
Supplementary Material for: A polynomial-time algorithm for learning non-
parametric causal graphs

A Reduction to order search

The fact that DAG learning can be reduced to learning a topological sort is well-known. For example,
this fact is the basis of exact algorithms for score-based learning based on dynamic programming
[34, 40, 50, 51] as well as recent algorithms for linear models [8, 14, 15]. See also [49]. This fact
has also been exploited in the overdispersion scoring model developed by Park and Raskutti [38] as
well as for nonlinear additive models [7]. In fact, more can be said: Any ordering defines a minimal
I-map of P(X) via a simple iterative algorithm (see §3.4.1, Algorithm 3.2 in [23]), and this minimal
I-map is unique as long as P(X) satisfies the intersection property. This is guaranteed, for example, if
P(X) has a positive density, but holds under weaker conditions (see [41] for necessary and sufficient
conditions assuming P(X) has a density and [12], Theorem 7.1, for the general case). This same
algorithm can then be used to reconstruct the true DAG G from the true ordering ≺. As noted in
Section 2, a further reduction can be obtained by considering the layer decomposition L(G), from
which all topological orders ≺ of G can be deduced.

Once the ordering is known, existing nonlinear variable selection methods [4, 11, 16, 25, 28, 46]
suffice to learn the parent sets pa(j) and hence the graph G. More specifically, given an order ≺,
to identify pa(j), let f(Sj) := E[Xj |Sj ], where Sj := {Xk : Xk ≺ Xj}. The parent set of Xj is
given by the active variables in this conditional expectation, i.e. pa(j) = {k : ∂kf 6= 0}, where ∂k is
the partial derivative of f with respect to the kth argument.

In our experiments, we use exactly this procedure to learn G from the order ≺, based on the data.
Specifically, we use generalized additive models, similar to the pruning step in [7]. See Appendix E
for more details.

B Proof of Theorem 3.1

The key lemma is the following, which is easy to prove for additive noise models via (2), and which
we show holds more generally in non-additive models:

Lemma B.1. Let A ⊂ V be an ancestral set in G. If E var(Xj | pa(j)) ≡ σ2 does not depend on j,
then for any j /∈ A,

E var(Xj |XA) = σ2 if pa(j) ⊂ A,

E var(Xj |XA) > σ2 otherwise.

Proof of Lemma B.1. Let Bj = pa(Xj), Bj := Bj − A, and G be the subgraph of G formed by
removing the nodes in the ancestral set A. Then

var(Xj |XA) = E[var(Xj |XA, XBj ) |XA] + var[E[Xj |XA, XBj ] |XA]

= E[var(Xj |XA, XBj
) |XA] + var[E[Xj |XA, XBj

] |XA].

There are two cases: (i) Bj = ∅, and (ii) Bj 6= ∅. In case (i), it follows that Bj ⊂ A and hence
pa(j) ⊂ A. Since Xj is conditionally independent of its nondescendants (e.g. ancestors) given its
parents, it follows that var(Xj |XA) = var(Xj |XBj ) and hence

E var(Xj |XA) = E var(Xj |XBj ) = σ2.

In case (ii), it follows that

var(Xj |XA) = E[var(Xj |XA, XBj
) |XA] + var[E[Xj |XA, XBj

] |XA]

= E[var(Xj |XBj ) |XA] + var[E[Xj |XBj ] |XA],

where again we used that Xj is conditionally independent of its nondescendants (e.g. ancestors)
given its parents to replace conditioning on (XA, XBj

) = XA∪Bj with conditioning on Bj .
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Now suppose Xk is in case (i) and Xj is in case (ii). We wish to show that E var(Xj |XA) >
E var(Xk |XA) = σ2. Then

E var(Xj |XA) = E
[
E[var(Xj |XBj ) |XA]

]
+ E var[E[Xj |XBj ] |XA]

> E
[
E[var(Xj | pa(j)) |XA]

]
= E var(Xj | pa(j))

= E var(Xk | pa(k))

= σ2,

where we have invoked the assumption that E var(Xj | pa(j)) does not depend on j to conclude
E[var(Xj | pa(j)) |XA] = E[var(Xk | pa(k)) |XA]. This completes the proof.

