
A More comparisons between the LBF and sandwiched LBF

200250300350400450 600 700 800
Budget of buckets (Kb)

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

Fa
lse

 P
os
iti
ve
 R
at
e

LBF vs sandwiched LBF
LBF
sandwiched LBF

(a)

100 150 200 250 300 350 400 450 500
Budget of buckets (Kb)

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

Fa
lse

 P
os

iti
ve

 R
at
e

LBF vs sandwiched LBF
LBF
sandwiched LBF

(b)

Figure A.1: FPR comparison between LBF and sandwiched LBF under different bitmap sizes. (a) malicious

URL experiment; (b) malware detection experiment

B Comparing the Bloom filter to Hierarchical Hashing

The machine learning model used in the learned Bloom filters is critical because it has discrimination power

between the keys and non-keys and is more efficient in identifying keys in some cases. To show its unique

role, we replaced the machine learning model with another Bloom filter such that it becomes a hierarchical

Bloom filter (learner is replaced by an initial filter). To implement the hierarchical Bloom filter, we spare

50% of the bit budget to the initial filter and use the other bits to build the backup filter.

200 250 300 350 400 450 500
Budget of buckets (Kb)

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

Fa
lse

 P
os
iti
ve
 R
at
e

Comparison to Hierarchical Bloom filter
BF
Hierarchical BF

Figure B.1: FPR comparison between LBF and sandwiched LBF under different bitmap sizes. (a) malicious

URL experiment; (b) malware detection experiment

Figure B.1 shows that the hierarchical BF does not outperform the original BF under all the budget of

1

buckets, and in some cases, it even achieves a worse FPR. Hence, using a random hash function to replace

the learner is not a memory efficient approach.

C Proof of the Statements

Proof of Lemma 1:

Proof. Let Zj(x) =
∑m
i=1 1(s(x) ∈ [τj−1, τj)|x /∈ S), then Zj(x) ∼ Bernoulli(pj), and mj =

∑m
i=1 Zj(xi)

counts the number of non-keys falling in group j and p̂j =
mj
m . To upper bound the probability of the overall

estimation error of pj , first, we need to evaluate its expectation, E
(∑K

j=1|p̂j − pj |
)
.

Since mj is a binomial random variable, its exact cdf is hard to compute. But with central limit theorem,

when m is large, mj−mpj√
mpj(1−pj)

−→ N(0, 1). Thus, we can approximate E (|p̂j − pj |) = E
(
| mj−mpj√

mpj(1−pj)
|
)
·√

pj(1−pj)
m ≈

√
2
π ·
√

pj(1−pj)
m (if Z ∼ N(0, 1), E (|Z|) =

√
2
π). Then, the expectation of overall error is

approximated by E
(∑K

j=1|p̂j − pj |
)
≈
√

2
mπ ·

(∑K
j=1

√
pj(1− pj)

)
, which goes to 0 as m becomes larger.

We need to further upper bound the tail probability of
∑K
j=1|p̂j − pj |. First, we upper bound the variance of∑K

j=1|p̂j − pj |,

Var

 K∑
j=1

|p̂j − pj |

 ≤ K

K∑
j=1

Var (|p̂j − pj |)

= K

K∑
j=1

(
Var (p̂j − pj)− E (|p̂j − pj |)2

)

≈ K

m

K∑
j=1

pj(1− pj)− 2

π

(
K∑
i=1

√
pj(1− pj)

)2
 , K

m
V (p)

Now, by envoking the Chebyshev’s inequality,

P

 K∑
j=1

|p̂j − pj | ≥ ε


= P

 K∑
j=1

|p̂j − pj | − E

 K∑
j=1

|p̂j − pj |

 ≥ ε− E

 K∑
j=1

|p̂j − pj |


≤

Var
(∑K

j=1|p̂j − pj |
)

(
ε− E

(∑K
j=1|p̂j − pj |

))2
=

KV (p)

m
(
ε− E

(∑K
j=1|p̂j − pj |

))2 −→ 0 as m −→∞

2

Thus,
∑K
j=1|p̂j − pj | converges to 0 in probability as m −→∞. �

Moreover, since we have

E

 K∑
j=1

|p̂j − pj |

 ≈
√

2

mπ
(

K∑
j=1

√
pj(1− pj))

