Provably Efficient Reward-Agnostic Navigation
with Linear Value Iteration

Andrea Zanette Alessandro Lazaric
Stanford University Facebook Artificial Intelligence Research
zanette@stanford.edu lazaric@fb.com
Mykel J. Kochenderfer Emma Brunskill
Stanford University Stanford University
mykel@stanford.edu ebrun@cs.stanford.edu
Abstract

There has been growing progress on theoretical analyses for provably efficient
learning in MDPs with linear function approximation, but much of the existing work
has made strong assumptions to enable exploration by conventional exploration
frameworks. Typically these assumptions are stronger than what is needed to
find good solutions in the batch setting. In this work, we show how under a
more standard notion of low inherent Bellman error, typically employed in least-
square value iteration-style algorithms, we can provide strong PAC guarantees on
learning a near optimal value function provided that the linear space is sufficiently
“explorable”. We present a computationally tractable algorithm for the reward-free
setting and show how it can be used to learn a near optimal policy for any (linear)
reward function, which is revealed only once learning has completed. If this reward
function is also estimated from the samples gathered during pure exploration, our
results also provide same-order PAC guarantees on the performance of the resulting
policy for this setting.

1 Introduction

Reinforcement learning (RL) aims to solve complex multi-step decision problems with stochastic
outcomes framed as a Markov decision process (MDP). RL algorithms often need to explore large
state and action spaces where function approximations become necessity. In this work, we focus on
exploration with linear predictors for the action value function, which can be quite expressive [Sutton
and Bartol [2018]].

Existing guarantees for linear value functions Exploration has been widely studied in the tabular
setting [|Azar et al, 2017, |[Zanette and Brunskill, 2019, [Efroni et al.| 2019, Jin et al., [2018| |Dann
et al, 2019], but obtaining formal guarantees for exploration with function approximation appears to
be a challenge even in the linear case. The minimal necessary and sufficient conditions to reliably
learn a linear predictor are not fully understood even with access to a generative model [Du et al.|
2019b]. We know that when the best policy is unique and the predictor is sufficiently accurate it can
be identified [Du et al.,[2019c¢| [2020], but in general we are interested in finding only near-optimal
policies using potentially misspecified approximators.

To achieve this goal, several ideas from tabular exploration and linear bandits [Lattimore and
Szepesvari, [2020]] have been combined to obtain provably efficient algorithms in low-rank MDPs
[Yang and Wang|, 2020, Zanette et al.,2020a} Jin et al., 2020b]] and their extension [Wang et al.|[2019]
2020b]. We shall identify the core assumption of the above works as optimistic closure: all these

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

settings assume the Bellman operator maps any value function of the learner to a low-dimensional
space Q that the learner knows. When this property holds, we can add exploration bonuses because
by assumption the Bellman operator maps the agent’s optimistically modified value function back to
@, which the algorithm can represent and use to propagate the optimism and drive the exploration.
However, the optimistic closure is put as an assumption to enable exploration using traditional
methods, but is stronger that what is typically required in the batch setting.

Towards batch assumptions This work is motivated by the desire to have exploration algorithms
that we can deploy under more mainstream assumptions, ideally when we can apply well-known
batch procedures like least square policy iteration (LSPI) [Lagoudakis and Parr, [2003f], and least
square value iteration (LSVI) [Munos}, 2005].

LsPI has convergence guarantees when the action value function of all policies can be approximated
with a linear architecture [Lazaric et al.,[2012]], i.e., Q™ is linear for all ; in this setting, Lattimore
and Szepesvari| [2020] recently use a design-of-experiments procedure from the bandit literature
to obtain a provably efficient algorithm for finding a near optimal policy, but they need access to
a generative model. LSVI, another popular batch algorithm, requires low inherent Bellman error
[Munos and Szepesvari, 2008, |Chen and Jiang| 2019]. In this setting, Zanette et al.[[2020b] present a
near-optimal (with respect to noise and misspecification) regret-minimizing algorithm that operates
online, but a computationally tractable implementation is not known. It is worth noting that both
settings are more general than linear MDPs [Zanette et al.,|2020b]].

A separate line of research is investigating settings with low Bellman rank [Jiang et al.,|2017] which
was found to be a suitable measure of the learnability of many complex reinforcement learning
problems. The notion of Bellman rank extends well beyond the linear setting.

The lack of computational tractability in the setting of [Zanette et al.| [2020b]] and in the setting with
low Bellman rank [Jiang et al.,2017] and of a proper online algorithm in [Lattimore and Szepesvari,
2020|] highlight the hardness of these very general settings which do not posit additional assumptions
on the linear value function class Q beyond what is required in the batch setting.

Reward-free exploration We tackle the problem of designing an exploration algorithm using batch
assumptions by adopting a pure exploration perspective: our algorithm can return a near optimal
policy for any linear reward function that is revealed after an initial learning phase. It is therefore
a probably approximately correct (PAC) algorithm. Reward-free exploration has been investigated
in the tabular setting with an end-to-end algorithm [Jin et al.l |2020a]]. [Hazan et al.|[2018]] design
an algorithm for a more general setting through oracles that also recovers guarantees in the tabular
domains. Others [Du et al.,|2019al Misra et al., 2020] also adopt the pure exploration perspective
assuming a small but unobservable state space. More recently, reward free exploration has gained
attention in the tabular setting Kaufmann et al.|[2020], [Tarbouriech et al.,[Ménard et al.|[2020] as
well as the context of function approximation Wainwright [2019], Agarwal et al.|[2020].

Contribution This works makes two contributions. It presents a statistically and computationally
efficient online PAC algorithm to learn a near-optimal policy 1) for the setting with low inherent
Bellman error [Munos and Szepesvari, [2008]] and 2) for reward-free exploration in the same setting.

From a technical standpoint, 1) implies we cannot use traditional exploration methodologies and
2) implies we cannot learn the full dynamics, which would require estimating all state-action-state
transition models. Both goals are accomplished by driving exploration by approximating G-optimal
experimental design [Lattimore and Szepesvari, |2020] in online reinforcement learning through
randomization. Our algorithm returns a dataset of well chosen state-action-transition triplets, such
that invoking the LSVI algorithm on that dataset (with a chosen reward function) returns a near
optimal policy on the MDP with that reward function.

2 Preliminaries and Intuition

We consider an undiscounted H-horizon MDP [Puterman, |1994] M = (S, A, p,r, H) defined by a
possibly infinite state space S and action space A. For every ¢t € [H] = {1,..., H} and state-action
pair (s, a), we have a reward function 7 (s, a) and a transition kernel p;(- | s, a) over the next state.
A policy 7 maps a (s, a, t) triplet to an action and defines a reward-dependent action value function

Q7 (s,a) =r(s,a) + E {Zfitﬂ ri(si, m(s1)) | s, a} and a value function V™ (s) = QT (s, m¢(s)).

For a given reward function there exists an optimal policy 7* whose value and action-value functions
on that reward function are defined as V;*(s) = sup,. V;"(s) and Q7 (s,a) = sup,. QT (s,a). We
indicate with p the starting distribution. The Bellman operator 7; applied to the action value function
Q41 is defined as T;(Qe41)(s,a) = (s, a) + Egp,(s,0) Maxe Qi41(s",a’). For a symmetric

positive definite matrix > and a vector x we define ||z||g-1 = VaTX~1z. The O(:) notation

hides constant values and the O(-) notation hides constants and In(dH 11), where d is the feature
dimensionality described next.

Linear Approximators For the rest of the paper we restrict our attention to linear functional spaces
for the action value function, i.e., where Q;(s, a) = ¢;(s,a) "6 for a known feature extractor ¢ (s, a)
and a parameter 6 in a certain set 3;, which we assume to be the Euclidean ball with unit radius
B; = {0 € R% | |02 < 1}. This defines the value functional spaces as

Q Q1| Quls,a) = au(s,0)T0, 0 € By, V" (V| Vi(s) = maxen(s,0)T0, 0 € By).

Inherent Bellman error The inherent Bellman error condition is typically employed in the analysis
of LSVI [Munos and Szepesvari, |2008, (Chen and Jiang) [2019]]. It measures the closure of the
prescribed functional space Q with respect to the Bellman operator 7, i.e, the distance of 7 @) from
Q provided that Q € Q. In other words, low inherent Bellman error ensures that if we start with
an action value function in Q then we approximately remain in the space after performance of the
Bellman update. For finite horizon MDP we can define the inherent Bellman error as:

Qe85 488 1~ T Qs .
When linear function approximations are used and the inherent Bellman error is zero, we are in a
setting of low Bellman rank [Jiang et al.|[2017]], where the Bellman rank is the feature dimensionality.
This condition is more general than the low rank MDP setting or optimistic closure [[Yang and Wang),
2020, [Jin et al.l 2020b| Zanette et al.| [2020al [Wang et al., 2019]; for a discussion of this see [Zanette
et al.,2020b].

Model-free reward-free learning In the absence of reward signal, how should Q; look like?
Define the reward-free Bellman operator 7,7 (Qi41)(s, a) = Egp, (s,a) Maxe Qi41(s',a’). Itis
essentially equivalent to measure the Bellman error either on the full Bellman operator 7; or directly
on the dynamics 7, when the reward function is linear (see proposition 2 of [Zanette et al.|[2020b]).
We therefore define the inherent Bellman error directly in the transition operator 7+ :

Definition 1 (Inherent Bellman Error).
def

(94, Q1) = o e QIPG%,, r(r;%c\Qt — 7,7 (Qe41)](s, a)]. (2)

Approximating G-optimal design G-optimal design is a procedure [Kiefer and Wolfowitz, [1960]
that identifies an appropriate sequence of features ¢, ... ¢, to probe to form the design matrix
=", ¢i¢; in order to uniformly reduce the maximum “uncertainty” over all the features as
measured by max, [|¢[|x-1, see appendix [C} This principle has recently been applied to RL with a
generative model [Lattimore and Szepesvari, 2020] to find a near optimal policy.

However, the basic idea has the following drawbacks in RL: 1) it requires access to a generative model;
2) it is prohibitively expensive as it needs to examine all the features across the full state-action space
before identifying what features to probe. This work addresses these 2 drawbacks in reinforcement
learning by doing two successive approximations to G-optimal design. The first approximation would
be compute and follow the policy 7 (different in every rollout) that leads to an expected feature ¢,
in the most uncertain direction'|(i.e., the direction where we have the least amount of data). This
solves problem 1 and 3 above, but unfortunately it turns out that computing such 7 is computationally
infeasible. Thus we relax this program by finding a policy that in most of the episodes makes at least
some progress in the most uncertain direction, thereby addressing point 2 above. This is achieved
through randomization; the connection is briefly outlined in section[5.5]

'This is an approximation to G-optimal design, because 7 here is the policy that leads to the most uncertain
direction ¢, rather than to the direction that reduces the uncertainty the most.

3 Algorithm

Moving from the high-level intuition to the actual algorithm requires some justification,
which is left to section 5] Here instead we give few remarks about algorithm [T} first,
the algorithm proceeds in phases p = 1,2,... and in each phase it focuses on learn-
ing the corresponding timestep (e.g., in phase 2 it learns the dynamics at timestep 2).
Proceeding forward in time is impor-
tant because o explore at timestep p the
algorithm needs to know how to navi-
gate through prior timesteps. Second, 1: Inputs: failure probability § € [0, 1], target precision ¢ > 0,

Algorithm 1 Forward Reward Agnostic Navigation with
Confidence by Injecting Stochasticity (FRANCIS)

we found that random sampling a re- feature map ¢ N
ward signal in the exploratory timestep ~ 2: Initialize ¥n = A,60, = 0,vt € [H], D = 0; set
from the inverse covariance matrix &, ~ Ce, Co, Ca € R (see appendix), A = 1

: for phasep =1,2,..., H do
k=1seto = osart = co/(dp 1n((§—’e’))
while o < coa H2(dp + dp+1) In(22) do
fori = 1,2,...,06(15‘2“—2cr do
k = k + 1, receive starting state s1 ~ p

_ def
&p ~ N(0702pkl); Rp (s, a) = ¢p(57a)T£p
T <—LSVI(p,Rp, D)
Runm; D < DU (Spk, apk, 5::+1,k);

N(0, O'Z;kl) is an elegant and effective
way to approximate design of experiment
(see section [5.5)), although this is not
the only possible choice. Variations of
this basic protocol are broadly known in
the literature as Thompson sampling [Os
band et al.,|2016al|Agrawal and Jial 2017}
Russo, 2019, Gopalan and Mannor, 2015, .
Ouyang et al., |2017] and from an algo- def -
rithmic standpoint our procedure could 11 Dok = Pp(Spk: apk); Tp ki1 < Tpk + dprpr
be interpreted as a modification of the %2 end for
popular RLSVT algorithm [Osband et al.| li: g 20

: end while
20}6b] to tackle the reward-free explo- 5. and for
ration problem. 16: return D

W I s W

The algorithm returns a dataset D of well

chosen state-action-transitions approximating a G-optimal design in the online setting; the dataset
can be augmented with the chosen reward function and used in LSVI (detailed in appendix [B)) to find
a near-optimal policy on the MDP with that reward function. The call LSVI(p, R, D) invokes the
Lsv1 algorithm on a p horizon MDP on the batch data D with reward function R, at timestep p.

