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Abstract

This document contains the proofs for the main results of the submission “Distribu-
tional Robustness with IPMs and links to Regularization and GANs”.

Appendix: Table of Contents

Proofs of Main Results Pg 2
Proof of Theorem 1 Pg 3
Proof of Corollary 1 Pg 5
Proof of Lemma 1 Pg 5
Proof of Lemma 2 Pg 6
Proof of Theorem 2 Pg 6
Proof of Corollary 2 Pg 7
Proof of Theorem 3 Pg 7
Proof of Lemma 9 Pg 9

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



1 Proofs of Main Results

Before we begin, we introduce some notation that will be used to prove the main results that is
exclusive to the Appendix. We will be invoking general convex analysis on the space F (Ω,R),
in the same fashion as [2], noting that F (Ω,R) is a Hausdorff locally convex space (through the
uniform norm). We use B(Ω) to denote the denote the set of all bounded and finitely additive signed
measures over Ω (with a given σ-algebra). For any set D ⊆ B(Ω) and h ∈ F (Ω,R), we use
σD(h) = supν∈D 〈h, ν〉 and δD(ν) = ∞ · Jν /∈ DK to denote the support and indicator functions
such as in [5]. We introduce the conjugate specific to these spaces

Definition 1 ([6]) For any proper convex function F : F (Ω,R) → (−∞,∞), we have for any
µ ∈ B(Ω) we define

F ?(µ) = sup
h∈F(Ω,R)

(∫
Ω

hdµ− F (h)

)
and for any h ∈ F (Ω,R) we define

F ??(h) = sup
µ∈B(Ω)

(∫
Ω

hdµ− F ?(µ)

)
.

Theorem 1 ([8] Theorem 2.3.3) If X is a Hausdorff locally convex space, and F : X → (−∞,∞]
is a proper convex lower semi-continuous function then F ?? = F .

There is an additional robustness result which we will deploying for several proofs which holds for
any space A that admits Polish topology.

Lemma 1 For any F ⊆ F (Ω,R), we have that

dF (P, µ) = dco(F)(P, µ).

Proof Let ∆n := {α ∈ [0, 1]n :
∑n
i=1 α = 1} Note that we have

dco(F)(P, µ) = sup
n∈N,α∈∆n,fi∈F∀i=1,...,n

{
EP

[
n∑
i=1

αifi

]
− Eµ

[
n∑
i=1

αifi

]}

= sup
n∈N,α∈∆n,fi∈F∀i=1,...,n

n∑
i=1

αi {EP [fi]− Eµ [fi]}

= sup
n∈N,α∈∆n

n∑
i=1

αi sup
fi∈F

{EP [fi]− Eµ [fi]}

= sup
n∈N,α∈∆n

n∑
i=1

αidF (P, µ)

= dF (P, µ)

It is also closed under taking the closure since dF is the supremum of continuous (linear) functions
and the supremum over a set with a linear objective is equal to taking the supremum over the closure
of that set.

Definition 2 For any F ⊆ F (Ω,R), we define the functional RF : F (Ω,R)→ [0,∞] as

RF (h) :=

∫
Ω

hdP + δco(F)(h).

Lemma 2 For any F ⊆ F (Ω,R), RF is proper convex and lower semi-continuous.
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Proof The mapping h 7→
∫

Ω
hdP is clearly convex and lower semi-continuous. Since co (F) is a

closed and convex set, the indicator function δco(F)(h) is proper convex and lower semi-continuous
and thus the result follows.

Lemma 3 The mappings ν 7→ dF (ν, P ) and h 7→ RF (h) are convex conjugates

Proof Note first that for any ν ∈ B(Ω)

R?F (ν) = sup
h∈F(Ω,R)

{∫
Ω

hdν −
∫

Ω

hdP − δco(F)(h)

}
= sup
h∈co(F)

{∫
Ω

hdν −
∫

Ω

hdP

}
= dco(F)(ν, P )

(1)
= dF (ν, P ),

where (1) is due to Lemma 1. We also have that

(dF (·, P ))
?

(h) = sup
ν∈B(Ω)

{∫
Ω

hdν − dF (ν, P )

}
(1)
= sup

ν∈B(Ω)

{∫
Ω

hdν −R?F (ν)

}
(2)
= R??F (ν)

(3)
= RF (ν),

where (1) holds due to the above, (2) holds by definition of conjugate and (3) holds by a combination
of Lemma 1 and Lemma 2.

