A More comparisons between the LBF and sandwiched LBF
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Figure A.1: FPR comparison between LBF and sandwiched LBF under different bitmap sizes. (a) malicious

URL experiment; (b) malware detection experiment
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B Comparing the Bloom filter to Hierarchical Hashing

The machine learning model used in the learned Bloom filters is critical because it has discrimination power
between the keys and non-keys and is more efficient in identifying keys in some cases. To show its unique
role, we replaced the machine learning model with another Bloom filter such that it becomes a hierarchical

Bloom filter (learner is replaced by an initial filter). To implement the hierarchical Bloom filter, we spare

50% of the bit budget to the initial filter and use the other bits to build the backup filter.
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Figure B.1: FPR comparison between LBF and sandwiched LBF under different bitmap sizes. (a) malicious

Comparison to Hierarchical Bloom filter
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Figure [B1] shows that the hierarchical BF does not outperform the original BF under all the budget of




buckets, and in some cases, it even achieves a worse FPR. Hence, using a random hash function to replace

the learner is not a memory efficient approach.

C Proof of the Statements

Proof of Lemma 1:

Proof. Let Z;(z) = Y i, 1(s(z) € [1j-1,7j)|x ¢ S), then Z;(z) ~ Bernoulli(p;), and m; = >." | Z;(x;)
counts the number of non-keys falling in group j and p; = % To upper bound the probability of the overall

estimation error of p;, first, we need to evaluate its expectation, E (Zjilhﬁj - pj|>.

Since m; is a binomial random variable, its exact cdf is hard to compute. But with central limit theorem,

when m is large, M — N(0,1). Thus, we can approximate E (|p; — p;|) = E (|mﬂmpﬂ)|) :
mp;

v mp;(1—pj;) i(1-p;

\/pJ(l p;) \[ \/ 2 pJ (if Z ~ N(0,1), E(|Z|) = \/g) Then, the expectation of overall error is

approximated by E (Zj:1|pj — pj|> =~ ,/ﬁ . (Zjil Vp;i(1— pj)), which goes to 0 as m becomes larger.

We need to further upper bound the tail probability of Ej}‘(:ﬂﬁj — p;|. First, we upper bound the variance of
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Now, by envoking the Chebyshev’s inequality,
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Thus, Zf:ﬂﬁj — pj| converges to 0 in probability as m — oco. O

Moreover, since we have

e(Sinl) ~ 2y
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Then, by Eqand Eq we can upper bound P [Zf:ﬂﬁj —p;l > e] by,
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Proof of Theorem 1:

Proof. For comparison, we choose 7 = 7,_1, for both LBF and Ada-BF, queries with scores larger than 7 are
identified as keys directly by the same machine learning model. Thus, to compare the overall FPR, we only

need to evaluate the FPR of queries with score lower than 7.

Let po = P [s(z) < 7| ¢ S] be the probability of a key with score lower than 7. Let ny denote the number of

keys with score less than 7, ng = > I(s(x;) < 7). For learned Bloom filter using K hash functions, the
i, €S



expected FPR follows,

1\ Ko\
E(FPR) = (1—po)+po<1—(1—R> )

= 1—po+poB~, (4)

where R is the length of the Bloom filter. For Ada-BF, assume we fix the number of groups g. Then, we only
need to determine Ko, and Kpin = Kpas — 9 + 1. Let p; = Pr(rj_1 < s(x) < 75|z ¢ S) The expected
FPR of the Ada-BF is,
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where Z?;ll n; = ng. Next, we give a strategy to select K4, Which ensures a lower FPR of Ada-BF than

LBF.

Select Kppae = K + § —1]. Let T; = n; — n;_1. Then, we have
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where inequality (1) comes from Zg 2 (92)(+13T < Zg 2 wT By Eq@ we further get
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Moreover, since in the main text, we have seen,
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Therefore, as g increases, the upper bound of E (FPR,,) decreases exponentially fast. Moreover, since %
is a constant, when g is large enough, we have %5“’”‘” < 1. Thus, the E (FPR.) is reduced to strictly

lower than E (FPR). O

Proof of Theorem 2:

Proof. Let n = 1125((;)) ~ loécggfﬁcig) < 0. By the tuning strategy described in the previous section, we require

the expected false positive items should be similar across the groups. Thus, we have

P .'uRl/nl =p; .uRj/nj

R . .
= Rj=mn; <nll+(J—1)77>7 for j € [g — 1]

where R; is the budget of buckets for group j. For group j, since all the queries are identified as keys by the
machine learning model directly, thus, R, = 0. Given length of Bloom filter for group 1, R, the total budget
of buckets can be expressed as,

R; = ﬁRl +(j — 1)n;n



Let po = Pr(s(z) < 7|z ¢ S) and p; = Pr(r;_1 < s(z) < 7|z ¢ S). Let ng denote the number of keys with

score less than 7, ng = Y, I(s(z;) < 7), and n; be the number of keys in group j, n; = >, I(1j_1 <
T, €S X, €S

s(x) < 7;). Due to 7 = 74_1, we have Z 1 n; = ng. Moreover, since 7,_; = 7, queries with score higher
than 7 have the same FPR for both disjoint Ada-BF and LBF. So, we only need to compare the FPR of the
two methods when the score is lower than 7. If LBF and Ada-BF achieve the same optimal expected FPR,

we have
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where R is the budget of buckets of LBF. Let T; = n;j41 —n; > 0. Next, we upper bound Z?;ll n; with

S921G — Dy
ZTL]‘ = TL1+Z(711+ZTZ)
= g—1) +ZT —j—1)

2 |(g-1)(g—2m =(@-2)(g—1-4)T;

IN
+

92| 2 p 3
-1
2 .
= jZ(j_1>n]
g =1

Therefore, we can lower bound R,
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Now, we can lower bound R — 3797 R;,
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Since 7 is a negative constant, while 2(log(1 (62372)11(%;(1”)6) Log(g))
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2les (C()g)72)11§g((1u)°) Log(s)) <0and R — Z?:} R; is strictly larger than 0. So, disjoint

Ada-BF consumes less memory than LBF to achieve the same expected FPR. O

approaches to 0 when g is large. Therefore,

when ¢ is large, n —
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