4 Main Result

Before presenting the main result is useful to define the average feature ¢, , = By, x ¢ (21, Tt (24))
encountered at timestep ¢ upon following a certain policy 7. In addition, we need a way to measure
how “explorable” the space is, i.e., how easy it is to collect information in a given direction of the
feature space using an appropriate policy. The explorability coefficient v measures how much we can
align the expected feature ¢, , with the most challenging direction ¢ to explore even if we use the
best policy 7 for the task (i.e., the policy that maximizes this alignment). It measures how difficult it
is to explore the most challenging direction, even if we use the best (and usually unknown) policy
to do so. This is similar to a diameter condition in the work of Jaksch et al.|[2010] in the features
space, but different from ergodicity, which ensures that sufficient information can be collected by any
policy. It is similar to the reachability parameter of |Du et al.|[2019a]] and Misra et al.|[2020]], but our
condition concerns the features rather than the state space and is unavoidable in certain settings (see
discussion after the main theorem).

Definition 2 (Explorability). v def min|g||,=1 MaXry |$:’t9|; Vinin = MiNye[H] V-

Theorem 4.1. Assume ||¢y(s,a)|s < 1 and set € to satisfy € > O(dyHI(Qy, Qi11)) and € <
~ ~ 2
O(Vmin/Vdy) for all t € [H]. FRANCIS terminates after O (H2 1{11 W) episodes.

Fix a reward function ry(-, -) such that each state-action-successor state (s, ar, sj 1.5) triplet in D
(where t € [H| and k is the episode index in phase t) is augmented with a reward r; = r4(Stk, ark)-

Online? Reward- Need optimistic # episodes # computations
agnostic? closure?

This work Yes Yes No di{f ’ poly(d, H,1/€*)
G-optimal design + Lsvi No Yes No di’; ’ Q(SA)

[[Zanette et al., 2020Db] Yes No No di’;{ ! exponential

[Jin et al} 2020D] Yes No Yes i poly(d, H,1/¢%)
[Jiang et all, 2017] Yes No No dz’; i |Al intractable

[Jin et al.l [2020a] Yes Yes (tabular) @ poly(S, A, H,1/¢?)
[Wang et al.|, 2020a]] Yes Yes Yes 2H0 poly(S, A, H,1/€%)

Table 1: We consider the number of episodes to learn an e-optimal policy. We assume r € [0, 1] and Q™ € [0, H],
and rescale the results to hold in this setting. We neglect misspecification for all works. The column “optimistic
closure” refers to the assumption that the Bellman operator projects any value function into a prescribed space
(notably, low-rank MDPs of [Jin et al., 2020b])). For our work we assume € = Q(vmin/v/d). We recall that if an
algorithm has regret Av/K, with K the number of episodes then we can extract a PAC algorithm to return an

e-optimal policy in ‘2—; episodes. We evaluate [Jiang et al.;[2017] in our setting where the Bellman rank is d (the
result has an explicit dependence on the number of actions, though this could be improved in the linear setting).
G-optimal design is from the paper [Lattimore and Szepesvaril [2020] which operates in infinite-horizon and
assuming linearity of Q™ for all 7, so the same idea of G-optimal design was applied to our setting to derive the
result and we report the number of required samples (as opposed to the number of episodes), see appendix [C]
H7s%*A

For [Jin et al.}2020a] we ignore the lower order term

If the reward function (-, -) satisfies for some parameters 07 € R% ... 0y € Re#
1
V(Saa’vt) Hoﬂb < ﬁv Tt(sva) :(ﬁt(s,a)—rg;

then with probability at least 1 — ¢ the policy 7 returned by LSVI using the augmented dataset D
satisfies (on the MDP with r4(-, -) as reward function)

By np (Vi = V) (1) < € 3)

The full statement is reported in appendix appendix The reward function 7 (-, -) could even be
adversarially chosen after the algorithm has terminated. If the reward function is estimated from
data then the theorem immediately gives same-order guarantees as a corollary. The dynamics error
O(d¢HZ(Q4, Qt41)) is contained in e.

The setting allows us to model MDPs where where r; € [0, %] and V;* € [0, 1]. When applied to
MDPs with rewards in [0, 1] (and value functions in [0, H]), the input and output should be rescaled
and the number of episodes to € accuracy should be multiplied by H?2.

The significance of the result lies in the fact that this is the first statistically and computationallyE]
efficient PAC algorithm for the setting of low inherent Bellman error; this is special case of the setting
with low Bellman rank (the Bellman rank being the dimensionality of the features). In addition, this
work provides one of the first end-to-end algorithms for provably efficient reward-free exploration
with linear function approximation.

In table[T]we describe our relation with few relevant papers in the field. The purpose of the comparison
is not to list the pros and cons of each work with respect to one another, as these works all operate
under different assumptions, but rather to highlight what is achievable in different settings.

Is small Bellman error needed? As of writing, the minimal conditions that enable provably
efficient learning with function approximation are still unknown [Du et al., 2019b]. In this work
we focus on small Bellman error which is a condition typically used for batch analysis of LSVI
[Munos), 2005, [Munos and Szepesvari, 2008, |Chen and Jiang, [2019]]. What is really needed for the
functioning of FRANCIS is that vanilla LSVTI outputs a good solution in the limit of infinite data on
different (linear) reward functions: as long as LSVI can return a near-optimal policy for the given
reward function given enough data, FRANCIS can proceed with the exploration. This requirement

2FRANCIS requires only polynomial calls to LSVI and samples from a multivariate normal, see appendix

is really minimal, because even if the best dataset D is collected through G-optimal design on a
generative model (instead of using FRANCIS), LSVI must anyway be able to output a good policy on
the prescribed reward function.

Is explorability needed? Theoremrequires € < O(Vmin/v/d;). Unfortunately, a dependence
on Vi, turns out to be unavoidable in the more general setting we consider in the appendix; we
discuss this in more detail in appendix [E] but here we give some intuition regarding the explorability
requirement.

FRANCIS can operate under two separate set of assumptions, which we call implicit and explicit
regularity, see [definition[6] [Reward Classes])in appendix and the main result in theorem|T]

Under implicit regularity we do not put assumptions on the norm of reward parameter ||0" |2, but only
a bound on the expected value of the rewards under any policy: |E;, .7 (x, m¢(2¢))| < 4. This
representation allows us to represent very high rewards (> 1) in hard-to-reach states. It basically
controls how big the value function can get. This setting is more challenging for an agent to explore
even in the tabular setting and even in the case of a single reward function. If a state is hard to reach,
the reward there can be very high, and a policy that tries to go there can still have high value. Under
this implicit regularity assumption, the explorability parameter would show up for tabular algorithms
as well (as minimum visit probability to any state under an appropriate policy).

By contrast, under explicit regularity (which concerns the result reported in theorem we do
make the classical assumption that bounds the parameter norm |6 || < 1/H. In this case, the lower
bound no longer applies, but the proposed algorithm still requires good “explorability” to proceed.
Removing this assumption is left as future work.

5 Technical Analysis

For the proof sketch we neglect misspecification, i.e., Z(Q;, Q;+1) = 0. We say that a statement
holds with very high probability if the probability that it does not hold is < 4.

5.1 Analysis of LSVI, uncertainty and inductive hypothesis

FRANCIS repeatedly calls LSVI on different randomized linearly-parameterized reward functions R,,
and so we need to understand how the signal propagates. Let us begin by defining an uncertainty

function in episode ¢ of phase p using the covariance matrix X,; = Z;;ll ODpj gb;j + I on the observed
features ¢p; = ¢, (sp;,ap;) at episode j of phase p:

egs . def -1 def —-
Definition 3 (Max Uncertainty). U;(0) = max,n“guuzpisﬁqﬁmpﬁu = max, ﬁ”(ﬁ’w”z;f'

Let X; denote the covariance matrix in timestep ¢ once learning in that phase has completed, and
likewise denote with U/ (o) the final value of the program of definition once learning in phase ¢ has

completed (so using X in the definition); let \/a; = O(;/d; + di11) and Ry, (s, a) = ¢, (s,a) T &p.
Lemma 1 (see appendix [B.4). Assume ||&,]2 < 1 and Mpin(Xt) = Q(H?ay) forall t € [p—1].
Then with very high probability LSVI(p, Ry, D) computes a value function V and a policy w s.t.

p—1

p—1
~ -7 _
By Vi(@1) = 3 6] < 3 [VarlGeallsrr | = SUs () = Least-Square Error.
t=1

t=1

The least-square error in the above display can be interpreted as a planning error to propagate the
signal £,; it also appears when LSVI uses the batch dataset D to find the optimal policy on a given
reward function after FRANCIS has terminated, and it is the quantity we target to reduce. Since o
is constant, we need to shrink ||¢m,||2p71 over any choice of 7 as much as possible by obtaining an

appropriat feature matrix .

3G-optimal design does this optimally, but requires choosing the features, which is only possible if one has
access to a generative model or in a bandit problem.

A final error across all timesteps of order e can be achieved when the algorithm adds at most e/ H
error at every timestep. Towards this, we define an inductive hypothsis that the algorithm has been
successful up to the beginning of phase p in reducing the uncertainty encoded in 4/

Inductive Hypothesis 1. At the start of phase p we have Ef;ll U (ay) < p—;{le.

The inductive hypothesis critically ensures that the reward signal £ can be accurately propagated
backward by LSVI, enabling navigation capabilities of FRANCIS to regions of uncertainty in phase p
(this justifies the phased design of FRANCIS).

5.2 Overestimating the maximum uncertainty through randomization

Assuming the inductive hypothesis, we want to show how to reduce the uncertainty in timestep p.
Similar to how optimistic algorithms overestimate the optimal value function, here E,, .., V1 (2;) ~
-1
¢ p&p should overestimate the current uncertainty in episode i of phase p encoded in Uy, (c;,). This
is achieved by introducing a randomized reward signal &,; ~ N (0, O'E;il) at timestep p.

Lemma 2 (Uncertainty Overestimation, appendix . If& ~ N (0,021;1), Uyi(o) = Qe),
l€pll2 < 1 and the inductive hypothesis holds then LSV1 returns with some constant probability
q € R a policy w such that az,pﬁpi > Upi(0).

The proof of the above lemma uses lemma|l| The condition U;;(c) = (¢) is needed: if the signal

&pi or uncertainty U, (o) are too small relative to e then the least-square error of order € that occurs
in LSVT is too large relative to the signal &,;, and the signal cannot be propagated backwardly.

The lemma suggests we set ¢ = oy to ensure alpfm > Uy (o) with fixed probability ¢ € R.

Unfortunately this choice would generate a very large ||€,;||2 which violates the condition ||£,; |2 < 1.
In particular, the condition ||€,;||2 < 1 determines how big o can be.

Lemma 3 (see appendix [D.1). [f 0 = O(Amin(Spi)/dp) and &yi ~ N (0,05 1) then [|€yl2 < 1
with very high probability.

Since initially 3,; = I, the above lemma determines the initial value o ~ 1/d, < «,. This implies
FRANCIS won’t be able to overestimate the uncertainty U, (cv;) initially.

The solution is to have the algorithm proceed in epochs. At the end of every epoch FRANCIS ensures
U;i(a) < ¢, and that \p,;,,(2,;) is large enough that o can be doubled at the beginning of the next
epoch.

5.3 Learning an Epoch

Using lemma [2] we can analyze what happens within an epoch when o is fixed (assuming o is
appropriately chosen to ensure ||£,||2 < 1 with very high probability). We first consider the average
uncertainty as a measure of progress and derive the bound below by neglecting the small error from
encountering the feature ¢,,; (step (a) below) instead of the expected feature aﬂ p (identified by the
policy m; played by FRANCIS in episode 7), by using a high probability bound ||, ||s,, < \/dpo
and by using the elliptic potential lemma in|Abbasi-Yadkori et al.|[2011]] for the last step.

k k k Cauchy é \/ dpo
1 N]emma. 1 — (a) 1 T Schwartz 1
n Zupi(> 7 Z ¢7r1,p ~ Z Ppilpi < Z ||¢anz—1 ”fanEm 4)
k P k p k pt
Cauchy Elliptic
Schwarlz o Pot. Lemma o
2 Z ||¢szE—‘1 = p k o)

The inequality &; pSpi = Z/{;i(a) in the first step only holds for some of the episodes (since lemma
ensures the inequality with probability ¢ € R), but this only affects the bound up to a constant wit
high probability. Since the uncertainty is monotonically decreasing, the last term U, (o) must be

smaller than the average (the lhs of the above display), and we can conclude U}, (o) < dpy/0 k.