We also present a lemma which will prove to be useful in proving the main results.

Lemma 4 For any F ⊂ F (Ω,R), the mapping h 7→ ΘF (h) is convex.

Proof First notice that for any t > 0 and h ∈ F (Ω,R) we have that ΘF (t · h) = t · ΘF (h).
For any t ∈ [0, 1] and h, h′ ∈ F (Ω,R), consider the element h̃ := t · h + (1 − t) · h′. Since
t · h ∈ tΘF (h) · co (F) and (1− t)h ∈ (1− t)ΘF (h) · co (F), we have that

h̃ ∈ tΘF (h) · co (F) + (1− t)ΘF (h) · co (F)

⇐⇒ h̃ ∈ (tΘF (h) + (1− t)ΘF (h′)) · co (F) ,

which in turn implies that ΘF (h̃) ≤ tΘF (h) + (1− t)ΘF (h′), proving convexity of ΘF .

1.1 Proof of Theorem 1

Theorem 2 Let F ⊆ F (Ω,R) and P ∈P(Ω). For any h ∈ F (Ω,R) and for all ε > 0

sup
Q∈Bε,F (P )

∫
Ω

hdQ =

∫
Ω

hdP + ΛF,ε(h).

Proof We first require two lemmata.

Lemma 5 For any F ⊆ F (Ω,R), P ∈P(Ω), λ ≥ 0 and h ∈ F (Ω,R), we have

sup
Q∈P(Ω)

(∫
Ω

hdQ− λdF (Q,P )

)
= RλF ? σP(Ω)(h)
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Proof We use a standard result from convex analysis which states that the convex conjugate of the
sum of two functions is the infimal convolution of their conjugates. Hence we have

sup
Q∈P(Ω)

(∫
Ω

hdQ− λdF (Q,P )

)
= sup
Q∈B(Ω)

(∫
Ω

hdQ− λdF (Q,P )− δP(Ω)(Q)

)
=
(
λdF (Q,P ) + δP(Ω)(Q)

)?
= (λdF (Q,P ))

?
?
(
δP(Ω)(Q)

)?
= RλF ? σP(Ω)(h),

which follows from Lemma 3 and the fact that support functions are conjugates of indicator functions
[4, Section 3.4.1, Example (a)].

Lemma 6 For any F ⊆ F (Ω,R), P ∈P(Ω), and h ∈ F (Ω,R), we have

inf
λ≥0

(
RλF ? σP(Ω)(h) + λε

)
=

∫
Ω

hdP + JP ? εΘF (h)

Proof Using the definition of infimal convolution, we have
inf
λ≥0

(
RλF ? σP(Ω)(h) + λε

)
= inf
λ≥0

(
inf

h′∈F(Ω,R)

(∫
Ω

(h− h′)dP + δco(λF)(h− h′) + σP(Ω)(h)

)
+ λε

)
= inf
λ≥0

inf
h′∈F(Ω,R)

(∫
Ω

hdP −
∫

Ω

h′dP + δco(λF)(h− h′) + σP(Ω)(h
′) + λε

)
=

∫
Ω

hdP + inf
h′∈F(Ω,R)

(
−
∫

Ω

h′dP + inf
λ≥0

(
δco(λF)(h− h′) + λε

)
+ σP(Ω)(h

′)

)
=

∫
Ω

hdP + inf
h′∈F(Ω,R)

(
σP(Ω)(h

′)−
∫

Ω

h′dP + inf
λ≥0

(
δco(λF)(h− h′) + λε

))
=

∫
Ω

hdP + inf
h′∈F(Ω,R)

(
σP(Ω)(h

′)−
∫

Ω

h′dP + inf
λ≥0

(∞ · Jh− h′ /∈ λ · co (F)K + λε)

)
=

∫
Ω

hdP + inf
h′∈F(Ω,R)

(JP (h′) + εΘF (h− h′))

=

∫
Ω

hdP + JP ? εΘF (h).