Theorem 3.1 is an immediate corollary of Lemma B.1. For completeness, we include a proof below.

Proof of Theorem 3.1. Let S(G) denote the set of sources in G and note that Lemma B.1 implies that
if Xs ∈ S(G), then var(Xs) < var(Xj) for any s 6= j. Thus, S(G) is identifiable. Let G1 denote the
subgraph of G formed by removing the nodes in S(G). Since S(G) = L1 = A1, S(G) is an ancestral
set in G. After conditioning on A1, we can thus apply Lemma B.1 once again to identify the sources
in G1, i.e. S(G1) = L2. By repeating this procedure, we can recursively identify L1, . . . , Lr, and
hence any topological sort of G.

B.1 Generalization to unequal variances

In this appendix, we illustrate how Theorem 3.1 can be extended to the case where residual variances
are different, i.e. σ2

j = E var(Xj |pa(j)) is not independent of j. Let de(i) be the descendant of
node i and [a : b] = {a, a+ 1, . . . , b− 1, b}. Note also that for any nodes Xu and Xv in the same
layer Lm of the graph, if we interchange the position of u and v in some true ordering π consistent
with the graph to get πu and πv , both πu and πv are correct orderings.

The following result is similar to existing results on unequal variances [15, 36, 37], with the exception
that it applies to general DAGs without linearity, additivity, or independent noise.

Theorem B.2. Suppose there exists an ordering π such that for all j ∈ [1 : d] and k ∈ π[j+1:d], the
following conditions holds:

1. If i = πj and k are not in the same layer Lm, then

σ2
i < σ2

k + E var(E(Xk | pa(k))|Xπ[1:j−1]
). (6)

2. If i and k are in the same layer Lm, then either σ2
i = σ2

k or (6) holds.

Then the order π is identifiable.

In this condition not only do we need to control the descendants of a node, but also the other
non-descendants that have not been identified.

Before proving this result, we illustrate it with an example.

Example 6. Let’s consider a very simple case: A Markov chain with three nodes X1 → X2 → X3

such that

X1 = z1 ∼ N(0, 1)

X2 =
1

2
X2

1 + z2, z2 ∼ N(0, 23 )

X3 =
1

3
X2

2 + z3, z3 ∼ N(0, 12 ).

Here we have unequal residual variances. We now check that this model satisfies the conditions in
Theorem B.2. Let f(u) = u2 and note that the true ordering is X1 ≺ X2 ≺ X3. Starting from the
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Figure 3: Experiments confirming Example 6. For the identifiable setting with σ2
3 = 1/2, Algorithm 2

correctly learns the topological ordering. For the non-identifiable setting with σ2
3 = 1/3, Algorithm 2

fails to learn the ordering.

first source node X1, we have

σ2
1 = 1

σ2
2 + E var(f(Xπ(2))) = 2/3 + var(X2

1/2) = 2/3 + 1/2 > 1 = σ2
1

σ2
3 + E var(f(Xπ(3))) = 1/2 + var(X2

2/3)

= 1/2 +
1

9

(
var(X4

1 )/16 + var(z22) + var(X2
1z2)

+ 2 cov(X4
1/4, X

2
1z2) + 2 cov(z22 , X

2
1z2)

)
= 1/2 + 8/9 + 8/81 > 1 = σ2

1

Then for the second source node X2,

σ2
2 = 2/3

σ2
3 + E var(f(Xπ(3)) |X1) = 1/2 +

1

9
(var(z22) + E var(X2

1z2 |X1))

= 1/2 + 1/3− 1/81 > 2/3

Thus the condition is satisfied.

If instead we have σ2
3 = var(z3) = 1/3, the condition would be violated. It is easy to check that

nothing changes for X1. For the second source node X2, things are different:

σ2
3 + E var(f(Xπ(3)) |X1) = 1/3 + 1/3− 1/81 < 2/3

Thus, the order of X2 and X3 would be flipped for this model.