Asking for the rhs to be < € suggests we need ~ dga /€2 episodes. In essence, we have just proved
the following:

Lemma 4 (Number of trajectories to learn an epoch, see appendix |D.3). In a given epoch FRANCIS
ensures Uy, (o) < € with high probability using O(d2o /€®) trajectories.

At the end of an epoch FRANCIS ensures U}, (o) < ¢, but we really need Uy () < € to hold.

5.4 Learning a Phase

We need to use the explorability condition to allow FRANCIS to proceed to the next epoch:
Lemma 5 (see appendix . Let k and k be the starting and ending episodes in an epoch. If

€ = O(Wmin/+\/d,) and U (0) = O(e) then Min(E,7) = 2Amin (Epn)-

Since the minimum eigenvalue for the covariance matrix has doubled, we can double o (i.e., inject
a stronger signal) and still satisfy lemma[3} at this point FRANCIS enters into a new epoch. At the
beginning of every epoch we double o, and this is repeated until o reaches the final value o ~ H?q,.
There are therefore only logarithmically many epochs (in the input parameters).

Lemma 6 (FRANCIS meets target accuracy at the end of a phase, see appendix|D.4). When FRANCIS
reaches the end of the last epoch in phase p it holds that o ~ H?ay, and € > U} (o) = HU ().

This implies Uy (a,) < €/ H, as desired. Furthermore, this is achieved in 5(d12,H2ap/e) episodes.

Since U, (a,) < €/ H the inductive step is now proved; summing the number of trajectories over all
the phases gives the final bound in theorem[4.1] At this point, an e-optimal policy can be extracted by
LsVI on the returned dataset D for any prescribed linear reward function.

5.5 Connection with G-optimal design

We briefly highlight the connection with G-optimal design. G-optimal design would choose a design
matrix ¥ such that ||, [|s-1 is as small as possible for all possible 7. Since we cannot choose
the features in the online setting, a first relaxation is to instead compute (and run) the policy 7 that
maximizes the program U4;; () in every episode i. Intuitively, as the area of maximum uncertainty
is reached, information is acquired there and the uncertainty is progressively reduced, even though
this might be not the most efficient way to proceed from an information-theoretic standpoint. Such
procedure would operate in an online fashion, but unfortunately it requires an intractable optimization
in policy space. Nonetheless this is the first relaxation to G-optimal design. To obtain the second

.- =T
relaxation, it is useful to consider the alternative definition U;(0) = max, u Iz, SV (;S,Wﬂu. If

we relax the constraint [|6Y||s,, < /o to obtain [|6||s, < \/dpo then the feasible space is large
enough that random sampling from the feasible set (and computing the maximizing policy by using
Lsv1) achieves the goal of overestimating the maximum of the unrelaxed program; in particular,
sampling &,; ~ N(0, 021;1) satisfies the relaxed constraints with high probability and is roughly
uniformly distributed in the constraint set.

6 Discussion

This works makes progress in relaxing the optimistic closure assumptions on the function class for
exploration through a statistically and computationally efficient PAC algorithm. From an algorithmic
standpoint, our algorithm is inspired by [Osband et al.,|2016b]], but from an analytical standpoint,
it is justified by a design-of-experiments approach [Lattimore and Szepesvaril, 2020]. Remarkably,
our approximations to make G-experimental design implementable online and with polynomial
computational complexity only add a d factor compared to G-optimal design. The proof technique is
new to our knowledge both in principles and in execution, and can be appreciated in the appendix.
We hope that the basic principle is general enough to serve as a foundation to develop new algorithms
with even more general function approximators. The contribution to reward-free exploration [Jin
et al., 2020al] to linear value functions is also a contribution to the field.

7 Broader Impact

This work is of theoretical nature and aims at improving our core understanding of reinforcement
learning; no immediate societal consequences are anticipated as a result of this study.

Acknowledgment

Funding in direct support of this work: Total Innovation Program Fellowship, ONR YIP and NSF
career. The authors are grateful to the reviewers for their useful comments, in particular about the
explorability requirement.

References

Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari. Improved algorithms for linear stochastic bandits. In
Advances in Neural Information Processing Systems (NIPS), 2011.

Alekh Agarwal, Mikael Henaff, Sham Kakade, and Wen Sun. PC-PG: Policy cover directed exploration for
provable policy gradient learning. arXiv preprint arXiv:2007.08459, 2020.

Shipra Agrawal and Randy Jia. Optimistic posterior sampling for reinforcement learning: worst-case regret
bounds. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems (NIPS), pages 1184—1194. Curran Associates,
Inc., 2017.

Mohammad Gheshlaghi Azar, Ian Osband, and Remi Munos. Minimax regret bounds for reinforcement learning.
In International Conference on Machine Learning (ICML), 2017.

Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learning. In Interna-
tional Conference on Machine Learning (ICML), pages 1042-1051, 2019.

Christoph Dann, Lihong Li, Wei Wei, and Emma Brunskill. Policy certificates: Towards accountable reinforce-
ment learning. In International Conference on Machine Learning, pages 1507-1516, 2019.

Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik, and John Langford. Provably
efficient RL with rich observations via latent state decoding. In International Conference on Machine Learning
(ICML), volume 97, pages 1665-1674, Long Beach, California, USA, 09-15 Jun 2019a.

Simon S Du, Sham M Kakade, Ruosong Wang, and Lin F Yang. Is a good representation sufficient for sample
efficient reinforcement learning? arXiv preprint arXiv:1910.03016, 2019b.

Simon S Du, Yuping Luo, Ruosong Wang, and Hanrui Zhang. Provably efficient q-learning with function
approximation via distribution shift error checking oracle. In Advances in Neural Information Processing
Systems, pages 8058—8068, 2019c.

Simon S. Du, Jason D. Lee, Gaurav Mahajan, and Ruosong Wang. Agnostic g-learning with function approxi-
mation in deterministic systems: Tight bounds on approximation error and sample complexity. arXiv preprint
arXiv:2002.07125, 2020.

Yonathan Efroni, Nadav Merlis, Mohammad Ghavamzadeh, and Shie Mannor. Tight regret bounds for model-
based reinforcement learning with greedy policies. In Advances in Neural Information Processing Systems,
2019.

Aditya Gopalan and Shie Mannor. Thompson sampling for learning parameterized markov decision processes.
In Conference on Learning Theory, pages 861-898, 2015.

Elad Hazan, Sham M. Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy
exploration. arXiv preprint arXiv:1812.02690, 2018.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement learning. Journal
of Machine Learning Research, 2010.

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E. Schapire. Contextual decision
processes with low Bellman rank are PAC-learnable. In International Conference on Machine Learning
(ICML), volume 70, pages 1704—1713, International Convention Centre, Sydney, Australia, 06—-11 Aug 2017.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is g-learning provably efficient? In
Advances in Neural Information Processing Systems, pages 4863-4873, 2018.

Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free exploration for reinforcement
learning. In International Conference on Machine Learning (ICML), 2020a.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement learning with
linear function approximation. In Conference on Learning Theory, 2020b.

Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Edouard Leurent, and Michal
Valko. Adaptive reward-free exploration. arXiv preprint arXiv:2006.06294, 2020.

Jack Kiefer and Jacob Wolfowitz. The equivalence of two extremum problems. Canadian Journal of Mathematics,
12:363-366, 1960.

Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Pac reinforcement learning with rich observations.
In Advances in Neural Information Processing Systems (NIPS), pages 1840-1848, 2016.

Michail G Lagoudakis and Ronald Parr. Least-squares policy iteration. Journal of Machine Learning Research,
4(Dec):1107-1149, 2003.

Tor Lattimore and Csaba Szepesvari. Bandit Algorithms. Cambridge University Press, 2020.

Tor Lattimore and Csaba Szepesvari. Learning with good feature representations in bandits and in rl with a
generative model. In International Conference on Machine Learning (ICML), 2020.

Alessandro Lazaric, Mohammad Ghavamzadeh, and Rémi Munos. Finite-sample analysis of least-squares policy
iteration. Journal of Machine Learning Research, 13(Oct):3041-3074, 2012.

Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Emilie Kaufmann, Edouard Leurent, and Michal
Valko. Fast active learning for pure exploration in reinforcement learning. arXiv preprint arXiv:2007.13442,
2020.

Dipendra Misra, Mikael Henaff, Akshay Krishnamurthy, and John Langford. Kinematic state abstraction and
provably efficient rich-observation reinforcement learning. In International Conference on Machine Learning
(ICML), 2020.

Rémi Munos. Error bounds for approximate value iteration. In AAAI Conference on Artificial Intelligence
(AAAI), 2005.

Rémi Munos and Csaba Szepesvdri. Finite-time bounds for fitted value iteration. Journal of Machine Learning
Research, 9(May):815-857, 2008.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via bootstrapped
DOQN. In Advances in Neural Information Processing Systems (NIPS), 2016a.

Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized value functions.
In International Conference on Machine Learning (ICML), 2016b.

Yi Ouyang, Mukul Gagrani, Ashutosh Nayyar, and Rahul Jain. Learning unknown markov decision processes:
A thompson sampling approach. In Advances in Neural Information Processing Systems, pages 1333—-1342,
2017.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, 1994.

Daniel Russo. Worst-case regret bounds for exploration via randomized value functions. In Advances in Neural
Information Processing Systems, 2019.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT Press, 2018.

Jean Tarbouriech, Matteo Pirotta, Michal Valko, and Alessandro Lazaric. Reward-free exploration beyond
finite-horizon. arXiv preprint arXiv:2002.02794.

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cambridge
University Press, 2019.

Ruosong Wang, Simon S Du, Lin F Yang, and Ruslan Salakhutdinov. On reward-free reinforcement learning
with linear function approximation. arXiv preprint arXiv:2006.11274, 2020a.

Ruosong Wang, Ruslan Salakhutdinov, and Lin F. Yang. Provably efficient reinforcement learning with general
value function approximation. arXiv preprint arXiv:2005.10804, 2020b.

10

Yining Wang, Ruosong Wang, Simon S Du, and Akshay Krishnamurthy. Optimism in reinforcement learning
with generalized linear function approximation. arXiv preprint arXiv:1912.04136, 2019.

Lin F Yang and Mengdi Wang. Reinforcement leaning in feature space: Matrix bandit, kernels, and regret bound.
In International Conference on Machine Learning (ICML), 2020.

Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in reinforcement learning
without domain knowledge using value function bounds. In International Conference on Machine Learning
(ICML), 2019.

Andrea Zanette, David Brandfonbrener, Matteo Pirotta, and Alessandro Lazaric. Frequentist regret bounds for
randomized least-squares value iteration. In International Conference on Artificial Intelligence and Statistics
(AISTATS), 2020a.

Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning near optimal policies
with low inherent bellman error. In International Conference on Machine Learning (ICML), 2020b.

11

Contents

[Technical Analysis|

I5.1 Analysis of LSVI, uncertainty and inductive hypothesis|.

[5.27 Overestimating the maximum uncertainty through randomization|

5.3 Learningan Epoch|.

5.4 LearningaPhasel.

[5.5 Connection with G-optimal design]

6 Discussion

|7 Broader Impact|

|C Design of Experiments|

[DAnalysis of FRANCIS|

ID.1 Generating Bounded Iterates|

ID.3" Learningan Epoch|. o oL

ID.4 LearningaPhasel.

