
Supplementary Material

A Supplementary information on experimental setup

In this section, we present supplementary information on experimental setup for label-noise and
class-prior-shift experiments, and the implementation details for the methods discussed in ablation
study. All experiments are implemented using PyTorch 1.6.0.

A.1 Datasets and base models

Fashion-MNIST Fashion-MNIST [57] is a 28*28 grayscale image dataset of fashion items in 10
classes. It contains 60,000 training images and 10,000 test images. See https://github.com/
zalandoresearch/fashion-mnist for details.

The model for Fashion-MNIST is a LeNet-5 [28]:
0th (input) layer: (32*32)-
1st to 2nd layer: C(5*5,6)-S(2*2)-
3rd to 4th layer: C(5*5,16)-S(2*2)-

5th layer: FC(120)-
6th layer: FC(84)-10

where C(5*5,6) means 6 channels of 5*5 convolutions followed by ReLU, S(2*2) means max-pooling
layer with filter size 2*2 and stride 2, FC(120) means a fully connected layer with 120 outputs, etc.

CIFAR-10 and CIFAR-100 CIFAR-10 [27] is a collection of 60,000 real-world object images in
10 classes, 50,000 images for training and 10,000 for testing. Each class has 6,000 32*32 RGB
images. CIFAR-100 [27] is just like the CIFAR-10, except it has a total number of 100 classes with
600 images in each class. See https://www.cs.toronto.edu/~kriz/cifar.html for details.

ResNet-32 [18] is used as the base model for CIFAR-10 and CIFAR-100:
0th (input) layer: (32*32*3)-

1st to 11th layers: C(3*3, 16)-[C(3*3, 16), C(3*3, 16)]*5-
12th to 21st layers: [C(3*3, 32), C(3*3, 32)]*5-
22nd to 31st layers: [C(3*3, 64), C(3*3, 64)]*5-

32nd layer: Global Average Pooling-10/100
where the input is a 32*32 RGB image, [·, ·] means a building block [18] and [·]*2 means 2 such
layers, etc. Batch normalization [22] is applied after convolutional layers. A dropout of 0.3 is added
at the end of every building block.

A.2 Label-noise experiments

The noisy labels are generated according to a predefined noise transition matrix T , where Tij =
P (ỹ = j|y = i). Two types of noise transition matrices are defined in Figure 7, where η is the
label-noise rate and k is the number of classes. In pair flip label noise, a label j may flip to class
(j mod k + 1) with probability η. In symmetric flip label noise, a label may flip to all other k − 1
classes with equal probability η

k−1 . Note that the noise transition matrix and label-noise rate are
unknown to the model.

1− η η 0 . . . 0
0 1− η η . . . 0
...

.
...

0 0 . . . 1− η η
η 0 . . . 0 1− η

1− η η

k−1 . . . η
k−1

η
k−1

η
k−1 1− η η

k−1 . . . η
k−1

...
. . .

...
η
k−1 . . . η

k−1 1− η η
k−1

η
k−1

η
k−1 . . . η

k−1 1− η

Figure 7: Label-noise transition matrix. Left: Pair flip label noise; Right: Symmetric flip label noise.

13

https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://www.cs.toronto.edu/~kriz/cifar.html

For Fashion-MNIST experiments, SGD is used for optimization. The weight decay is 1e-4. For pair
flip and symmetric flip, the initial learning rate is 0.0002 and 0.0003 respectively, decaying every 100
epochs by multiplying a factor of 0.1.

For CIFAR-10/100 experiments, Adam is used for optimization with its default parameters built in
PyTorch 1.6.0. In CIFAR-10 experiments, the weight decay is 0.1 for pair flip and 0.05 for symmetric
flip. For both pair and symmetric flip, the initial learning rate is 0.005, decaying every 100 epochs
by multiplying a factor of 0.1. In CIFAR-100 experiments, the weight decay is 0.1 and the initial
learning rate is 0.005, decaying every 100 epochs by multiplying a factor of 0.1 for both pair and
symmetric flip.

For all label-noise experiments, the radial basis function (RBF) kernel is used in the distribution
matching step: k(z, z′) = exp(−γ ‖z− z′‖2), where γ is 1-th quantile of the distances of training
data. In the implementation, we use K + ωI as the kernel matrix K in Eq 10, where I is identity
matrix and ω is set to be 1e-05. The upper bound of weights B is 50 in Fashion-MNIST and 10 in
CIFAR-10/100 experiments.