This example is easily confirmed in practice. We let n range from 50 to 1000, and check if the
estimated order is correct for the two models (σ2

3 = 1/2 and σ2
3 = 1/3). We simulated this 50 times

and report the averages in Figure 3.

Proof of Theorem B.2. We first consider the case where every node in the same layer has a different
residual variance, i.e. Xu, Xv ∈ Lm =⇒ σ2

u 6= σ2
v . We proceed with induction on the element j of

the ordering π. Let i = πj ,

16



When j = 1 and i = π1, Xi must be a source node and we have for all k ∈ π[2:d],

var(Xi) = σ2
i <σ

2
k + E var(E(Xk | pa(k)))

=E var(Xk | pa(k)) + var(E(Xk | pa(k)))

= var(Xk).

Thus the first node to be identified must be i = π1, as desired.

Now suppose the the first j − 1 nodes in the ordering π are correctly identified. The parent of
node i = πj must have been identified in π[j−1] or it is a source node. Then we have for all
k ∈ {πj+1, . . . , πd},

E var(Xi |Xπ[1:j−1]
) = σ2

i <σ
2
k + E var(E(Xk | pa(k)) |Xπ[1:j−1]

)

=E var(Xk | pa(k)) + E var(E(Xk | pa(k)) |Xπ[1:j−1]
)

=E[E(var(Xk | pa(k)) |Xπ[1:j−1]
)] + E[var(E(Xk | pa(k)) |Xπ[1:j−1]

)]

=E var(Xk |Xπ[1:j−1]
)

Then the jth node to be identified must be i = πj . The induction is completed.

Finally, if Xu, Xv ∈ Lm are in the same layer and σ2
u = σ2

v , then this procedure may choose either
Xu or Xv first. For example, if Xu is chosen first, then Xv will be incorporated into the same layer
as Xu. Since both these nodes are in the same layer, swapping Xu and Xv in any ordering still
produces a valid ordering of the DAG. The proof is complete.

C Proof of Theorem 4.1

The proof of Theorem 4.1 will be broken down into several steps. First, we derive an upper bound on
the error of the plug-in estimator used in Algorithm 2 (Appendix C.1), and then we derive a uniform
upper bound (Appendix C.2). Based on this upper bound, we prove Theorem 4.1 via Proposition C.4
(Appendix C.3). Appendix C.4 collects various technical lemmas that are used throughout.

C.1 A plug-in estimate

Let (X,Y ) ∈ Rm × R be a pair of random variables and f̂ be a data-dependent estimator of the
conditional expectation E[Y |X] := f(X). Assume we have split the sample into two groups, which
we denote by (U (1), V (1)), . . . , (U (n1), V (n1)) ∼ P(X,Y ) and (X(1), Y (1)), . . . , (X(n2), Y (n2)) ∼
P(X,Y ) for clarity. Given these samples, define an estimator of σ2

RV := E var(Y |X) by

σ̂2
RV :=

1

n2

n2∑
i=1

(Y (i))2 − 1

n2

n2∑
i=1

f̂(X(i))2. (7)

Note here that f̂ depends on (U (i), V (i)), and is independent of the second sample (X(i), Y (i)). We
wish to bound the deviation P(|σ̂2

RV − σ2
RV| ≥ t).

Define the target θ∗ = Ef2(X) and its plug-in estimator

θ(g; q) =

ż

g(x)2 dq(x).

Letting PX denote the true marginal distribution with respect to x, we have θ∗ = θ(f ;PX) and
θ̂ := θ(f̂ ; P̂), where P̂ = n−12

∑
i δX(i) is the empirical distribution. We will also make use of more

general targets θ(g;PX) = Eg2(X) for general functions g.