ID.5 Learning to Navigate]

ID.6 Solution Reconstruction (Main Result)|

ID.7 Computational Complexity|

[E_TLower Bound|

| Support Lemmas|

|[E.1 High Probability Bounds|,

12

0 00 0 N N

13
13
15

17
17
20
21
23

25

26
26
26
29
32
34
35
38

40

Preliminaries

Symbols

Table 2: Symbols

r¢(s,a) = expected reward in (s, a, t)

pe(s,a) %/ transition function in (s,a,t)

Stk et experienced state at timestep ¢ in episode k in phase ¢

atk et experienced action at timestep ¢ in episode k in phase ¢
Ttk def experienced rewarcﬂ at timestep ¢ in episode k in phase ¢
sjﬂ, & def experienced state at timestep ¢ + 1 in episode k in phase ¢
Ly s upper bound on sup, ,, , [|¢¢(s, a)l|2

¢tk déf ¢t(5tk, atk)

S O dusd

pIF def 3+, matrix after FRANCIS has completed learning in phase ¢ (k is the

Te(Qi+1)(s,a
7;P(Qt+1)(s7

0:(Qes1)

Ati(Qr+1)

Nii

I(Qh Qt+1)
E:

k

Jar

a)

last episode in that phase)
7175(’37 (l) +]Eslrvpt(s,a) Qt+1(sv a‘)
Es’Npt(s,a) Qt+1 (87 CL)

any 6,(Qiy1) € Bi st
T (Qer1) (s, G)H < Z(Q¢, Qe41) When Qiq1 € Qi1

Qu(Qe+1) (513 ma(513)) — T (Qe1) (2, e (1))
Xy Zn(t) bri [‘/t+1(3t+1 z)]

policy played in episode ¢ of phase ¢

action value function (s, a) — ¢(s,a)’ 0

value function s — max, ¢(s,a) " 6

‘//\t+1(5j+1,i) — Eoop(srimii(sia)) ‘/}Hl(s/)
bi(s,a)T0F

bi:07

Tti — Tt(Sti, ati) (reward noise)

re(s,a) —

Tt(sth ati) -

MaxqQ,,,eQ,,, MinQ,co, Max(s q) |[Qr —

approximation error for the reward, see eq.

isan overestlmatl of the number of episodes and is used in the definition

of the 3’s below
i used in the definition of the 5’s below

max(s q) H(;%(S a) ét(QHl) -

P(Qt+1)](5: a

\/§x2\/% In (1 n Lgk/dt) +diy1In(1+4Re11/(2LeVE)) +In () +

2

+k
di1n (—) + 167 |2

dpIn(1 + kL2 /d,)
Bt

3 (VB + VB +2) = O(/di T)

“this only applies if the reward function is learned from data; since we’re doing reward free exploration, it

instead represents the reward used to populate the dataset D after FRANCIS has terminated.

1n particular it can be set to be equal to n(t) and is poly(di, - -
8in particular it is

dH7 >€7§)

poly(dy,-

dH RS

13

Ek

k(e,1)

Cpk(e,i)
A

Ve (o)
e (8)
OStart
alB;
v

V*
ﬂ_*

ce,CCMCO'

number of samples collected in phase ¢

S G Vi (st)

»t Z?:(tl) Dti [Ttk}

07 + 0,

radius at timestep ¢ (but these will be all equal to 1 in the end)
Ri=--=Ru =1

®(—3) (normal cdf evaluated at —3)

—T 7 —
max € €
mmeRP:|nlls,, SVo Drpll > € > }

~ _ —T
Ezynp Vik(z1) —€ > maxﬂmeRd,p:M”Epk«/gqupn}

episode in epoch e (of a certain phase) such that F; happens for the ¢-th
time.

Doty ety &P (i) ™ Ppoto(ei Epokesi)
@/81n(ﬁ)

Q/QUtdt In 26%

indicates the action taken at timestep ¢ by policy 7 in state s
1/ (8dp In 26&)
{az | x € B} for a positive real a

value function of policy 7 at timestep ¢ on M once the reward function
is fixed

optimal value function on M once the reward function is fixed
optimal policy on M once the reward function is fixed

constants implicitly determined, see proof of theoremand footnote in
that page

14

A.2 Inherent Bellman Error

Definition 4 (Inherent Bellman Error and Best Approximator). Given two compact linear functional spacesﬂ
Q; and Qt41, the inherent Bellman error at step t is the maximum (in absolute value) residual

def . P
T(Qy, = max min max - T s,a)l.
(Qt, Qit1) 0, 2% | e [[Q: — T¢ (Qit+1)](s,a)]

The approximator Qi (Qi11) € Qr of Qi1 € Q1 through T,F is defined by its parameter 6,(Q111) as any
solution 0, € By that verifies (this always exists from the above display) for any Qt+1 € Qiy1

max |[¢e(s,0) "0:(Qes1) — Ti¥ (Qes1) (5, 0)]| < Z(Qr, Qes1) (6)

(s,a

The Bellman residual function A, ; under policy T is implicitly defined in the error decomposition below:

T (Qei1)(s,0) = Qu(Qui1)(s,0) + Ai(Qui) (s, 0). @)
and it satisfies
Z(Qt, Q1) = I(Isl??)([AL(Qt+1) (s, a) ®)
Qt+1éQt+1

We briefly argue why we have the last equality in the above definition

Z(Q:, Q1) > max max|Qi(Quy1)(s,a) — o5 (Qui1)(s, a)l)
Qt4+1€Q¢+1 (s,a)
= max max|A+(Qi+1)(s,a)l (10)

Qt4+1€Q¢+41 (s,a)
where the second step uses eq. (7).

We are going to use the following property throughout the appendix:

Proposition 1 (Positive Homogeneity of Inherent Bellman Error of System Dynamics). Let vy be a positive
scalar number. If

: P
_ <7 11
o, nax Jmin, gggl[Qt Ti (Qe1)](s,a)| < Z(Qt, Qut1) (1D

then
i -T" La)| < 4Z(Q., 12
o, s i ggl[Qt ¢ (Qe+1)](s,a)| < YL(Qs, Qi) (12)

where

7Qr ={Q- | Q-(s,0) = ¢-(5,0) "0, |6ll2 < 7R-}, 7€ {t,t+1}). (13)
This implies that if || 011 ||2 < YRit1 then we can find a 0, satisfying ||0+(Vis1(0e11))||2 < YR

Proof. Notice that when we write max, f(z) < I (for a generic scalar function f, an element z in a set, and a
scalar T) we can replace the statement with Vz, f(z) < I and viceversa:

max f(x) < I +—Vz, f(x) <I (14)
Likewise:

maxmin f(z,y) < I +—Vz, Jy: f(z,y) <I (15)
z oy

We can recast the Bellman error condition as

VQi+1 € Qry1, IQ: € Oy : 1<Tla>)(|[Qt - ﬂP(Qt+1)](s,a)| < I(Qt, Qt+1) (16)

Now consider the bijection
Qt € Q1 +— Q; =YQr € YOy,

Qi1 € Quy1 +— Qi1 = YQr41 € YQi1,
a7

"For infinite horizon MDPs, these normally coincide.

15

We have that the statement below

VQii1 € ¥Qit1, IQ; € YQr : max Qr — T (Qe+1)](s,)| < YL(Qt, Qit1) (18)
holds if and only if
VQiv1 € Qiy1, 3Qr € Qt - I<na>)(|[7Qt =T (1Qe11)](s,a)| < VI(Qr, Qi1) (19)

holds. Therefore, it suffices to prove eq. (T9) to prove the statement. Notice that by linearity of expectation for
any v > 0 we have

T Qe1(10141))(5,0) = Egr oy (s,0) In:}x['VQt+l(0t+1)(5/a a')]] (20
= VB (5,0 MaxX[Qe1 (r1) (57, a')] 2D
=T (Qes1) (B41) (s, @) (22)
Therefore
max|[1Q: = T.” (1Qu1))(s,)| = ymax [[Qc = 7" (Qes)](s,)] (23)

The hypothesis of the lemma implies
Q1 € Quer, 3Q1 € Qr s ymax[[Q = T (Qu)l(s,)| SZ(Qu, Qre) 4

and the prior display implies that eq. (I9) holds, and so does eq. (I8) which is equivalent to eq. (T2).

Finally to conclude the proof of the theorem notice that if ;11 € YR¢+1 then we can find a 0, € YR+ such that
the Bellman error is at most YZ(Qz, Q¢+1)- O

16

B Analysis of vanilla LSVI

We recall the popular LSVI protocol [Munos, 2005, Munos and Szepesvaril [2008|] operating on a batch dataset

— + t=1,...,H . .
D= {(Stk7 Atk Ttk st+1’k) k1. n(s) Of experienced state-action-reward-successor states. We use n(t) to

denote the number of samples collected at a certain timestep ¢. The regularization parameter is optional and
defaults to A = 1. The LsvI algorithm is used without reward from the dataset D when called by FRANCIS;
instead a pseudoreward function R, is prescribed in the last timestep.

Algorithm 2 LSVI(H,Rg, D; A = 1) - This is for use in FRANCIS with reward signal Ry

: Input: horizon H, dataset D, regularization A.

: Extract pseudo-reward parameter £y from Ry function

: Setfy = €H

: for timestept =H —1,...,1do

Solve 0 = arg min, Zzg [qﬁt(stk, atk)TO — maxg/ ¢>t+1(sj'+17k,, a')TGtH] 2 +)\||9H§
: end for N

: Return 7 : (s,t) — argmax, ¢:(s,a) " 0;

Algorithm 3 LsVI(H, D; A = 1) - This is the regular batch algorithm

: Input: horizon H, dataset D, regularization \.

. AR+PV __

: Set QHL =0.

: for timestept = H,H —1,...,1do

Solve TPV = arg min, Zzg [d)t(stk, k) 0 — 1 —maxgys ¢t+1(sj+1_’k, a/)TGiﬁPV]2+/\||0||§
: end for

: Return 7 : (s,¢) — argmax, ¢¢(s, a)

TgR+PV

B.1 Single Step Error Decomposition

Lemma 7 (Analysis of Transition Error in Parameter Space). Let n(t) be the number of episodes where samples
have been collected at timestep t. If 0; satisfies

n(t)

O =Y Gua[Virn(s550,0)] (25)
=1
then it must also satisfy:
n(t)
o 1 ~ PPN N
0r = 0:(Vir1) + X4 Z bi [Ari (Vi) + nii(Vigr)] = A0:(Vesa) | (26)
i=1

Proof. Let m; be the policy used to generate the rollouts of episode ¢ of phase ¢. Define the trajectory noise of
episode ¢ of phase ¢ using the next-state value function V;41 as:

~ def ~ ~
nfi (‘/tJrl) = ‘/erl(Serrl,i) - ES/NP(Stivﬂ'ti(sti)) Vt+1(5/)' 27
From eq. we can rewrite the unique solution for 0; as
n(t)
—~ . —~ ~
et = Zt Z ¢ti [Es’rvp(s”,ﬁ”(sm)) ‘/t+1 (5/) + TIL(VHQ] (28)
i=1

Recall the error decomposition of eq. with (s,a) = (S5, 75 (St1)), Prs = d(8,a), Ass = A¢(s, a)
Eywp(s,a) ‘7t+1(5,) = aﬁét(Qm) + At (Qey1) (29)

where 0,(Q.41) € B.

17

Plugging back eq. (Z9) into eq. 28) gives:

=0
n(t)
0 =%; " Z bti (600t (Vi) + Ati(Vegr) + 01 (Ver1)] + M (Vi) — MNe (Vi) (30
=1
©° ~ n(t) A~ ~ o ~
=300 (Vigr) + 57 Z¢ti [Avi(Vie1) + 0t (Vig1)] — A0e(Viga) 3D
i=1
o ~ n(t) A~ A~ o A~
=6;(Vigr) + »! Z Dti [Ati(‘/H-I) + 7751(%-&-1)] —A0:(Viy1) | - (32)
i=1
This proves the lemma. O

18

Lemma 8 (Analysis of Reward Error in Parameter Space). Let n(t) be the number of episodes where samples
have been collected at timestep t. If 0 satisfies

n(t)

0 =51 prire (33)
=1
then it must also satisfy:
R n(t)
0 =00 + 3071 | D bunii + AL — 26} 34
i=1

Proof. Let m;; be the policy used to generate the rollouts of episode 7 of phase ¢.

From eq. we can rewrite the unique solution for 5{ as (for the definitions of the symbols see table
n(t)
0y =201 bulre(ses, an) + i)
=1
n(t)
=0 D) bu (0067 + AL+ nii] + A0 — M6y
i=1
n(t)
=0, +%; ! Z Gri[ne; + Dvi] — MO; (35)

=1

19

B.2 Single Step Error Bounds

Definition 5 (Good Event for LsvI). Assume \/n(t)Z(Q:, Qi+1) < Jau/3 and \/n(t)Er < \Jai/3. We
say that LSVI (algorithms@and@) is in the good event when the following bound holds for all t € [H| witlﬂ
Vit1 € Vig1. The definition of the symbols are reported in table '

n(t)

| Z ¢tiAti(‘/t+1)H2;1 < Vnt)Z(Qs, Q1) (36)
i=1
n(t) ~

1> ¢eine(Ver) g1 < VB 37
i=1

Auét(ml)uzil < VAR (38)
n(t)

1Y ¢uliillsr < V() E, (39)
i=1

n(t)

1Y deiniillsr < V67 (40)
i=1

Mgt < V6 2. @1

In addition, the above expressions with the relations in[lemmal/| (Analysis of Transition Error in Parameter|
ISpace))| and |lemmal|5| (Analysis of Reward Error in Parameter Spacel)|imply:

107 — 67 ll=, + 118e — 0e(Visr) |,

< Vn)I(Q¢, Qey1) + V(t)Er + \/E—i- \/,37—1— VAR + \/X||9:H2
<V (42)

)

— % such that
poly(dy,....,dg ,H, L)

Lemma 9 (Probability of Good Event for LsVI). There exists a parameter §' =
the good event of deﬁnitionholds with probability at least 1 — § /2.