We are now ready to prove the Theorem. By introducing a dual variable λ > 0 that penalizes the ball
constraint, we have

sup
Q∈Bε,F (P )

∫
Ω

hdQ = sup
Q∈P(Ω):dF (Q,P )≤ε

∫
Ω

hdQ

= sup
Q∈P(Ω)

inf
λ≥0

(∫
Ω

hdQ+ λ (ε− dF (Q,P ))

)
(1)
= inf

λ≥0
sup

Q∈P(Ω)

(∫
Ω

hdQ+ λ (ε− dF (Q,P ))

)

= inf
λ≥0

(
sup

Q∈P(Ω)

(∫
Ω

hdQ− λdF (Q,P )

)
+ λε

)
(2)
= inf

λ≥0

(
RλF ? σP(Ω)(h) + λε

)
(3)
=

∫
Ω

hdP + JP ? εΘF (h),
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where (2) and (3) hold due to Lemma 5 and 6 respectively. To see why (1) holds, first note that the
mapping Q 7→

∫
Ω
hdQ + λ (ε− dF (Q,P )) is concave and lower semicontinuous since dF is the

supremum of linear functions. Next we have by an application of the Banach-Alaogu Theorem that
P(Ω) is compact [2, Lemma 27 (b)]. Hence by [1, Theorem 2], (1) follows.

1.2 Proof of Corollary 1

Corollary 1 Let F ⊆ F (Ω,R) and P ∈P(Ω). For any h ∈ F (Ω,R) and for all ε > 0

sup
Q∈Bε,F (P )

∫
Ω

hdQ ≤
∫

Ω

hdP + ε inf
b∈R

ΘF (h− b).

Proof By definition of the infimal convolution we can consider a decomposition of the form h1 = b
and h2 = h − b for some b ∈ R. notice that JP (b) = 0 and by taking the smallest possible b ∈ R
yields

ΘF,ε(h) ≤ ε inf
b∈R

ΘF (h− b),

which completes the proof.

1.3 Proof of Lemma 1

Lemma 7 Let ζ : F (Ω,R)→ [0,∞] be a penalty such that ζ(a·h) = ak·ζ(h) for any h ∈ F (Ω,R),
k, a > 0. Let F = {h : ζ(h) ≤ 1} then we have ΘF (h) ≤ k

√
ζ(h) with equality if ζ is convex.

Proof Let us consider the non-convex case so that F is not necessarily convex. We then have for any
F ⊆ F (Ω,R)

h ∈ co (λF) ⇐⇒ h ∈ λco (F)

⇐⇒ h

λ
∈ co (F)

For a fixed h ∈ F (Ω,R), set λ = k
√
ζ(h) and notice that

ζ

(
h

λ

)
= ζ

(
h

k
√
ζ(h)

)

=

(
1

k
√
ζ(h)

)k
ζ (h)

= ζ (h) ,

and so we have ΘF (h) ≤ k
√
ζ(h). In the case when the penalty is convex, we have that F will be

convex and so

h ∈ λco (F) ⇐⇒ h

λ
∈ co (F)

⇐⇒ h

λ
∈ F

⇐⇒ ζ

(
h

λ

)
≤ 1

⇐⇒ 1

λk
ζ(h) ≤ 1

⇐⇒ ζ(h) ≤ λk

⇐⇒ k
√
ζ(h) ≤ λ.

Hence we have ΘF (h) = inf k
√
ζ(h)≤λ λ = k

√
ζ(h).
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1.4 Proof of Lemma 2

Lemma 8 The mapping h 7→ ΛF,ε(h) is subadditive and ΛF,ε(h) is the largest subadditive function
that minorizes min (JP (h), εΘF (h)).

Proof Since ΘF (h) is convex (Lemma 4) and ΘF (t ·h) = t ·ΘF (h) for t > 0, it follows that ΘF (h)
is subadditive. Next notice that JP is subadditive since for any h, h′ ∈ F (Ω,R)

JP (h+ h′) = sup
ω∈Ω

h(ω) + h′(ω)−
∫

Ω

hdP −
∫

Ω

h′dP

≤ sup
ω∈Ω

h(ω)−
∫

Ω

hdP + sup
ω∈Ω

h′(ω)−
∫

Ω

h′dP

= JP (h) + JP (h′).

Next notice that JP (0) = 0 and εΘF (0) = 0. By [7, Theorem 2.5(c)] we have that ΛF,ε is
sub-additive and that it is the largest subadditive function that minorizes min (JP (h), εΘF (h)).

1.5 Proof of Theorem 2

Theorem 3 A function h ∈ F (Ω,R) satisfies ΛF,ε(h) = ΘF (h) if and only if

h ∈ arg inf
ĥ∈F(Ω,R)

(
EP [ĥ]− Eµ[ĥ] + εΘF (ĥ)

)
,

for some µ ∈P(Ω).

