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A.1 Additional Model Details

A.1.1 Model Relationships
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Figure 4: Relationships between different models.
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A.1.2 Model Assumptions

Table 1

Model Assumptions

Default

Constant epidemiological parameters (1)
No NPI Interactions (4)
Constant NPI Effectiveness (2)
Multiplicative NPI Effects (3)
No Unobserved Factors (5)
Constant exponential growth (6)
Transmission noise (7)
Negative Binomial outputs (8)

No Transmission Noise As Default, except (7)
Additive Effects As Default with (9) instead of (3)
Different Effects As Default with (10) instead of (2)
Noisy-R As Default with Eq.(2.7) instead of (6)
Discrete Renewal As Default with Eq.(2.8) instead of (6)
Flaxman et al. [7] As Discrete Renewal except (7)

A.1.3 Default Model Full Description

Note: this section is reproduced (with minor modifications) from Brauner et al. [2]. The primary
difference is that the model implementations here do not have prior distributions over the parameters
of: the generation interval; the delay between infection and case reporting; and the delay between
infection and death reporting. These parameters have fixed values set at their prior means — please
see Brauner et al. [2] for a detailed justification of parameter values.

Variables are indexed by NPI i, country c, and day t. All prior distributions are independent.

Data

1. NPI Activations: xi,t,c 2 {0, 1}.

2. Observed (Daily) Cases: y(C)
t,c .

3. Observed (Daily) Deaths: y(D)
t,c .

Prior Distributions

1. Country-specific R0: R0,c ⇠ Normal(3.25,);  ⇠ Half Normal(µ = 0,� = 0.5).

2. NPI effectiveness: ↵i ⇠ Asymmetric Laplace(m = 0, = 0.5,� = 10). m is the
location parameter,  > 0 is the asymmetry parameter, and � > 0 is the scale parameter.

3. Infection Initial Counts:
N (C)

0,c = exp(⇣(C)
c ),

N (D)
0,c = exp(⇣(D)

c ),

⇣(C)
c ⇠ Normal(µ = 0,� = 50),

⇣(D)
c ⇠ Normal(µ = 0,� = 50).

4. Observation Noise Dispersion Parameters:
 cases ⇠ Half Normal(µ = 0,� = 5), (11)
 deaths ⇠ Half Normal(µ = 0,� = 5). (12)

Hyperparameters

1. Growth Noise Scale, �g = 0.2.

Delay Distributions
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1. Generation interval distribution [2]:
µGI = 5.06,

�GI = 2.11.

2. Time from infection to case confirmation T (C) [2]:2

µinf!conf = 10.92

 inf!conf = 5.41.
This distribution is converted into a forward-delay vector:

T (C)[t] =

⇢ 1
ZC

Negative Binomial(t;µ = µinf!conf,↵ =  inf!conf) t < 32
0 otherwise

,

with ZC =
31X

t0=0

Negative Binomial(t0;µ = µinf!conf,↵ =  inf!conf),

i.e., the delay follows a truncated and normalised negative binomial distribution.

3. Time from infection to death T (D)2 [2]:
µinf!death = 21.82,

 inf!death14.26.
This distribution is converted into a forward-delay vector:

T (D)[t] =

⇢ 1
ZD

Negative Binomial(t;µ = µinf!death,↵ =  inf!death) t < 48
0 otherwise

,

with ZD =
47X

t0=0

Negative Binomial(t0;µ = µinf!death,↵ =  inf!death),

i.e., the delay follows a truncated and normalised negative binomial distribution.

Infection Model

Rt,c = R0,c · exp
 
�

IX

i=1

↵i xi,t,c

!
, where I is the number of NPIs.

�GI =
µGI

�2
GI
,

↵GI =
µ2

GI
�2

GI
,

gt,c = exp

✓
�GI(R

1
↵GI
c,t � 1)

◆
� 1.

N (C)
t,c = N (C)

0,c

tY

⌧=1

h
(g⌧,c + 1) · exp "(C)

⌧,c

i
,

N (D)
t,c = N (D)

0,c

tY

⌧=1

h
(g⌧,c + 1) · exp "(D)

⌧,c )
i
,with noise

"(C)
⌧,c ⇠ Normal(µ = 0,� = �g),

"(D)
⌧,c ⇠ Normal(µ = 0,� = �g).