≤
√

2

mπ
(K − 1) (1)

V (p) =

K∑
j=1

pj(1− pj)− 2

π

(
K∑
i=1

√
pj(1− pj)

)2


≤
K∑
j=1

(
pj(1− pj)

(
1− 2

π

))

≤
(
1− 2

π

)(
1− 1

K

)
(2)

Then, by Eq 1 and Eq 2, we can upper bound P
[∑K

j=1|p̂j − pj | ≥ ε
]
by,

P

 K∑
j=1

|p̂j − pj | ≥ ε

 ≤ KV (p)

m
(
ε− E

(∑K
j=1|p̂j − pj |

))2
≤

(1− 2
π)(K − 1)

m
(
ε−

√
2
mπ (K − 1)

)2 (3)

Whenm ≥ 2(k−1)
ε2

[√
1
π +

√
1−2/π
δ

]2
, we havem

(
ε−

√
2
mπ (K − 1)

)2
≥ (K−1)(1− 2

π)

δ , thus, P
[∑K

j=1|p̂j − pj | ≥ ε
]
≤

δ.

Proof of Theorem 1:

Proof. For comparison, we choose τ = τg−1, for both LBF and Ada-BF, queries with scores larger than τ are

identified as keys directly by the same machine learning model. Thus, to compare the overall FPR, we only

need to evaluate the FPR of queries with score lower than τ .

Let p0 = P [s(x) < τ |x /∈ S] be the probability of a key with score lower than τ . Let n0 denote the number of

keys with score less than τ , n0 =
∑

i:xi∈S
I(s(xi) < τ). For learned Bloom filter using K hash functions, the

3

expected FPR follows,

E (FPR) = (1− p0) + p0

(
1−

(
1− 1

R

)Kn0
)K

= 1− p0 + p0β
K , (4)

where R is the length of the Bloom filter. For Ada-BF, assume we fix the number of groups g. Then, we only

need to determine Kmax and Kmin = Kmax − g + 1. Let pj = Pr(τj−1 ≤ s(x) < τj |x /∈ S) The expected

FPR of the Ada-BF is,

E (FPRa) =

g∑
j=1

pj

(
1−

(
1− 1

R

)∑g−1
j=1 Kjnj

)K
j

=

g−1∑
j=1

pjα
Kj , (5)

where
∑g−1
j=1 nj = n0. Next, we give a strategy to select Kmax which ensures a lower FPR of Ada-BF than

LBF.

Select Kmax = bK + g
2 − 1c. Let Ti = ni − ni−1. Then, we have

n0K =

g−1∑
j=1

njK = K

[
n1 +

g−1∑
i=2

(n1 +

j−1∑
i=1

Ti)

]

= K

n1(g − 1) +

g−2∑
j=1

Tj(g − j − 1)


= Kn1(g − 1) +

2K

g − 2

g−2∑
j=1

(g − 2)(g − 1− j)
2

Tj


≤ 2K

g − 2

 (g − 1)(g − 2)

2
n1 +

g−2∑
j=1

(g + j − 2)(g − 1− j)
2

Tj


(1)
≤ 2K

g − 2

g−1∑
j=1

(j − 1)nj , (6)

where inequality (1) comes from
∑g−2
j=1

(g−2)(g−1−j)
2 Tj ≤

∑g−2
j=1

(g+j−2)(g−1−j)
2 Tj . By Eq 6. we further get

the relationship between α and β.

g−1∑
j=1

Kjnj =

g−1∑
j=1

(Kmax − j + 1)nj

≤ n0

(
Kmax −

g

2
+ 1
)
≤ n0K

=⇒ α ≤ β.

4

Moreover, since in the main text, we have seen,

E (FPR) =

g∑
j=1

pjα
Kj =

∑g
j=1 c

g−jαKj∑g
j=1 c

g−j

≤


(1− c)(1− (cα)g)

(1
α − c)(αg − (cα)g)

αKmax , cα 6= 1

1− c
1− cg

· g, cα = 1

Thus,

E (FPRa) =
(1− c)(1− (cα)g)

(1
α − c)(αg − (cα)g)

αKmax

≤ (1− c)(1− (cα)g)

(1
α − c)(αg − (cα)g)

βKmax

≤ βKmax
α(c− 1)

cα− 1

< E (FPR)
(
1 + λ

λ
βKmax−K

)
≤ E (FPR)

(
1 + λ

λ
βbg/2−1c

)
.