Proof To prove this Theorem, we use the conditions for an optimal decomposition of an infimal
convolution as shown in [3, Lemma 1]. First note that JP and ΘF are convex (Lemma 4). Note that
the property is equivalent to showing that the decomposition h1 = 0 and h2 = h is optimal. By [3,
Lemma 1], this decomposition is optimal if and only if there exists a measure ν∗ ∈ B(Ω) such that

JP (0) = 〈ν∗, 0〉 − J?P (ν∗) (1)
εΘF (h) = 〈ν∗, h〉 − (εΘF )?(ν∗) (2)

First note that JP (h) = σP(Ω)(h) + σ{−P}(h) and using properties of infimal convolutions, we
have for any ν ∈P(Ω)

J?P (ν) =
(
σP(Ω) + σ{−P}

)?
(ν)

=
(
σ?P(Ω) ? σ

?
{−P}

)
(ν)

=
(
δP(Ω) ? δ{−P}

)
(ν)

= inf
ν′∈B(Ω)

(
δP(Ω)(ν

′) + δ{−P}(ν − ν′)
)

= inf
ν′∈P(Ω)

δ{−P}(ν − ν′)

=∞ · JP + ν /∈P(Ω)K
=∞ · Jν /∈P(Ω)− P K.

Since JP (0) = 〈ν, 0〉 = 0 for any ν ∈ B(Ω), this tells us that a ν∗ satisfies the condition of Equation
1 if and only if ν∗ is of the form µ−P where µ is any element of P(Ω). We can re-arrange Equation
2 into

〈ν∗, h〉 − εΘF (h) = (εΘF )?(ν∗),
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and by definition since (εΘF )?(ν∗) = supĥ∈F(Ω,R)

(〈
ν∗, ĥ

〉
− εΘF (ĥ)

)
, Equation 2 setting

ν∗ = µ− P becomes

〈ν∗, h〉 − εΘF (h) = sup
ĥ∈F(Ω,R)

(〈
ν∗, ĥ

〉
− εΘF (ĥ)

)
(3)

⇐⇒ 〈µ− P , h〉 − εΘF (h) = sup
ĥ∈F(Ω,R)

(〈
µ− P , ĥ

〉
− εΘF (ĥ)

)
⇐⇒ Eµ[h]− EP [h]− εΘF (h) = sup

ĥ∈F(Ω,R)

(
Eµ[ĥ]− EP [ĥ]− εΘF (ĥ)

)
⇐⇒ h ∈ arg sup

ĥ∈F(Ω,R)

(
Eµ[ĥ]− EP [ĥ]− εΘF (ĥ)

)
⇐⇒ h ∈ arg inf

ĥ∈F(Ω,R)

(
EP [ĥ]− Eµ[ĥ] + εΘF (ĥ)

)
. (4)

Hence the decomposition h1 = 0 and h2 = h is optimal if and only if h satisfies Equation 4 for some
µ ∈P(Ω), which is precisely the statement of the Theorem.

1.6 Proof of Corollary 2

Corollary 2 Let P+, P− ∈P(Ω) and suppose F ⊆ F (Ω,R) is even. If

h∗ ∈ arg inf
ĥ∈F(Ω,R)

(
EP− [ĥ]− EP+ [ĥ] + εΘF (ĥ)

)
,

then we have

inf
Q∈Bε,F (P+)

∫
Ω

h∗dQ =

∫
Ω

h∗dP+ − εΘF (h∗)

sup
Q∈Bε,F (P−)

∫
Ω

h∗dQ =

∫
Ω

h∗dP− + εΘF (h∗)

Proof Applying Theorem 2 with P = P− and µ = P+ and using Theorem 1 yields the result on
Bε,F (P−). Notice that F is even, which means that ΘF (h) = ΘF (−h) and so we have

h∗ ∈ arg inf
ĥ∈F(Ω,R)

(
EP− [ĥ]− EP+ [ĥ] + εΘF (ĥ)

)
⇐⇒ −h∗ ∈ arg inf

−ĥ∈F(Ω,R)

(
−EP− [ĥ] + EP+

[ĥ] + εΘF (−ĥ)
)

⇐⇒ −h∗ ∈ arg inf
−ĥ∈F(Ω,R)

(
EP+

[ĥ]− EP− [ĥ] + εΘF (ĥ)
)
.