2↵ in the definition of the Negative Binomial distribution is the dispersion parameter. Larger values of ↵
correspond to a smaller variance, and less dispersion. With our parameterisation, the variance of the Negative
Binomial distribution is µ+ µ2

↵ .
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Observation Model2

ȳ(C)
t,c =

31X

⌧=0

N (C)
t�⌧,cT (C)[⌧ ],

ȳ(D)
t,c =

47X

⌧=0

N (D)
t�⌧,cT (D)[⌧ ],

y(C)
t,c ⇠ Negative Binomial(µ = ȳ(C)

t,c ,↵ =  (C)),

y(D)
t,c ⇠ Negative Binomial(µ = ȳ(D)

t,c ,↵ =  (D)).
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A.2 Holdouts

We evaluate holdout performance by predictive log-likelihood on a test set of 6 countries. We hold
out all but the first 14 days of cases and deaths (to allow estimation of R0,c and N0,c). Figs 5 and 6
show holdout predictions on this test set. Predictive performance is similar across the models, though
models with transmission noise tend to perform better. Hyperparameters (�g or �R, �↵) were tuned
using 4-fold cross-validation on a previous version of the NPI dataset.
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Figure 5: Holdout country plots for the Default, Additive Effects, Different Effects and Noisy-R
models.
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Figure 6: Holdout country plots for the Discrete Renewal, Deaths-Only Discrete Renewal, Flaxman
et al. [8] and Default (No Transmission Noise) models.

20



A.3 Full sensitivity results for all models

A.3.1 Default Model
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Figure 7: Full sensitivity analysis results for the Default model.
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A.3.2 Additive Effects Model
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Figure 8: Full sensitivity analysis results for the Additive Effects model.
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A.3.3 Different Effects Model
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Figure 9: Full sensitivity analysis results for the Different Effects model.
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A.3.4 Noisy-R Model
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Figure 10: Full sensitivity analysis results for the Noisy-R model.
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A.3.5 Discrete Renewal Model
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Figure 11: Full sensitivity analysis results for the Discrete Renewal model.
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A.3.6 Deaths-Only Discrete Renewal Model
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Figure 12: Full sensitivity analysis results for the Deaths Only Discrete Renewal model.
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A.3.7 Flaxman et al. [8] Model
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Figure 13: Full sensitivity analysis results for the Flaxman et al. [8] model.
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A.3.8 Default (No Transmission Noise) Model
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Figure 14: Full sensitivity analysis results for the Default (No Transmission Noise) model.
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A.4 Additional Model Comparison
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Figure 15: Summarised sensitivity analysis for all models.
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A.5 Discussion of assumptions

We proceed by discussing the assumptions (and their implications) listed in section 2, for which
further discussion is necessary.

Assumption 3 states that each NPI’s effect on Rt,c is multiplicative. This implies that each NPI
has a smaller effect when Rt,c is already lowered by other NPIs. Such an assumption may be
appropriate because e.g. an active stay-home order decreases the effect of wearing masks in public
spaces. However, it may be inappropriate for other NPIs. For example, suppose a given proportion of
transmission happens in schools and a given proportion in businesses. In such a situation, closing
schools is expected to decrease Rt,c by the same amount, whether or not businesses are closed.
This leads to an alternative model based on Assumption 9, where the effect of each NPI is additive
(reprinted from equation (6)):

Rt,c = R0,c

 
↵̂+

X

i2I
↵i (1� xi,t,c)

!
, with ↵̂+

X

i2I
↵i = 1, (13)

where the parameter ↵̂ represents the proportion of transmission that still happens when all NPIs are
active.

Assumption 5 states that Rt,c depends only on each country’s initial reproduction number R0,c and
the active NPIs. In other words, no unobserved factors are changing Rt,c, such as spontaneous social
distancing. This is a crucial assumption since the effect of unobserved factors may otherwise be
attributed to the active NPIs. This can happen under specific conditions. Firstly, the unobserved effect
cannot be present throughout the entire study period since otherwise R0,c accounts for it. Secondly,
its timing must be correlated with that of an NPI since otherwise it will be modeled as noise. Under
these conditions, an unobserved effect constitutes an unobserved confounder [27, 30] or another
biasing factor such as a mediator or suppressor. For statistical purposes, there is an equivalence
between these types of unobserved effects [25] so we restrict the discussion to confounding.

Without unobserved confounders, our models can infer the causal effects of the studied NPIs. This is
a property of regression models, such as ours, when their specification is correct [10]. To understand
this point intuitively, it is worth examining the simplified models used in section 5.