Finally, as a matter of notation, we adopt the following convention: For a random variable Z,
‖Z‖p := (EZ |Z|p)1/p is the usual Lp-norm of Z as a random variable, and for a (nonrandom)
function f , ‖f‖p := (

ş

|f |p dζ)1/p, where ζ is a fixed base measure such as Lebesgue measure. In
particular, ‖f(X)‖p 6= ‖f‖p. The difference of course lies in which measure integrals are taken with
respect to. Moreover, we shall always explicitly specify with respect to which variables probabilities
and expectations are taken, e.g. to disambiguate Ef̂ ,X = Ef̂EX , Ef̂ , and EX .

We first prove the following result:

17



Proposition C.1. Assume ‖f(X)‖∞, ‖f̂(X)‖∞ ≤ B∞. Then

P(|θ̂ − θ∗| ≥ 2t) .
Ef̂‖f(X)− f̂(X)‖22

t2
+
‖f(X)‖44 + Ef̂‖f̂(X)− f(X)‖4

n2t2
. (8)

Proof. We have

Pf̂ ,X(|θ̂ − θ∗| ≥ 2t) ≤ Pf̂ ,X(|θ∗ − θ(f̂ ;PX)| ≥ t) + Pf̂ ,X(|θ̂ − θ(f̂ ;PX)| ≥ t).
The second term is easy to dispense with since

Pf̂ ,X(|θ̂ − θ(f̂ ;PX)| ≥ t) ≤
Ef̂EX(θ̂ − θ(f̂ ;PX))2

t2
≤

Ef̂ varX(f̂2(X))

n2t2
. (9)

It follows from Lemma C.5 with p = 4 that

|EX f̂(X)4 − EXf(X)4| ≤ ‖f̂(X)− f(X)‖4
3∑
k=0

‖f̂(X)‖k4‖f(X)‖3−k4

≤ 4(2B∞)3‖f̂(X)− f(X)‖4
and hence

varX(f̂2(X)) ≤ EX f̂4(X) . ‖f(X)‖44 + ‖f̂(X)− f(X)‖4. (10)

Combined with (9), we finally have

P(|θ̂ − θ(f̂ ;PX)| ≥ t) .
‖f(X)‖44 + Ef̂‖f̂(X)− f(X)‖4

n2t2
. (11)

For the first term, since f(X), f̂(X) ∈ L∞, Lemma C.7 implies

Ef̂ (θ∗ − θ(f̂ ;PX))2 = Ef̂EX(f2(X)− f̂2(X))2

. Ef̂‖f(X)− f̂(X)‖22,
and thus

Pf̂ (|θ∗ − θ(f̂ ;PX)| ≥ t) ≤
Ef̂ (θ∗ − θ(f̂ ;PX))2

t2
.

Ef̂‖f(X)− f̂(X)‖22
t2

.

Therefore

Pf̂ ,X(|θ̂ − θ∗| ≥ 2t) ≤ Pf̂ ,X(|θ∗ − θ(f̂ ;PX)| ≥ t) + Pf̂ ,X(|θ̂ − θ(f̂ ;PX)| ≥ t)

.
Ef̂‖f(X)− f̂(X)‖22

t2
+
‖f(X)‖44 + Ef̂‖f̂(X)− f(X)‖4

n2t2
.

Finally, we conclude the following:

Corollary C.2. If ‖f(X)‖∞, ‖f̂(X)‖∞ ≤ B∞, then

P(|σ̂2
RV − σ2

RV| ≥ t) .
4

t2

(
Ef̂‖f(X)− f̂(X)‖22 +

var(Y ) + ‖f(X)‖44 + Ef̂‖f̂(X)− f(X)‖4
n2

)
.

C.2 A uniform bound

For any j = 1, . . . , r and ` /∈ Aj , define σ2
`j := E var(X` |Aj) and σ̂2

`j the corresponding plug-in
estimator from (7). By Proposition C.2, we have for f`j(XAj ) := E[X` |XAj ],

P(|σ̂2
`j − σ2

`j | ≥ t) .
4

t2

(
Ef̂‖f`j(XAj )− f̂`j(XAj )‖22

+
var(X`) + ‖f`j(XAj )‖44 + Ef̂‖f̂`j(XAj )− f`j(XAj )‖4

n2

)
(12)