We can then apply Theorem 2 to −h∗ which means Λε,F (−h∗) = εΘF (−h∗) = εΘF (h∗). Putting
this together and applying Theorem 1 to −h∗ gives

sup
Q∈Bε,F (P+)

∫
Ω

−h∗dQ =

∫
Ω

−h∗dP+ + εΘF (h∗),

and multiplying both sides by −1 concludes the proof.

1.7 Proof of Theorem 3

Theorem 4 Let f : R → R be a convex lower semi-continuous function with f(1) = 0,
F ⊆ F (Ω,R) and H ⊆ F (Ω,dom(f?)). For any model and data distributions µ, P ∈ P(Ω)
respectively, we have for all ε > 0

sup
Q∈Bε,F (P )

GANf,H(µ;Q) ≤ GANf,H(µ;P ) + ε sup
h∈H

ΘF (h)
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Proof We have

sup
Q∈Bε,F (P )

GANf,H(µ;Q) = sup
Q∈Bε,F (P )

sup
h∈H

(∫
Ω

hdQ−
∫

Ω

f?(h)dµ

)
(1)
= sup

h∈H
sup

Q∈Bε,F (P )

(∫
Ω

hdQ−
∫

Ω

f?(h)dµ

)

= sup
h∈H

(
sup

Q∈Bε,F (P )

∫
Ω

hdQ−
∫

Ω

f?(h)dµ

)
(2)
= sup

h∈H

(∫
Ω

hdP + ΛF,ε(h)−
∫

Ω

f?(h)dµ

)
(3)

≤ sup
h∈H

(∫
Ω

hdP + εΘF (h)−
∫

Ω

f?(h)dµ

)
(4)

≤ sup
h∈H

(∫
Ω

hdP −
∫

Ω

f?(h)dµ

)
+ ε sup

h∈H
ΘF (h)

= GANf,H(µ;P ) + ε sup
h∈H

ΘF (h),

where (1) holds since we can exchange supremums, (2) is due to Theorem 1, (3) holds since
ΛF,ε ≤ εΘF (h) and finally (4) holds since we can upper bound by taking out supremums.
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Lemma 9 For any µ ∈P(Ω), h ∈ F (Ω,R) we have

inf
b∈R

√
Eµ(X)[(h(X)− b)2

] =
√

Varµ(h)

Proof Let ϕ(b) = Eµ(X)[(h(X)− b)2
] and S(b) =

√
ϕ(b) and using simple calculus we have

S′(b) =
ϕ′(b)

2
√
ϕ(b)

,

and noting that ϕ(b) > 0, we can find the minima by solving ϕ′(b) = 0 by first noting that

ϕ(b) = Eµ(X)[h
2(X)]− 2bEµ(X)[h(X)] + b2,

and so we have

ϕ′(b) = 0 ⇐⇒ −2 · Eµ(X)[h(X)] + 2b = 0

⇐⇒ b = Eµ(X)[h(X)].

Putting this together yields

inf
b∈R

√
Eµ(X)[(h(X)− b)2

] = inf
b∈R

S(b)

= S
(
Eµ(X)[h(X)]

)
= Eµ(X)

[(
h(X)− Eµ(X)[h(X)]

)2]
=
√

Varµ(h)

9



References
[1] Ky Fan. Minimax theorems. Proceedings of the National Academy of Sciences of the United

States of America, 39(1):42, 1953.

[2] Shuang Liu and Kamalika Chaudhuri. The inductive bias of restricted f-gans. arXiv preprint
arXiv:1809.04542, 2018.

[3] Japhet Niyobuhungiro. Optimal decomposition for infimal convolution on Banach Couples.
Linköping University Electronic Press, 2013.

[4] Jean-Paul Penot. Calculus without derivatives, volume 266. Springer Science & Business Media,
2012.

[5] R Tyrrell Rockafellar. Convex analysis. Number 28. Princeton university press, 1970.

[6] Ralph Rockafellar. Integrals which are convex functionals. Pacific journal of mathematics,
24(3):525–539, 1968.

[7] Thomas Strömberg. A study of the operation of infimal convolution. PhD thesis, Luleå tekniska
universitet, 1994.

[8] Constantin Zalinescu. Convex analysis in general vector spaces. World scientific, 2002.

10


	Proofs of Main Results
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 2
	Proof of Corollary 2
	Proof of Theorem 3


