (k=10)
EfficientNet-B3 0.789 (k=7) 0.090 (k=6) 0.312 (k=13)
EfficientNet-B4 0.745 (k=25) 0.085 (k=7) 0.307 (k=13)
EfficientNet-B5 0.804 (k=23) 0.092 (k=8) 0.317 (k=12)
EfficientNet-B6 0.649 (k=25) 0.092 (k=6) 0.326 (k=10)
EfficientNet-B7 0.543 (k=14) 0.087 (k=12) 0.316 (k=9)

Table 5: Minimal kNN errors for the text classification datasets.
Transformation IMDB SST2 YELP

Identiy - BOW 0.334 (k=36) 0.349 (k=6) -
BOW-TFIDF 0.243 (k=247) 0.249 (k=26) -
PCA (d=8) 0.274 (k=155) 0.408 (k=81) -
PCA (d=16) 0.226 (k=159) 0.382 (k=236) -
PCA (d=32) 0.216 (k=175) 0.375 (k=174) -
PCA (d=64) 0.228 (k=157) 0.377 (k=147) -
PCA (d=128) 0.241 (k=196) 0.374 (k=170) -
ELMO 0.255 (k=37) 0.195 (k=206) 0.424 (k=166)
NNLM (d=50) 0.287 (k=77) 0.294 (k=227) 0.475 (k=86)
NNLM (d=128) 0.255 (k=57) 0.241 (k=148) 0.452 (k=43)
NNLM (d=50, w/ normalize) 0.259 (k=45) 0.288 (k=36) 0.455 (k=92)
NNLM (d=128, w/ normalize) 0.227 (k=47) 0.241 (k=162) 0.427 (k=45)
Universal Sentence Encoder (USE) 0.188 (k=183) 0.201 (k=186) 0.387 (k=75)
BERT-Base 0.266 (k=45) 0.267 (k=8) 0.441 (k=51)

22

	Introduction
	Related Work
	Preliminaries
	Impact of Transformations on kNN Convergence
	Safe Transformations
	Convergence Rates of a kNN Classifier over Transformed Features

	Experimental Results
	Datasets
	Feature Transformations
	Results

	Final remarks
	Proofs
	Safe Transformations
	Safety and the g-squared loss

	Convergence Rates of a kNN Classifier over Transformed Features

	Extended Experimental Evaluation
	Experimental Setup
	Convergence Plots
	On the Impact of the Hyper-Parameter k