The effect of unobserved confounders is usually examined by introducing artificial confounders and
observing how much this affects results [27, 30]. In the main text, we tested each model’s sensitivity
to unobserved confounders by making each NPI unobserved, in turn. Results were relatively stable
according to the sensitivity loss. However, they are likely to be less stable if there exists a confounder
whose effect size and/or correlation with the NPIs exceeds that of the NPIs themselves.

Note that, in principle, it is possible to distinguish changes in IFRc and ARc from the NPIs’ effects:
decreasing the ascertainment rate decreases future cases y(C)

t,c by a constant factor whereas the
introduction of an NPI decreases them by a factor that grows exponentially over time.
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A.6 Proofs of Theorems 1 and 2

Proof of Theorem 1. For this model, assume that ground truth values of Rt,c have been given to us.
By definition, we can write:

logRt,c = logR0,c �
X

i2I
↵i xi,t,c + "t,c (14)

where "t,c ⇠ N (µ = 0,�2 = �2
R); �R and R0,c are fixed parameters, xi,t,c 2 {0, 1} and Rt,c are

given. We want to find the maximum likelihood solution for {↵i}i2I .

The log-likelihood L is given as

L =
X

t,c

logN ("t,c|0,�2
R) = � 1

2�2
R

X

t,c

"2t,c + constant, (15)

where the constant does not depend on the values of {↵i}i2I . Assume that values {↵j}j2I,j 6=i are
fixed and we are finding the ML solution for ↵i. Then,

@L
@↵i

/
X

t,c

@"2t,c
@↵i

/
X

t,c

"t,cxi,t,c =
X

(t,c)2�i

"t,c =
X

(t,c)2�i

(log
Rt,c

R̃(�i),t,c

+ ↵i), (16)

where, as in the main text, �i = {(t, c)|xi,t,c = 1} is the set of days and countries with NPI i active,
and R̃(�i),t,c is the predicted R ignoring the effect of NPI i:

R̃(�i),t,c = R0,c

Y

j2I\{i}

exp(�↵j xj,t,c) (17)

Setting @L
@↵i

= 0, we obtain:

�↵i|�i| =
X

(t,c)2�i

log
Rt,c

R̃(�i),t,c

. (18)

By exponentiation and separation into two products, we obtain the theorem statement.

All that remains to show is that @2L
@↵2

i
< 0. Preserving signs, but not constants of proportionality, we

have:
@L
@↵i

/ �
X

(t,c)2�i

"t,c )
@2L
@↵2

i

/ �
X

(t,c)2�i

(1) < 0, (19)

as required.

Proof of Theorem 2. For this model, assume that ground truth values of gt,c have been given to us.
Expanding the definitions, we obtain

log gt,c = �(R1/⌫
0,c

Y

i2I
(exp(�↵i xi,t,c)

1/⌫)� 1) + "t,c (20)

where "t,c ⇠ N (µ = 0,�2 = �2
R); �R, ⌫, � and R0,c are fixed parameters, xi,t,c 2 {0, 1} and gt,c

are given.

For each i 2 I independently, we find the maximum likelihood solution ↵i given the other
{↵j}j2I,j 6=i in the point where @L/@↵i = 0. The log-likelihood takes the same form as in Eq. (15).
By differentiating, we obtain:

31



@L
@↵i

/ �
X

t,c

"t,c
@"t,c
@↵i

(21)

where we have dropped constants of proportionality but kept the correct signs. Recalling Eq. 20, we
can write:

@"t,c
@↵i

=
�

⌫
R̃1/⌫

t,c xi,t,c / R̃1/⌫
t,c xi,t,c. (22)

R̃t,c is the predicted value of Rt,c given NPI effectiveness estimates {↵i}i2I (following Eq. 1 in the
main text).

Setting @L
@↵i

= 0 now yields:

�
X

t,c

"t,cxi,t,cR̃
1/⌫
t,c = 0 ) exp(�↵i/⌫)

X

(t,c)2�i

"t,cR̃
1/⌫
(�i),t,c = 0 (23)

Then by expanding "t,c using Eq. 20 and expressing log gt,c in terms of Rt,c i.e., converting using
Assumption 6, we obtain:

X

(t,c)2�i

R̃1/⌫
(�i),t,c

⇣
�(R̄1/⌫

t,c � 1)� �(R̃1/⌫
(�i),t,c exp(�↵i)

1/⌫ � 1)
⌘
= 0. (24)

R̄t,c is the value of Rt,c produced by converting ground truth values of gt,c using Assumption 6.