Proof. Since |Ati(17t+1)\ < Z(Q¢, Qt+1), the projection bound (lemma 8 in []Zanette et al. |2020b|]) gives the
first inequality in the statement of the theorem. The second inequality is proved in|lemma|2 ;Transmon Noise|
[High Probability Bound)|respectively. The third inequality follows from lemma ange of >-Norm))l Since
|AL;| < E% the projection bound (lemma 8 in [Zanette et al.,2020b]]) again gives the fourth inequality. The
fifth inequality follows from theorem 2 in [|Abbasi-Yadkori et al.,|2011]] with 1-sub-Gaussian noise and the last
inequality again follows from [lemma [25|(Change of >--Norm} In particular it is possible to choose §’ (in the
definition of the 3’s) such that these statements jointly hold with probability at least 1 — § /2 after a union bound
over each statement and the timestep H. At this point the statement in eq. (#2) follows deterministically by
chaining with lemmas [7]and|[g] O

8Note that if YA/tH € R X Vi41 (the set V11 where all elements are scaled by the scalar R) then the bounds
still hold provided that they are rescaled by R.

20

B.3 Iterate Boundness

In this section we discuss the boundness in the value function parameter.

Lemma 10 (Boundness at Intermediate Timesteps for algorithm |Z[) On the good event for LSVI of deﬁnitionE]if

Amin (Zt) > 4H?ay, Yt € [p—1] (43)
€2 < % (44)

then
18]l < 1, Vte[p]. 45)

Proof. We proceed by induction, showing that 0; due to errors can live in bigger and bigger balls, with radius
starting from % at timestep p to radius 1 at timestep 1.

Inductive Hypothesis 2. [|8;]]> < (1 — 521).

The inductive statement clearly holds at ¢ = p by hypothesis of the lemma; therefore we focus on the inductive
step (notice that the induction goes from ¢ = p down to ¢ = 1, so the inductive step assumes the inductive
hypothesis holds when written for ¢ 4 1.)

The inherent Bellman error definition (definition nherent Bellman Error and Best Approximator))) and
proposition ositive Homogeneity of Inherent Bellman Error of System Dynamicsl)| ensures

. t 0 I ¢
10412 < (1 - ﬁ) — 10t (Vi1 (0r41)) |2 < (1 - ﬁ) (46)

In particular, the left statement is ensured by the inductive hypothesis for ¢ + 1. Next, under the good
event of [definition B[(Good Event for LsVI]] we have that[lemma[25](Change of %-Norml])] ensures (writing

ét = ét (Vz+1(9t+1)) for short)
Var > (100 = 0l|s, > v/ Amin ()10 — 0|2 47)

Solving for ||§t — ét”z and using the lemma’s hypothesis gives

~ V 1
18— belle < = = . (48)
2H (077 2H
Combined with the prior display, we deduce

~ ~ s s t 1 t—1
Oill2 < |6 — 6 Oflo<1— —=+-—==1— ——. 49
18l < 180 =l + ldille < 1— 5+ o =1- = (49)
This shows the inductive step. O

21

Lemma 11 (Boundness at Intermediate Timesteps for algorithm @) Under the good event deﬁnition fixa
positive scalar R; if

Amin(St) > 4H?ay, VYt € [H] (50)
” R
1612 < 1)
then
1057 Nl = 1165 + 6ul> < 2R, Vt € [H]. (52)

Proof. We proceed by induction, showing that @RJFP V' due to errors can live in bigger and bigger balls

Inductive Hypothesis 3. [[077V ||, < 2(1 — &Z1)R.

The inductive statement clearly holds at ¢ = H + 1; therefore we focus on the inductive step (notice that the
induction goes from ¢ = H + 1 down to ¢t = 1, so the inductive step assumes the inductive hypothesis holds
when written for ¢ + 1).

The inherent Bellman error definition (definition nherent Bellman Error and Best Approximator)) and
[proposition ositive Homogeneity of Inherent Bellman Error of System Dynamicsl) ensures
t
01 <2 (1=) R 0Vin 55Dl <2 (1) R (53)

In particular, the left statement is ensured by the inductive hypothesis for ¢t 4+ 1. Next, under the good event of
[definition[5[(Good Event for Lsvij(with a scaling argument by R on the || - ||2 norm of the regressed parameter)

we have that |lemma |25| dChange of - Norm|)|ensures (writing 0; = 6,(Vii1 (Qt ++1 V) for short)

Ry/a 2 (107 = 07l + 18 = 0uls,) 2 v Aoin) (I0F — 07112 + 18— 6ell2) (5

Solving for (||§: — 607)|2 + [|6: — 6 Hz) and using the lemma’s hypothesis gives

o R
(17 =051+ 16 = bul) < 5¥oR < 5F. (53)

Combined with the prior display, we deduce

~ ~ - ~ - o R R t t—1
1857V ll2 < 185 = 07l + 16 — Bulla + 1671 + 10ell2 < 5+ 77 +2(1— IR < 2(1-)R
(56)
This shows the inductive step. O

22

B.4 Multi-Step Analysis: Error Bounds for LSVI

Lemma 12 (Telescopic Expansion). Under the good event of definition @for algorithm|2| if

1
ol < 5 (57
then the learned parameter
16ell2 <1, ¢ € [p]. (58)
Furthermore, for any policy ™
p—1
Euinp Qu(@1,m(21)) 2 = 3 [T(Q1 Qri) + Vaillds sl 1 | +Eopon ol m(@n)) (59)

t=1

and for the greedy policy T with respect to Q, i.e., 7 (s) = argmax, @t(s, a) it additionally holds that

|
-

p

Euimp Vi) < 3 [Z(Q1, Quin) + Va6,

t

Proof. On the good event for LSVI of|definition|S|(Good Event for LsVIj)|the boundness of the iterate @ is given
by[lemma oundness at Intermediate Timesteps for algorithm[2)} we can use Cauchy-Schwartz to write:

|§;t—1] + Eoprm Vp(xp) (60)

Il
-

(621 (8 = (Vi)) | < 18 ol 10 = 02 (Vi) < Ve[l ©1)

Using [definition ¥ ([nherent Bellman Error and Best Approximatorj|we can write:
|$;rr,tét(‘7t+1) — Eoinon Ti Vet (e, m(@4))| < T(Qt, Qetr). (62)

Combining the two expression gives:

| Eyor Qe(e, T () — Eopypy o Vit (Tes1)| (63)
= | Eopmr [Qelme, mi(20)) = T Vi (w0, me(21))]| (64)
= 6740 = Bapnrn T (V1) (@1, mo(a2) (65)
= \5:@ - 5:,tét(‘7t+1) + $I,t9°t(17t+1) —Eayon T (Vir) (e, e (20))| (66)
< fr e = B0 00 (Vi) + 67,01 (Vin) = By T (Viin) e, me ()| (©7)
< Varlln -1+ Z(Qr, Qi) (68)

To show the upper bound if 7 is the greedy policy with respect to @ then we can equivalently write Vi (z¢) =

Qu(we, mi(xe))
|Eupon Ve(@t) = Bay o Vit (weg1)| < vat|\$w,t\|g;l +Z(Qt, Qe1)- (69)
Induction now shows the upper bound.

To show the lower bound, for a generic policy V;(z¢) > Qq(z+, m(a+)) and so

Evymn Qu(@e, me(20)) 2 —vai|6r il 1 = T(Qr, Qea1) + Eap g o Vst (Tes1) (70)
> —\/Ozz||$7r,t\|g;l —I(Qt, Qet1) + Qrar (Trs1, Tegr (Te41))- (71)
Induction concludes. O

23

Proposition 2 (Batch LsV1 Guarantees (algorithm @)). Under the good event of|definition|5|(Good Event for|
assume that

. R
vee(H ol < 5 1)

If V and 7* are the value function and policy returned by algorithmthen

Eaimp (V= T1) (3) < i

t=1

2E; + R (Z(Qt, Qiq1) + \/CTtuaﬂ—*,tHz;l) :|
H

Eormo (=) (@) <3

t=1

2B + R (T(Qr, Qe+1) + Vol $e 4l)] (73)

Proof. Boundness of the iterates |\§T + RV ||2 is ensured by|lemmall 1{{Boundness at Intermediate Timesteps|
Eﬂ Consider a generic timestep ¢; using the Bellman equation and the fact that V;(z:) >

Qt(xt, m; (x1)) gives

Eopmne (Vi = Vi) (2) < By 1o, 7 (20)) + B e Vi (@61) = Baprone (e, i (0) " (7 + 81

(74)
< Bt Do 00+ By Via(@e) = Bapons b1, (00 +01) (75)
Next, under the good event of definition[5] we can write:
< 2B+ e 07 + By Via (1) — b 107 (76)
— By Vi1 (ze21) + RIZ(Qe, Qupn) + Vorl|gre il 1] (77

Induction gives the first statement.

Now again we start with the definition of expected feature and the Bellman equation:

i 7 =T or 7 o 7
Extw?r* (Vt - Vt) (ﬂct) = ¢%*,t(0t + 01&) - Extw?* Tt(ﬂ?u ¢ (xt)) - Emt+1~%* Vt+1(1’t+l) (78)

7T r —
< @z i0" + Er + RII(Qr, Qen) + Vaulfae illg 1]+ (79)
~ 7T r %*
+Eeyyymmr Vg1 (@) — bz (07 + Bt + By oms Vil (me41). (80)
Induction again concludes. O

24

C Design of Experiments
We show that obtaining |\$ﬂ7t\|2;1 SHE== €’ suffices; we assume Z(Q:, Q:+1) = E; = 0 for simplicity
aswell as dy = - - - = dy. We immediately have that

€
H\/a—(f.

Thus, summing the two equations in eq. (73) for any linear reward function with ||6;||2 < - ensures an e-optimal
policy on that reward function is returned.

H
Z \% at“aﬂ-,tHE;l < H x \/E X 81)
t=1

The Kiefer-Wolfowitz theorem in Lattimore and Szepesviri| [2020] guarantees such reduction in ||, ,||,—1
’ t

using 5(cl2 + (6,%) = 5(d2 + ‘”i#) samples at every level / timestep if G-optimal design is used. After
sampling all levels and substituting the value for a; in table|2|the sample complexity of doing G-optimal design
becomes O(d* + di—gs)

Notice that this setting can model MDPs with rewards in [0, 1/H] and value functions in [0, 1]; moving to the

standard setting with rewards in [0, 1] and value function in [0, H] adds H? to the sample complexity to obtain
an e-optimal policy.

25

D Analysis of FRANCIS

D.1 Generating Bounded Iterates

The following lemma ensures FRANCIS generates bounded iterates for an appropriate choice of o.

Lemma 13 (Boundness at Exploratory Timestep). In episode k of phase p, if

Amin(Zpr) > 8dp ln 5// (82)
& ~ N(0, aEpk) (83)
then
1
€pll2 < 5 (84)

2
on the good event of{definition|/|(Good Event for FRANCIS))|

Proof. Directly by the choice of o and the definition of good event for FRANCIS (see|definition [/|(Good Event|
for FRANCIS]). O

D.2 Derandomization

The following lemma relates the sampling of the algorithm to a procedure that selects the policy / parameter
leading to the area of highest (scaled) uncertainty.

Lemma 14 (Derandomization). Outside of the failure event, assume that for any policy m,

p—1

> [7(Qn Qi) + Vailld, g | < (85)

t=1
for some scalar € > 0. Consider sampling

& ~N(0,05,)), (86)

define Ry (s, a) = ¢p(s,a) &, and let V be the value function computed by LsV1(p, R, D) (see algorithm EI)
Then for a fixed constant ¢ € R

P (]Exlwp Vi(z1) —e> max qﬁ:,pn) > q. 87

T nERW:|nllx,, <VF

max G ph =€ (88)
T neRW:|nls , <V

Il < 5 (59)

Proof. Define the maximizer of the “scaled uncertainty” in a generic episode k of phase p:
A AN d -7
(7r7 77) 2] argmax |pa 7| (90)
T TP
Inlls,, <ve
as the policy / parameter that maximizes the uncertainty.