Therefore, as g increases, the upper bound of E (FPRa) decreases exponentially fast. Moreover, since 1+λ
λ

is a constant, when g is large enough, we have 1+λ
λ βbg/2−1c ≤ 1. Thus, the E (FPRe) is reduced to strictly

lower than E (FPR).

Proof of Theorem 2:

Proof. Let η = log(c)
log(µ) ≈

log(c)
log(0.618) < 0. By the tuning strategy described in the previous section, we require

the expected false positive items should be similar across the groups. Thus, we have

p1 · µR1/n1 = pj · µRj/nj

=⇒ Rj = nj

(
R1

n1
+ (j − 1)η

)
, for j ∈ [g − 1]

where Rj is the budget of buckets for group j. For group j, since all the queries are identified as keys by the

machine learning model directly, thus, Rg = 0. Given length of Bloom filter for group 1, R1, the total budget

of buckets can be expressed as,

g−1∑
j=1

Rj =

g−1∑
j=1

nj
n1
R1 + (j − 1)njη

5

Let p0 = Pr(s(x) < τ |x /∈ S) and pj = Pr(τj−1 ≤ s(x) < τj |x /∈ S). Let n0 denote the number of keys with

score less than τ , n0 =
∑

i:xi∈S
I(s(xi) < τ), and nj be the number of keys in group j, nj =

∑
i:xi∈S

I(τj−1 ≤

s(xi) < τj). Due to τ = τg−1, we have
∑g−1
j=1 nj = n0. Moreover, since τg−1 = τ , queries with score higher

than τ have the same FPR for both disjoint Ada-BF and LBF. So, we only need to compare the FPR of the

two methods when the score is lower than τ . If LBF and Ada-BF achieve the same optimal expected FPR,

we have

p0 · µR/n0 =

g−1∑
j=1

pj · µRj/nj = g · p1 · µR1/n1

=⇒ R =
n0
n1
R1 − n0

log(p0/p1)− log(g)

log(µ)

=

g−1∑
j=1

[
nj
n1
R1 − nj

log(1−
(
1
c)
)g − log

(
1− 1

c

)
− log(g)

log(µ)

]
,

where R is the budget of buckets of LBF. Let Tj = nj+1 − nj ≥ 0. Next, we upper bound
∑g−1
j=1 nj with∑g−1

j=1(j − 1)nj .

g−1∑
j=1

nj = n1 +

g−1∑
i=2

(n1 +

j−1∑
i=1

Ti)

= n1(g − 1) +

g−2∑
j=1

Tj(g − j − 1)

=
2

g − 2

 (g − 1)(g − 2)n1
2

+

g−2∑
j=1

(g − 2)(g − 1− j)Tj
2


≤ 2

g − 2

 (g − 1)(g − 2)n1
2

+

g−2∑
j=1

(g + j − 2)(g − 1− j)Tj
2


=

2

g − 2

g−1∑
j=1

(j − 1)nj

Therefore, we can lower bound R,

R ≥
g−1∑
j=1

[
nj
n1
R1 − (j − 1)nj

2(log(1−
(
1
c)
)g − log

(
1− 1

c

)
− log(g))

(g − 2) log(µ)

]
.

Now, we can lower bound R−
∑g−1
j=1 Rj ,

R−
g−1∑
j=1

Rj ≥
g−1∑
j=1

(j − 1)nj

[
−η −

2(log(1−
(
1
c)
)g − log

(
1− 1

c

)
− log(g))

(g − 2) log(µ)

]
.

Since η is a negative constant, while
2(log(1−(1

c))
g−log(1− 1

c)−log(g))
(g−2) log(µ) approaches to 0 when g is large. Therefore,

when g is large, η − 2(log(1−(1
c))

g−log(1− 1
c)−log(g))

(g−2) log(µ) < 0 and R−
∑g−1
j=1 Rj is strictly larger than 0. So, disjoint

Ada-BF consumes less memory than LBF to achieve the same expected FPR.

6

	More comparisons between the LBF and sandwiched LBF
	Comparing the Bloom filter to Hierarchical Hashing
	Proof of the Statements