From this we obtain the theorem by simplification and rearranging.

All that remains is to show that @2L
@↵2

i
< 0. Keeping the signs but dropping constants of proportionality,

we have:

@L
@↵i

/ �
X

(t,c)2�i

"t,cR̃
1/⌫
t,c . (25)

Therefore:
@2L
@↵2

i

/�
X

(t,c)2�i

"
@"t,c
@↵i

R̃1/⌫
t,c + "t,c

@R̃1/⌫
t,c

@↵i

#

/� �

⌫

X

(t,c)2�i

⇣
R̃1/⌫

t,c

⌘2
+

1

⌫

X

(t,c)2�i

"t,cR̃
1/⌫
t,c

| {z }
0 at ML solution

(26)

Combining Eqs. (21) and (22), we see that the second term is proportional to @L
@↵i

and therefore 0 at
the maximum likelihood solution. Given this, we have @2L

@↵2
i
< 0 at ↵i satisfying Eq. (24). Therefore,

the solution of Eq. (24) is the maximum likelihood solution.
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A.7 Experiment Details

A.7.1 Data Preprocessing

We perform the same data preprocessing as in [2]. To account for the asymmetry between closing and
reopening NPIs, our window of analysis terminates 3 days after any NPI is lifted for cases, and 12
days after for deaths. To avoid biasing our models by cases and deaths imported from other countries
rather than local cases, we mask cases before a country has reached 100 cumulative cases and deaths
before country has reached cumulative 10 deaths. We follow our previous work, and report the
combined effect of School Closure and University Closure, since their individual effects cannot be
disentangled [2].

A.7.2 Cross Validation

We previously tuned noise scale hyperparameters on a previous version of our NPI dataset by
performing 4 fold cross-validation. We did not update these parameters for the latest dataset. When
holding out a country, we do not also hold out the first 14 days of cases and deaths to allow the model
to infer R0,c, N

(C)
0,c and N (D)

0,c . The only way the model is able to explain the remaining held-out data
is through these parameters, as well as the shared NPI effectiveness parameters, {↵i}. We then report
predictive likelihood on a test set of 6 countries: Germany, Romania, Mexico, Italy, Austria, Portugal.

A.7.3 Convergence Statistics

For experiments with default settings, we ensure that R̂ < 1.05 (i.e., there are no PyMC3 warnings)
and that there are no divergent transitions. For the baseline model under default settings, we have
R̂ 2 [1.000, 1.004] for the vast majority of parameters.

A.7.4 Sensitivity Analyses

We summarise the sensitivity analysis tests we perform here. These are mostly as performed in
[2], except that we only perform univariate sensitivity analysis to epidemiological parameters here.
Default values are highlighted in bold.

Sensitivity to Epidemiological Parameters.

1. We shift the mean infection-to-confirmation delay by [�3,�1.5,0, 1.5,+3] days.

2. We shift the mean of the infection-to-death distribution by [�4,�2,0,+2,+4] days.

3. We consider different generation intervals with mean values [3.06, 4.06,5.06, 6.06, 7.06]
days. These distributions have the same standard deviation as the default distribution (2.11
days).

4. We change the mean value of the prior of R0,c, R̄. We consider values
[2.38, 2.78,3.28, 3.78, 4.28].

5. We change the prior over ↵i. For all models except the additive model, we try the default
asymmetric Laplace prior, N (0, 0.22), N+(0, 0.22). For the additive model, we use a
Dirichlet(↵) prior, where the concentration parameter ↵ is the same for all components. We
consider values [1, 5, 10].

Data Sensitivity.

1. We hold out all included countries one at a time.

2. We change the threshold below which confirmed COVID-19 cases are masked in
[10, 30, 50,100, 200, 300].

3. We change the threshold below which COVID-19 deaths are included in [1, 5,10, 30, 50].

Sensitivity to Unobserved Factors.

1. We exclude each of our observed NPIs in turn.
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2. We include 5 additional NPIs from the OxCGRT NPI dataset [13]. The NPIs are: ‘Travel
Screening or Quarantining’ and ‘Travel Bans’; ‘Limiting Public Transport Limited’; ‘Lim-
iting Internal Movement Limited’; ‘Public Information Campaigns’ and ‘Symptomatic
Testing’.

For sensitivity experiments, we run 4 chains with 1250 samples per chain.
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