Next, let 7 be the policy selected by the agent, through LSV1, corresponding to the sampled parameter £, and let
Q V be the (action) value functions. Since 7 is the maximizing policy for Q we must have:

Eaymp Vi(@1) = By Qr (21,71 (1)) > Eaymoyp Qu (w1, 71 (1)) oD

In addition on the good event for Lsvi[lemma[l2][Telescopic Expansion]] gives:

~ _ ~ A
Exymp Vi(z1) > Ezynp Q1($1,7T1 1) E [Z(Qt, Qe41) — Voulla tHgﬂ} +E A Qp(xp, mp(Tp)) -
— T, t Tp~T
™,P
(92)

26

Subtracting € to both sides and using the hypothesis gives

Eayp Vi(m1) —€> —2€+ (¢s p)Tﬁp- 93)

‘We can now proceed to bound the quantity of interest:

P (Baynp Vi) ~ 22 (32)77 ©4)
P

>P(-2+065 &> (6,)T1) 95)

=P | &> % + (@G > g (96)

Error in Propagating the Uncertainty ~ Uncertainty in the Level to Learn

Notice that &, is independent of ¢, when conditioned on the X. The last step is an application of
s
{Uncertainty Overestimation)|as long as the condition

—T
€< max - o7
o.llnlls <¢5q5 Sl

pk —

is met. O

27

Lemma 15 (Uncertainty Overestimation). Let €, o be positive scalars, and let 3 be an spd matrix and let
£~ N(0,087") (98)

be the associated random vectors. For a fixed vector ¢ we have that

Plo'¢> max ¢ 'n+ 2@) > o(—3) Y g (99)
(¢ %Hn\lzéﬁqs K =3
where ®(-) is the normal CDF function as long as the condition

E< max ¢ n=0olglls (100)

T ilinlls<Vo
holds true.

Proof. Before we prove the statement, we notice that the equivalent expression maxy |5 <+/a o'n =
V7 ||#||5;=1_can be found in chapter 19 of [Lattimore and Szepesviri, 2020] about the LINUCB algorithm,
see also [lemma [26| (Linear Bandit Exploration Bonus)| For any fixed X, we have that £ ~ N(0,0X71) is
independent of ¢ by hypothesis, and so the inner product below is normally distributed

oTE~ N (0,007579), (101)
or equivalently
¢"E~ N (0,0lI8]1%1) - (102)
Rescaling by its standard deviation leads to the following definition:
T
def ¢ &
X = ———=—~N(0,1). (103)
Vo glls—
The step below follows
P (67¢ > Volldlls 1 +2) =P (X >14 L) . (104)
Vol|olls-1
The rhs above is > ®(—3) as long as
€< Voldllg-1. (105)
The thesis follows from the definition of the normal CDF. O

28

D.3 Learning an Epoch

The following lemma is key to our analysis and shows the number of episodes required to reduce the scaled
uncertainty to the minimum allowable (= € > 0). In an epoch the value for o is fixed.

Lemma 16 (Learning an Epoch). Let k and k be the starting and ending episodes in epoch e of phase p. If the
Sfollowing statements hold:

1. for any policy T it holds that 30— [I(Qt, Qit1) + \/at||$mt||2t_1] <%

2. Amin(Epe) = 8dp1n 2(%0 (this ensures boundness of ||Ep||2 in |lemma|]4| dDerandomizationI)l)

2
3. LT(” < 1 (always satisfied by our choice Ly =1 and A = 1)
4. X > 1 (always satisfied by our choice A = 1)

then after at most

b e |2 WDy +A) 106
maxr — - — 1 —q X (6”)2 ()

episodes we must have
max G <€ (107)

neRP:nly <va

on the good event|definition|/|(Good Event for FRANCIS)|provided that

e > e (108)

Proof. First notice that if the eigenvalue condition is satisfied for at a given episode k then it must be satisfied
for all successive episodes k > k since X >~ ¥4 In particular, define the events

¢, max Grn > >E (109)
mnERW]y, <V
d, =5 _ T
& Y By Vik(n) —€ > max RS (110)
mneRP:|Inlls,, <VE

We examine what happens in those episodes where & occurs (notice that P (€ | Cx) > ¢ thanks to|lemma

((Derandomization)).

Let k(e, 1) be the i-th consecutive episode index in epoch e of phase p such that £y ;) occurs (so in
k(e,1),k(e,2),... we have that Ex(c 1), Ex(e,2) Occurs). Since [|€pp(e,s) |2 < 1/2 in the good event of [defini

tion |/|(|Good Event for FRANCIS|)|, we can use|lemmall 3| (Boundness at Exploratory Timestepl)|and |lemma |12
elescopic Expansion))|to write

By np Vik(e,iy,1 (1) — € < ¢;)rk(e,i)§pk(e,i) + Cpk(ei)- (111)
where
def —T T
Cpk(e,i) = ¢“k(e,i)ap€p’k<e'i) - ¢p,k(e,i)£p,k(e,i) (112)

Let imaq2 be a fixed positive constant to be determined later. Taking average of the previous display up to ¢max
gives:

1 imawx N - 1 imax
—— > Eurp Vet (@) =€ < —— >~ (bpncessbomien + Gorte) - (113)
max 1:1 max 121

Under the good event of[definition[7[{Good Event for FRANCIS]| we have

| imas A
e,t < 114
i— ; Cok(e,i) < — (114)

29

with A = 6(1) For the remaining term, using Cauchy-Schwartz, and the fact that we are on the good event (see
[definition[7[[Good Event for FRANCIS]) gives

1 tmax tmax

1
-
> bokiesiybok(en) < . > H¢pk(e,¢)||g;kl() 1€pkce,i) 1= pre sy (115)
i=1 maz T S AN

V(o)

Imax

After one more Cauchy-Schwartz we obtain the upper bound below:

Vo) = ye(o) &=
< Z H¢pk(e,i)|‘2;kl(e N < . Z H¢pk(e,i)”22 : (116)
i=1 o maz Gy

. -1
tmazx pk(e,i)

We focus on the sum of squared features; by [lemma|25|(Change of >.-Normj)|and the lemma’s hypothesis

1 L?
ppicenlla-1 < Sldprenlls < =2 <1 (117)
pk(e,i) A

and so the sum of squared features becomesﬂ(using the elliptic potential lemma, see lemma 11 in [[Abbasi- Yadkori
2011]):

™ ™ (det Epk(evinlam)

2 - . 2
; H(bpk(e,i)'lz;;kl(eyi) = ; min{1, ||¢Pk(e,i)”z;;k1(e,i)} <In qet Sy) <Indet Epr(e,iman)-

(118)

The last step follows because X, = A = I, an so det(X,) > det I = 1. Let D), = d,, In(1 + kL3 /d) =

O(d,) be an upper bound to In det Ypk(e,imas) (s€€ lemma 10 in |Abbasi—Yadk0ri et al.| ﬂ201 1|]). We can claim
that an upper bound to eq. (TT3) is

< —F—. (119)

Since we’re summing over episode indexes where £y (. ;) holds, it follows that

A+ vV ’Y(U)Dp
S T Ve (120

if each term in the summation in the lhs is > €” (the condition is needed to apply lemma|14|(Derandomizationl);
if it does not hold the lemma’s thesis is satisfied). By lemmal|l’/|(Uncertainty Lemmd

1 imax

—T
P

. max
d
tmaz =) | mnerWillnls,, <VE

-7 —T
max P pll < max P p (121

mn€RPnlls, o) SVE mn€RPnlls, |, SVE

Since the terms in the lhs of eq. (T20) are strictly decreasing, the last one must be smaller than the average,

which implies we must obtain

max Gr <€ (122)
mn€RPnlls,, L <VE
after
: (\/’Yt(p)Dp'f'A)Z
lmaz 2 ——— g (123)
(6”)2
episodes provided thaﬂ
e >e (124)

We can finally compute how big kmao (the total number of episodes in the epoch) needs to be: from [definition]7]
[[Good Event for FRANCIS])if

1
% M (125)

— 4 1—gq

notice that we are not accounting for the the progress made in episodes where & does not occur
10This condition is recurrent in this proof, and is used to invoke [lemma 14 (Derandomization)) but if it doesn’t
hold the thesis is automatically satisfied.

30

then we can write

i'maz]- - q
> —. 126
kmax - 2 ()

(recall i is the the number of episodes where Ex occurs: imaz = S r7e® 1{&x | Ck}). Therefore, a total
number of episodes

2
2 (Vulp)Dy+4) (127)

=4 (@

suffices (as this automatically satisfies eq. (T23)). O

knuzm =

Lemma 17 (Uncertainty Lemma). Let k and k be two generic episodes in an epoch e in phase p such that

& > k. We have that
—T -7
max G p < max G p"- (128)
mneRdP:I\nHzﬁS\/E mneR?P:|Inlls , <VE

In addition, for positive real numbers p1 < p2 and a generic spd matrix 3 we also have

—T [p1 —T
,max Gl =4/ — Jnax G - (129)
T nERP:||In|ls </p1 P2 7meR?:|Inlls</p2

Proof. Since ¥ = Ypi (this notation means ¥z is more positive definite than X, more precisely
o7 59> o7 Yok ¢ for all ¢) we have the set inclusion

{nllnlls,; <vo} S{nllnls,, <Vo} (130)

pk —
Since we’re maximizing over a smaller set, the first result follows.
For the second statement, recall we can rewrite the programs in eq. (I29) (see chapter 19 of [Cattimore and

Szepesvari, [2020] about LINUCB or equivalently [lemma [26] ({Linear Bandit Exploration Bonusj)); here we
identify the feature of an action in LINUCB with ¢) as

max /p1| ¢y p [l -1 (131)

for the lhs and
max &m@,p |51 (132)
for the rhs, showing equality. O

31

D.4 Learning a Phase

In this section we show how FRANCIS learns a phase (i.e., the dynamics at a certain timestep) and compute the
total number of episodes required to do so. This is where the explorability condition is used.

Lemma 18 (Learning a Level). Consider phase p and let the following hypotheses hold
1. f;ll [I(Qt’Qt+1)+\/a”$ﬂ',t||2:1:| <€

2. (%)’ >2x8d,In 2%

Then after at most (€maz = O(1) and o, are defined in the proof)

n(t) = { 2« WWMW ~<m> :5(«:12 xH2<dp+dp+1))

X €maz = O

1—¢q €2 €2
(133)
episodes it must hold that
max Bry < 5 (134)
mnERd‘”HnHzﬁSM 2H
Proof. Letoi,02,... be the sequences of the o parameter chosen in the different epochs, and additionally
2d

Ostart = 1/ (8dp In 5//”) . (135)

We proceed by induction, with the following inductive hypothesis:
Inductive Hypothesis 4. In phase p the following conditions hold
(@) Amin(Epk(e,1)) = 8dpIn %Ue (at the beginning of epoch e)
(b) e = 2° Lo start (at the beginning of epoch e)

To show that the inductive hypothesis is satisfied in the base case (e = 1), notice that (b) holds by definition and
(a) holds by setting A = 1. Now we show the inductive step.

Since the inductive hypothesis satisfies the hypothesis of [lemma [16](Learning an Epochf)] on the good event
[definition[7[(Good Event for FRANCIS]|it immediately follows that

=T
max Gppn <€’ (136)
©n€ERIP: |05, <Voe

after kmao episodes (see|lemmal|l6|(Learning an Epoch))). Here in particular k is the last episode of epoch e.
The explorability condition in|definition xplorability)|implies that

Vi #0, 31 such that altﬁ > Umin. (137)
2

Consider the normalized evector v corresponding to the minimum eigenvalue ¢ > 0 for X, and define:
n = qu. (138)

We're interested in determining the maximum g so that the constraint in the program eq. (I36) is still satisfied,
i.e., the condition below

oe 2 [lgvll%,, = (av)" pe (g0) = ¢*Amin (Epi) (139)
gives the maximum value for ¢
Oe
Amin (Zpr)

in order for qu to satisfy ||qv||s,, < /0. In other words, the qu vector so defined is a feasible solution to the
first program below, justifying one inequality:

&> mabx<\/a ﬂ:,tn] > max W;t(qv)] = ||qv]|2 max (gT (qu)) (141)

= mlnlis ! lgull2

q= (140)

pk —
Je

————Vmin- 142

> |lgv|l2Vmin = qQVmin =

32

Solving for Amin gives:

24y 2d,
6// 5//
Therefore the inductive hypothesis must hold for e 4+ 1 as well, in other words, the statement in inductive
hypothesis[@ must hold for all e.