A.3 Class-prior-shift experiments

To impose class-prior shift on Fashion-MNIST, we randomly select 10 data per class for validation
set, 4,000 data (including the 10 validation data) per majority class for training set. The number of
data per minority class (including the 10 validation data) in training set is computed according to ρ
as described in Section 5. We also randomly select 1,000 test data in class-prior-shift experiments.
Majority class and minority class are randomly selected, where we use class 8 and 9 (i.e. Bag and
Ankle boot) as the minority class and others (i.e. T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal,
Shirt and Sneaker) as majority class.

In class-prior-shift experiments, SGD is used for optimization. The weight decay is 1e-5 and the
initial learning rate is 0.0005, decaying every epoch by multiplying a factor of 0.993. For the baseline
"Clean" and "IW", the initial learning rate is 0.001 and 0.0003. Other hyperparameters are the same
as other methods. Batch size is 256 for training and 100 for validation data. For the baseline "Truth",
the ground-truth weights for majority class is calculated by:

w∗maj =
pte(y)

ptr(y)
=

1/k

ρns/(nsµk + ρns(1− µ)k)
= 1− µ+ µ/ρ,

and for minority class is calculated by

w∗min =
pte(y)

ptr(y)
=

1/k

ns/(nsµk + ρns(1− µ)k)
= µ+ ρ− µρ,

where k and ns are the number of total classes and the sample size of minority class respectively.

RBF kernel is again used in the distribution matching step, where γ is 99-th quantile of the distances
of training data. In the implementation, we use K + ωI as the kernel matrix K in Eq 10, where I is
identity matrix and ω is set to be 1e-05. The upper bound of weights B is 100.

A.4 Methods in ablation study

We provide implementation details of the discussed methods in ablation study.

(1) IW:
• divide the training/validation data into k partitions according to their given labels;
• perform weight estimation directly on the original data in each partition;
• perform weighted classification to train a DC using the learned static weights in the previous

step, as shown in Figure 8a.
(2) SIW-F:

• divide the training/validation data into k partitions according to their given labels;
• perform weight estimation on the hidden-layer-output transformations of data from a pretrained

FE in each partition;
• perform weighted classification to train aother DC using the learned static weights in the previous

step, as shown in Figure 8b.

14

(3) SIW-L:
• perform weight estimation on the loss-value transformations of data from a pretrained FE;
• perform weighted classification to train another DC using the learned static weights in the

previous step, as shown in Figure 8b.
(Note that "-L" methods do not need to partition data according to their given labels, because the
label information is naturally included in the loss information.)

(4) DIW1-F:
• divide the training/validation data into k partitions according to their given labels;
• for the current mini-batch, perform weight estimation on the hidden-layer-output transformations

of data from a pretrained FE (in DC) in each partition;
• perform weighted classification to train another DC using the learned weights during training,

and then move to the next mini-batch as shown in Figure 8c.
(5) DIW1-L:

• for the current mini-batch, perform weight estimation on the loss-value transformations of data
from a pretrained FE (in DC);

• perform weighted classification to train another DC using the learned weights during training,
and then move to the next mini-batch as shown in Figure 8c.
(Note that for DIW1-F and DIW1-L, the FE is pretrained and fixed for weight estimation, and
another DC is trained for weighted classification. But the learned weights are still dynamic
due to the randomness of selected validation data in each mini-batch for performing weight
estimation.)

(6) DIW2-F:
• divide the training/validation data into k partitions according to their given labels;
• for the current mini-batch, perform weight estimation on the hidden-layer-output transformations

of data from a randomly initialized FE (in DC) in each partition;
• perform weighted classification to train this DC using the learned weights during training, and

then move to the next mini-batch as shown in Figure 8d.
(7) DIW2-L:

• for the current mini-batch, perform weight estimation on the loss-value transformations of data
from a randomly initialized FE (in DC);

• perform weighted classification to train this DC using the learned weights during training, and
then move to the next mini-batch as shown in Figure 8d.
(Note that for DIW2-F and DIW2-L, the FE for weight estimation is in the same DC for weighted
classification, so that they can be trained in a seamless manner.)

(8) DIW3-F:
• just like DIW2-F, except that the DC as FE is pretrained a little.

(9) DIW3-L:
• just like DIW2-L, except that the DC as FE is pretrained a little.

For all pretraining-based methods, we pretrain 20 epochs in Fashion-MNIST experiments and pretrain
50 epochs in CIFAR-10/100 experiments.

B Supplementary experimental results

In this section, we provide supplementary experimental results.

Summary of classification accuracy Table 4 presents the mean accuracy and standard deviation
on Fashion-MNIST, CIFAR-10 and CIFAR-100 under label noise. This table corresponds to Figure 3.

Importance weights distribution on CIFAR-10 Figure 9 shows the importance weights distribu-
tion on CIFAR-10 under 0.3 pair flip and 0.5 symmetric flip label noise, learned by DIW, reweight
and IW. We can see that DIW can successfully identify intact/mislabeled training data and up-/down-
weight them under different noise types.

15

Table 4: Mean accuracy (standard deviation) in percentage on Fashion-MNIST (F-MNIST for short),
CIFAR-10/100 under label noise (5 trials). Best and comparable methods (paired t-test at significance
level 5%) are highlighted in bold. p/s is short for pair/symmetric flip.

Noise Clean Uniform Random IW Reweight DIW

F-MNIST
0.3 p 71.05 (1.03) 76.89 (1.06) 84.62 (0.68) 82.69 (0.38) 88.74 (0.19) 88.19 (0.43)
0.4 s 73.55 (0.80) 77.13 (2.21) 84.58 (0.76) 80.54 (0.66) 85.94 (0.51) 88.29 (0.18)
0.5 s 73.55 (0.80) 73.70 (1.83) 82.49 (1.29) 78.90 (0.97) 84.05 (0.51) 87.67 (0.57)

CIFAR-10
0.3 p 45.62 (1.66) 77.75 (3.27) 83.20 (0.62) 45.02 (2.25) 82.44 (1.00) 84.44 (0.70)
0.4 s 45.61 (1.89) 69.59 (1.83) 76.90 (0.43) 44.31 (2.14) 76.69 (0.57) 80.40 (0.69)
0.5 s 46.35 (1.24) 65.23 (1.11) 71.56 (1.31) 42.84 (2.35) 72.62 (0.74) 76.26 (0.73)

CIFAR-100
0.3 p 10.82 (0.44) 50.20 (0.53) 48.65 (1.16) 10.85 (0.59) 48.48 (1.52) 53.94 (0.29)
0.4 s 10.82 (0.44) 46.34 (0.88) 42.17 (1.05) 10.61 (0.53) 42.15 (0.96) 53.66 (0.28)
0.5 s 10.82 (0.44) 41.35 (0.59) 34.99 (1.19) 10.58 (0.17) 36.17 (1.74) 49.13 (0.98)

16

D
C

Static weights

Train
data

IW (WC)

WVal
data

Train
data

W

IW (WE)

(a) IW

Train hid

W
Val

data

Train
data

SIW (WE)

FE LC

D
CPretrained

Val hid D
C

Static weights

Train
data

SIW (WC)

WOR

Val loss

Train loss

(b) SIW

Train hid

W
Val

data

Train
data

DIW1 (WE and WC in a seamless manner)

FE LC

D
CPretrained

Val hid

OR Dynamic weights

Train
data D

C

Train loss

Val loss

(c) DIW1

Train hid

W
Val

data

Train
data

DIW2 & DIW3 (WE and WC in a seamless manner)

FE LC

D
CPretrained

Val hid

Train loss

Val loss

OR Dynamic weights

Train
data

Circular update
(d) DIW2 & DIW3

FE is short for feature extractor, LC/DC is for linear/deep classifier, and hid/loss stands for hidden-
layer-output/loss-value transformation of data, denoting "-F"/"-L" method respectively. W is a set of
weights. Circular update is employed to solve circular dependency.

Figure 8: Illustrations of IW, SIW and DIW.

17

0.3 pair flip
IW Reweight DIW

B
ox

pl
ot

s

0 0.01 0.02 0.03
Weight

Intact
Mislabeled

0 2 4
Weight

0 1 2 3
Weight

H
is

to
gr

am
pl

ot
s

0 50 100 150 200 250
Weight

0

10

20

30

C
ou

nt
 (

k)

50 100 150 200 250
0

20

40

60

80

100
Intact
Mislabeled

0 2 4 6
Weight

0

5

10

15

C
ou

nt
 (

k)

0 1 2 3
Weight

0

1

2

3

C
ou

nt
 (

k)

0.5 symmetric flip
IW Reweight DIW

B
ox

pl
ot

s

0 0.01 0.02 0.03
Weight

0 2 4
Weight

0 1 2 3
Weight

H
is

to
gr

am
pl

ot
s

0 50 100 150 200 250
Weight

0

10

20

30

C
ou

nt
 (

k)

50 100 150 200 250
0

20

40

60

80

100

0 2 4 6
Weight

0

5

10

15

C
ou

nt
 (

k)

0 1 2 3
Weight

0

2

4

6

C
ou

nt
 (

k)

Figure 9: Statistics of weight distributions on CIFAR-10 under 0.3 pair and 0.5 symmetric flips.

18

	Supplementary information on experimental setup
	Datasets and base models
	Label-noise experiments
	Class-prior-shift experiments
	Methods in ablation study

	Supplementary experimental results