= 0et1 X 8dyIn (143)

. 2
Amin (Epk) > 0e <Van) > 0o X 2 8dpIn

Now we determine the required value for p at the end of the phase. We want to ensure

—-T €

max Pr ol < 577 (144)
rnekie s, <yay 0 2H

where now k is the episode at the end of phase p. Since the inductive hypothesis holds in epoch e, lemma
ensures

max G n<e (145)
wneRP:nls , <vE

We combine the above finding with a scaling argument given by lemmal[l7](Uncertainty Lemmadl) that gives:

— « =T Qp g
max G p = £ x max Gep | <4/ 2, (146)
T n€ERW:|Inllx,,, <vap e mn€RIP:|nlls,, <Voe Te

Requiring the above rhs to be < ﬁ gives a condition on the number of epochs €mq required (€maqz is the
number of epochs) and on o, ; setting €’ = € gives

Qp € Je
<— —,/—2 >2H 147
Oemaz €= 2H Ap - ()
= Oeppny = 2" L og10r: > 4H?a, (by induction) (148)
_1 _ AH? 4H”
N i aialiic: N [1 +Ino <7ap) W (149)
O Start O Start
In every epoch, ¢’ = ¢ and so the number of episodes necessary to achieve the required precision is (see

[lemmall6](Cearning an Epochl):

i [2 Vt(anfﬁA)j (150)

1-g¢g

e=1
and since ~y;(o.) strictly increases with e we can say that

2
[2 /e D l _— (1s)

1—gq

episodes suffices. O

33

D.5 Learning to Navigate

In this section we show that FRANCIS “learns to navigate”, minimizing the least-square error in LSVI across
timesteps.

Proposition 3 (Learning to Navigate). Assume thaﬂ'

T(Qt, Qi+1) < 5% (this is always satisfied by our assumptions on €)
2. (%) 2 > 2 X 8dpln 2(;# (this is also always satisfied by our assumptions on €)

Then after

=1

(2Zd dt+dt+l)> (152)
t

episodes, outside of the failure event it holds that

Z[(Q¢, Qt41) +\/7||¢

] <e Vm (153)

and in particular
€

(Qt,Qm)Jr\ﬁHqﬁ”HY e v, t € [H]. (154)

Proof. We proceed by induction over timesteps / phases p:

Inductive Hypothesis 5 (Main Inductive Hypothesis). In phase p € [H] it holds that
Loyt [Z(Qt, Q1) + Var| o, t||271] < =L (this ensures accuracy in LsSVI)
’ t

2. Amin(Z¢) > 4H?ay t € [p—1] (this ensures boundness of the iterates in LSVI)

The inductive hypothesis vacuously holds for p = 1 (there is nothing to check). Now we show the inductive
step. Assume the inductive hypohesis holds for a generic p — 1, we want to show it still holds for p. A direct
application of lemmal|l8|(Learning a Levell) gives (3, is the covariance matrix after learning has completed):

- lemma[Z8] —T €
V aP||¢ﬂ,p||E;1 = a max ¢7r,p77 S ﬁ (155)
m e nlls, < /op

Adding

Z(Q¢, Q1) < 2H (156)

to both sides and adding the result to the equation in the inductive hypothesis proves the inductive step. The
final number of episodes follows from summing the episodes needed in every phases according to|lemmal|l§|

((Learning a Level) O

"Both assumptions are satisfied by the assumptions of the main theorem.

34

D.6 Solution Reconstruction (Main Result)

In this section we present our main result in a more formal way than in the main text; throughout the appendix
the symbols are generally reported in table 2]

First, let us define the reward classes.

Definition 6 (Reward Classes). Consider an MDP M(S, A, p, -, H) without any reward function. Fix a
misspecification function Af (-, +,) : S X A — R for every t € [H| which can depend on the state and action
pair, and is subject to the constraint

V(m,t) | Bayn Al (e, me(20))| 2 AL ,| < B (157)

Define the following class J (Implicit Regularity) of (expected) reward functions (r1,...,rx) on M, parame-
terized by (07, . ..,0%) and satisfying V(s,a,t,m) € S X A x [H] x II (here 11 is the policy space):

1. ri(s,a) = ¢u(s,a)TOF + Al (s, a)
2. |A7(s,a)] <1
30 | Bapmn (e, me(20))| <

In addition, define the following class € (Explicit Regularity) of (expected) reward functions (11, ...,7H) on
M parameterized by (07, ..., 0%) satisfying V(s,a,t,7) € S x A x [H] x II:

I 7i(s,a) = ¢i(s,a) " 67 + Al (s, a)
2. |Af(s,a)| <1
306702 < %
Under explicit regularity the bound on ||07 ||2 constrains the maximum value the reward can take; instead, under

implicit regularity we do not have such requirement, as only the expectation is controlled. This implies the local
reward can be much larger than the expectation, making this a much harder setting.

We are now ready to present the main result formally.

Theorem 1 (Restating theorem [&1] formally). Consider an MDP M and a feature extractor ¢ satisfying
|p:(s,a)lla < 1 for every (s,a) € S X A and fix two classes of reward functions J and € according to
ldefinition |6| (Reward Classes)| Set ¢ to satisfy € > Q(dH(Z(Qy, Qis1) + Er)) and € < O(Vmin /N/dy) for all
telH|.

d? (de+dyy1)
-

FRANCIS always terminates after 0 (H2 Zil) episodes (with probability one), returning a

dataset D = {(stk, atk, S:r+1) 13“) of the collected state-action-successor states (S, atk, S:r+1) in
episode k € [n(t)] for each timestep t € [H)|.

Now consider any reward function r € & or v € J and the MDP induced by that reward function
M(S, A, p,r, H), and replace each tuple (sii, ar, 3?—4-1,1@) € D with (Stk, Gk, Ttk 5;"_‘_1’,“) where T4, satisfies

Tik = Ti(Sth, @) + 1" (158)
where 1" is 1-sub-Gaussian noise.
Then with probability at least 1 — 0, the batch LSVI algorithm run on D (see algorithm@ returns a policy 7

such that on M

* us €
Eoymp(ViT = Vi")(21) <

(159)

Vmin
ifr € Jand
Erymp (Vi = V) (21) < €. (160)
ifr e ¢

We have expressed the theorem in its full generality, but if the reward function is prescribed a posteriori through
an oracle then we expect the noise 1" in eq. to be absent. In general, if the reward function is prescribed a
posteriori then it should be prescribed as a linear function (in the chosen features) to avoid any additional error in
the LsVI procedure. Finally the reward misspecification A7 (-, -) can depend on the parameter 6 if it is a Lipshitz
function of 6. Alternatively, if it is a discontinuous function of 6 then same-order guarantees are still recovered
if eq. is replaced with V(s, a,t) |Af(s,a)| < Ey.

35

Proof. (of the main result) Let n(t) the number of samples collected at each level (notice that we only store
one sample every trajectory, so the number of samples equals the number of trajetories / number of episodes),

according to[lemmal|l8|(Learning a Level)} Using the assumptions on e (these conditions are used in the good
event for LSVI in|definition ood Event for LSVI)) we can ensure:

Vnt)E, = FEtf 9] <dt\Hﬁ‘ﬁ> EnJor < ai/3 (161)

\/n(t)I(Qt,Qtﬂ):\/ () Z(Qt, Qt+1)Var = O(dtj[i\/i> (9, Qrr1)Var < Vai /3. (162)

We assume we are in the good evenfz for FRANCIS, see|definition|7| gGood Event for FRANCIS|| which occurs
with probability 1 — § according to|lemma|19[(Probability of Good Event for FRANCIS|} We apply [proposition 3|
[[Learning to Navigate]} which gives the stated number of episodes to termination and the condition satisfied by
the samples in the dataset D (through the covariance matrices X7 '):

Z [2(1, Qi) + Vailla,,

1] <e Vm

(Qt,Qt+1)+\ﬁ||¢ﬂ||2_1<H v, t € [H]. (163)

Now, under implicit regularitylemma 20| (Reward Boundness))|ensures (the lemma requires E; < 7., which
is always satisfied since we must have e < 1 to produce any useful result, and from the theorem hypothesis
E, <e¢/(diH) <1/H)

2 def R

= . 164

<m—q (164)

Finally, jproposition [2| (Batch LSV Guarantees (algorzthm |3DD| ensures that LSVI in algorithm B]returns a value
function V' and policy 77* such that

By (V) () < 3

t=1

1612 <

2B + R (I(Qu Qi1) + @||5w*,t‘|271)]

Mm

Erimp (V1 = V) (@) <

2B, + R (T (Qt,gt+1)+\/a7||¢;*,t|gt1)]. (165)

t

1

Using eq. (T63) (and recalling E¢ < e by hypothesis of the theorem) to further simplify it we obtain:
Eainp (Vi = V1) (21) < 2Re
oo (T =V (1) < 2Re.
Summing the two expression gives:
Eainp (Vi = V) (21) < 4Re.

Rescaling € by 4 and substituting the value for R gives the thesis under implicit regularity.

Under explicit regularity the steps are the same, but now

1 def R
il < = = = 166
16512 < i I (166)
is explicitly prescribed, and the thesis immediately follows. O

The generality of the main result allows us to immediately obtain the following corollary:

Corollary 1 (Learning a Prescribed Reward Function during the Execution). Under the same assumptions as
theorem([l] assume the reward function r € € or v € J is prescribed before the execution of FRANCIS and

Tie = (St ak) + 1" (167)

where n" is 1-sub-Gaussian noise. Assume (Sti, ik, T'tk, S;L+1 k) is stored in the dataset D.

12We sometime say we are outside of the failure event to mean we are in the good event for FRANCIS, see
definition[7[{Good Event for FRANCIS]} In particular, the computation in[lemma[l9]{Probability of Good Event|
‘or FRANCIS|)|together with the proof in|lemma |18[(Learning a Level)| would provide values for 6" and for the
constants ce, Ca, Co if carried out explicitly.

36

Then with probability at least 1 — 6, the batch LSVI algorithm run on D (see algorithm@) returns a policy 7
such that on M

€

By mp (Vi = Vi) (1) < (168)

Vmin

ifr € Jand

Eoymp(Vi" = V")(21) < e (169)
ifr € €.

37

D.7 Computational Complexity

Theorem[d.1] gives a bound on the number of episodes to termination. In every episode, a multivariate normal
vector is sampled (which can be done efficiently) and LSVTI is invoked.

Assume di = - -+ = dg = d for simplicity; a naive implementation would factorize and store the new covariance
matrix at the end of a phase (total of O(Hd>) work across all phases); after this, computing the 6;’s requires

o} (H (d* + Ad) x nepisodes) computations at every episode where nepisodes 15 the total number of episodes
at termination given in theorem 4.1}

38

Definition 7 (Good Event for FRANCIS). We say the good event for FRANCIS occurs if for all timesteps t € [H|
or phases p € [H| and episodes k in that phase the following boundﬁ jointly hold and we are in the good event
for LsV1 (see|definition|5|(Good Event for LSVI)).

1

1 lmer 2(2LsR¢)2 In (£ 8In(57) 4. A
| G| < \/) In (57) _ V° = (170)
P tmax Tmax V imax

Imax

de 2d
€t kel < Vel0) E y/200di n T2 (171)
2Utdt 2dt
illa < (f—2ode g, 2de 172
1 e 2In(5)
S G} = (1—q) - e — (173)
max k::l max
Lemma 19 (Probability of Good Event for FRANCIS). There exists a parameter 6" = 6 such

poly(dy,..., dH,H,%)’
that the good event of deﬁnitionmholds with probability at least 1 — 0.

Proof. The first and fourth inequality follow from lemma|24|(Azuma-Hoeffding Inequality)} The second and
third inequality follow from WW\WM—NM%WPUmm bound over
the statements, over H and over the number of episodes ensures all statements jointly hold at any point during
the execution of the program; from this, the value for 6" can be determined. O

BSome symbols, like imaz, kmaz are defined directly in the lemma where the bound is used.

39

E Lower Bound

We sketch the lower bound to highlight that explorability is required.

Proposition 4 (Lower Bound on Explorability Dependence under Implicit Regularity). There exists an MDP
and a feature map ¢y : (s,a) — ¢:(s,a) € R? with explorability parameter Vpmin and a reward function such
that:

v(’ﬂ?t) Tt(sva) = ¢t(s7a)—r6:’ ‘]Eztw‘lr Tt(mtaﬂ-t(xt))‘ S 1 (174)

and yet no reinforcement learning agent without knowledge of 0" can return an e-optimal policy for € < Vpmin <
1 in less than Q(1/(evmin)?) trajectories with probability higher than 2/3.

Notice that the proposition above is for a fixed (but unknown) deterministic reward function; this is thus a special
case of the reward-free learning setting we consider, implying that the hardness is due to the implicit regularity
conditions rather than to reward-free learning.

The proof essentially uses a multi-armed bandit lower bound where the noise is 1/vm:n-sub-Gaussian and is
created using the MDP dynamics (since the reward is deterministic).

Proof. We construct the MDP as follows: there is a single starting state ss¢qr¢ With two actions ar, and ar and
the identity feature ¢1(Sstart, ar) = €1, #1(Sstart, ar) = €2, Where e1, e are canonical vectors in R?, Now
fix a scalar € € [Zmin Zmin]:
1. action ar, gives an immediate reward —1/2 and leads to state sz1 with probability % ~+ Vmin and to
sr,2 with probability % — VUmin. The feature map reads ¢2(sr1) = e1 and ¢2(sr2) = —e in the only
action available in each state.

2. action ar gives an immediate reward —1 / 2 and leads to state sr1 with probability % + Vmin + € and
to sg2 with probability 2 — vmin — €. The feature map reads ¢2(sr1) = ez and ¢2(sr1) = —e2

In this MDP there are only two distinct policies: 7y, that selects ar, first and then the only available action in

either sy,1 or sr2, and g that selects ar first and then the only available action in either sg1 or sr2. Therefore,
T T

this is equivalent to a multiarmed bandit problem with reward —1/2 + ¢, ,05 for 7z and —1/2 4 ¢, . ,05
for m2. The minimum explorability coefficient is (1 = 1 at timestep 1) '
. -1 0 1 Vmin 1 Vmin
Ienég mT?X ¢w,2m = (5 + Umin — 2) - (5 — VUmin + 2) :|€;62 = Vmin (175)

corresponding to policy g (this can be computed by inspection; notice that 7, yields the same vy). Now
consider the reward parameter 05 = 1/vmin X [1/2,1/2]; the expected reward at timestep 2 under policy
TR 1S Bagrmy T2(22) = Vimin X < 1 which satisfies the assumptions of the lemma. At the same

2Vmin

time Eoyrp 72(22) = (Vmin + 2€) X 5--— < 1. This implies the random return —1/2 + ¢2(s) 62
with s ~ p1(Sstart, ar) is a scaled and shifted Bernoulli random variable with mean zero, taking the values

—-1/2+ 5 and —1 /2 — 2V1 — . Since the standard deviation of this random variables (with vy, < i)
is ©(1/Vmin), this random variable must be (1/ me)-sub-Gaussialﬂ The same reasoning applies to
—1/2 + ¢a(s) " 62 with s ~ p1(Sstart, ar). Notice that both expectations are at most 1.

Solving this class of problems (parameterized by), i.e., identifying an |e|/2-optimal policy is equivalent to
solving a multiarmed bandit problem with 2 actions (corresponding to the policies 71 and 7r2). This construction
is exactly the same as theorem 2 from|Krishnamurthy et al.|[2016] with shifted Bernoulli random variables that are
scaled by the inverse explorability coefficient 1/vr,. This implies that a sample complexity Q(1/(Vmin|€])?)
is required to output an |e|/2-optimal policy with probability > 2/3. O

1*See for example exercise 2.5 in[Wainwright| [2019]).

40

F Support Lemmas

Lemma 20 (Reward Boundness). If we assume that

1
v | Exy o 7t (24, T (1)) < F7i (176)
— 1
and 307 € RY suchthat | B, re(we, m(20)) — 61 05 < By < & (177)
then it follows that
072 < —. 178
1672 < - a7s)
Proof. From the hypothesis it follows
2 -7 -7 6
= > AESIA — 179
H = |¢7r,t tl H t H2 X ‘()bﬂ-,t HQ:HZ‘ ()

in particular this must hold for the policy 7 that maximizes the above display. Therefore, after taking max,
take ming),—1 to obtain (using|definition 2| (|Explorability|5[):

T . —-T T
> 116z]2 % Hgﬂnnlmaxmﬁl = [|6% |2 (180)
2= ™
Rearranging
1650 < (181)
th2 = Hl/t.
O

41

F.1 High Probability Bounds

Lemma 21 (Transition Noise High Probability Bound). If A = 1 and R = 2L 4R 41 with probability at least
1 — & it holds that YVig1 € Vigar

SV (182)

t

k—1
H D b (Verr(si10) = Esrmplopane) Ver1(s)) ‘
=1

where:

VA /2% 2\/63 In (1 n L;k/dt) +dir In(1+ 4R 11/(2LeVE)) + In <%) T2, (183)

Proof. Since the statement needs to hold for every V11 € Vi41, we start by constructing an e-cover for set
V:+1 using the supremum distance. To achieve this, we construct an e-cover for the parameter 6 € 3¢ using
the “Covering Number of Euclidean Ball” lemma in [Zanette et al.,[2020b]. This ensures that there exists a set

A
Diy1 C Biy1, containing (1 4 2R¢4 1 /€')%+1 vectors 611 that well approximates any 6; 11 € Bii1:

A AN
H'Dt+1 C Bt+1 such that V9t+1 (S Bt+1, 39t+1 (S 'Dt+1 such that H9t+1 — 9t+1||2 < 6/. (184)

A N N
de . .

Let Vit1(s) “/ max, ¢ir1(s,a)T 0, where 0 = arg mingep, | |6’ — 0|2 and consider V41 € Vit1. For

any fixed s € S we have that:

A A
‘(‘/75+1 — Vt+1)(s)| = |ma}x ¢t+1(s,a')T0t+1 — mg{x ¢t+1(s,a”)T0t+1\
- A
< mgx|¢t+1(s,a) (Beg1 — Oes1)]

VAN
< max [|per1(s, a)ll2[|0e+1 — Orsa]l2
< Lye. (185)

By using the triangle inequality we can write:

k—1
H Z Dt (‘/;/+1(5:_+1,k) - Es/Np(stk,atk) Vt+1(5/)) H
i=1

-1
DM

k—1 A YAN

IS0 (Pt B Pt
i=1 !
k—1 A

+ H Z Pt (ESINP(Stkaatk) V(S/) - ES/NP(SM’QM) VtH(S/)) HZ*I
=1 !

k—1 A
X6 (ml(s;l,k) - Vt+1(sz++1,k>) (186)

71.
HE
i=1 t

Each of the last two terms above can be written for some b;’s (different for each of the two terms) as

H SV bribs

.- The projection lemma, (lemma 8 from Zanette et al.|[2020b]]) ensures:
Sk

< LyeVk (187)

k—1
|5 0.
i=1 t

We have used eq. (I83) to bound the b;’s. Now we examine the first term of the rhs in equation in eq. (I86). In

A A
particular, we bound that term for a generic V¢4 and then do a union bound over all possible V';1, which are

A
generated by finitely many 641 € Dyy1 as explained before. We obtain that:

yAN yAN
P< U O(em)) < > P (C(ml)) < (L4 2R /)18 s (18y)
7, 7,

+1€D¢41 +1€D¢41

42

where C is the event reported below (along with §”’) and the last inequality above follows from Theorem 1 in

A ~
[Abbasi-Yadkori et al.,[2011]] (the random variables V', y1(-) and Vi11(-) are R = 2L4R41-subgaussian by
construction):

A k-1 A A 2 d 1 -1
de et(X:)2 det (NI
) - {H Z@i (VHM — Eo'p(sinaim) V(Sl)> Hz’l =2 (R)an < = 0") '
t

i=1

(189)
In particular, we set

6/
"= 190
(1 + 2Rt+1/61)d“+1 ()

A
from the prior display and so with probability 1 — §’ (after a union bound over all possible 0;1+1 € Di41) we
have upper bounded eq. by:

1 -1 1\ d¢

PN 21n (det(zt)2 det (M) ;,(1 + 2Russ/e) m) +2Ly¢ VE. (191)

If we now pick

/ R
= 192
T (192)
we get:
1y dt 1\d¢
R lom (det(Et)z)\ 2 (15,+ 2Riy1/€) t+1> ‘R (193)
1 ds 1

=V2R 5 In (det(X¢)) — 5 In(A\) +dir1In(1 + 2R¢41/€¢’) + In 5 +R (194)

Finally, using the Determinant-Trace Inequality (see lemma 10 of [Abbasi-Yadkori et al., 2011]]) we obtain
det(Sek) < (A + L3k/de)™ and so (with A = 1)

/

< V2 x 2\/2’5 In (1 + Lgk/dt) + dp1In(1 + 4R 11/ (2LyVE)) + In <5l> +2 % /Bl (195)

O

43

F.2 Known Results

Lemma 22 (Large Deviation Multivariate Normal). Let ¥ € R be an spd matrix with minimum eigenvalue
A > 0 and let

E~N (0,057 (196)
for a positive scalar o. For any fixed ¢ € R® with probability at least 1 — §':
T2 o ollol3 2d
|¢’ §| < B 2d1ﬂy (197)
and so by choosing ¢ = 0 55“2 when & # 0 it holds that
o 2d
1€z < Y (2d1n ?) (198)
Under the same event it holds that
[€lls <y/o (2dln ?S—d). (199)
Proof. If
E~N (0,057 (200)
it follows that
1 1
N2~ N(0,] 201
NN @01)
where I is the identity matrix on R?. Therefore
1 2 1 Tl T 1 1 2
- — [—¢'w3 2 ~ 202
Tiett = (zeTst) (mhe) v o)

where x2 is the chi-square distribution with d degrees of freedom. From lemmal23|(x-square lemmal|we can
compute a high probability bound for the above random variable (this also proves the last statement):

1 5 2d
67EF < o1 1€l < ol pel < T2 (20 %) 0)

with probability at least 1 — §’. O

Lemma 23 (x-square lemma). Let X2 ~ x2 be a random variable that follows the chi-square distribution with
d degrees of freedom. With probability at least 1 — &'

X? < 2dIn %fl. (204)

Proof. Let X; ~ N(0,1),7 € [d]. If X; € [—a,+a],Vi € [d] then it must follow that 2icld) X2 < da?.
Thus:

P(X* =Y X?>da®) < P(3i € [d], Xi ¢ [~a,a]) = P(Uicia Xi & [~a,a]) < dP(X: ¢ [~a,a]) < 2de™*/°.
i€[d]

Requiring the rhs above to be < &’ gives
2
a®=2In 676’1
O

Lemma 24 (Azuma-Hoeffding Inequality). Ler X; be a martingale difference sequence such that X; € [— A, A]
for some A > 0. Then with probability at least 1 — &' it holds that:

S
i=1

< ([2A%n1n (;) (205)

44

Proof. The Azuma inequality reads:

P Oix
i=1

see for example [Wainwright, 2019]]. From here setting the rhs equal to § gives:

t < 24201 (%) (207)

O

242
> t) <e 4AZn, (206)

Lemma 25 (Change of ©-Norm). For a compatible vector x € R® and an spd matrix ¥ € R with minimum
eigenvalue \pin(X) we have

lzlls > v/ Amin(E)|]l2 (208)

1
zlv-1 < ———=||z||2. 209
zlls-1 < /\mm(Z)H ll2 (209)

Proof. We show one inequality (the other is identical). Consider the eigendecomposition of > with orthonormal
eigenvectors v;’s and eigenvalues \;’s:

d
nlo ZA;IWI (210)

‘We can write:

|z} =2"27 e @11)

by
d
=z (Z)\ilviv;> z (212)
4 9
=> (fuh) (213)

d
1 N
< - |
ST ; (vl x) 214)
= ol 215)
0

Lemma 26 (Linear Bandit Exploration Bonus). For an spd matrix ¥, the equality below holds whenever the
operations make sense:

.
s ~ el (216)
¢>,HnHz§\/E¢ n |l

Proof. Choosen = Z_lqﬁwil, which satisfies the constraint
o

_ o o
1576 Y s = oY |51 Va = Vo @)
lls-1 [¢lls—1
and gives an objective value
T “1, Vo
max ¢ n>¢X ¢ =/0||¢||s-1 (218)
piminsve’ [l 41

On the other hand, Cauchy-Schwartz ensures:

-
max < - =+/o —1. 219
,max 670 < @l s = Vool o1

45

	Introduction
	Preliminaries and Intuition
	Algorithm
	Main Result
	Technical Analysis
	Analysis of Lsvi, uncertainty and inductive hypothesis
	Overestimating the maximum uncertainty through randomization
	Learning an Epoch
	Learning a Phase
	Connection with G-optimal design

	Discussion
	Broader Impact
	Preliminaries
	Symbols
	Inherent Bellman Error

	Analysis of vanilla Lsvi
	Single Step Error Decomposition
	Single Step Error Bounds
	Iterate Boundness
	Multi-Step Analysis: Error Bounds for Lsvi

	Design of Experiments
	Analysis of Francis
	Generating Bounded Iterates
	Derandomization
	Learning an Epoch
	Learning a Phase
	Learning to Navigate
	Solution Reconstruction (Main Result)
	Computational Complexity

	Lower Bound
	Support Lemmas
	High Probability Bounds
	Known Results