Thus we have the following result:
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Proposition C.3. Assume for all j and ` /∈ Aj:

1. ‖f`j(XAj )‖∞, ‖f̂`j(XAj )‖∞ ≤ B∞;

2. ‖f`j(XAj )‖44 + var(X`) ≤ B∞;

3. Ef̂‖f`j(XAj )− f̂`j(XAj )‖22 → 0.

Then

sup
`,j

P(|σ̂2
`j − σ2

`j | > t) .
4

t2

(
Ef̂‖f`j(XAj )− f̂`j(XAj )‖22 +

1

n2

)
. (13)

For example, under Conditions 1-3, we have B∞ := sup`,j 2‖f`j(XAj )‖4∞ + ζ0.

C.3 Proof of Theorem 4.1

Recall σ2
`j = E var(X` |Aj) and σ̂2

`j is the plug-in estimator defined by (7). Let ξ > 0 be such that

sup
`,j

P(|σ̂2
`j − σ2

`j | > t) ≤ ξ2

t2
. (14)

For example, Proposition C.3 implies ξ2 � δ2 + n−12 . Recall also ∆ := infj ∆j , where ∆j > 0 is
the smallest number such that E var(X` |Aj) > σ2 + ∆j for all ` /∈ Aj .
Theorem 4.1 follows immediately from Proposition C.4 below, combined with Proposition C.3 to
bound ξ by δ.

Proposition C.4. Define ξ > 0 as in (14). Then for any threshold ξ
√
d < η < ∆/2, we have

P(L̂ = L(G)) ≥ 1− ξ2

η2
rd.

Proof. Define Ej−1 := {L̂1 = L1, . . . , L̂j−1 = Lj−1}. It follows that

P(L̂ = L(G)) = P(L̂1 = L1, . . . , L̂r = Lr) =

r∏
j=1

P(L̂j = Lj | Ej−1).

Clearly, if L̂1 = L1, . . . , L̂r = Lr then r̂ = r. By definition, we have σ2
`j > σ2 + ∆, i.e. ∆ is the

smallest “gap” between any source in a subgraph G[V −Aj−1] and the rest of the nodes.

Now let σ̂2 := min` σ̂
2
`0 and consider L1:

P(L̂1 = L1) = P(|σ̂2
`0 − σ̂2| ≤ η ∀` ∈ A1, |σ̂2

`0 − σ̂2| > η ∀` /∈ A1)

Now for any k, ` ∈ Lj ,

|σ̂2
`j − σ̂2

kj | ≤ |σ̂2
`j − σ2|+ |σ̂2

kj − σ2|,

and for any ` /∈ Lj and k ∈ Lj ,

|σ̂2
`j − σ̂2

kj | > ∆j − |σ2
`j − σ̂2

`j | − |σ̂2
kj − σ2

kj |.

Thus, with probability 1− dξ2/t2, we have

|σ̂2
`j − σ̂2

kj | ≤ 2t if k, ` ∈ Lj , and

|σ̂2
`j − σ̂2

kj | > ∆j − 2t if ` /∈ Lj and k ∈ Lj .

Now, as long as t < ∆/4, we have ∆j − 2t > 2t, which implies that η := 2t < ∆/2.

Finally, we have

P(L̂1 6= L1) ≤ ξ2

η2
d =⇒ P(L̂1 = L1) ≥ 1− ξ2

η2
d.

19



Recall that dj := |Lj |. Then by a similar argument

P(L̂2 = L2 | L̂1 = L1) ≥ 1− ξ2

η2
(d− d1).

Recalling Ej−1 := {L̂1 = L1, . . . , L̂j−1 = Lj−1}, we have just proved that P(L̂2 = L2 | E1) ≥
1− (d− d1)(ξ2/η2). A similar argument proves that P(L̂j = Lj | Ej−1) ≥ 1− (ξ2/η2)(d− dj−1).
Since η > ξ

√
d, the inequality

∏
j(1− xj) ≥ 1−

∑
j xj implies

P(L̂ = L(G)) =

r∏
j=1

P(L̂j = Lj | Ej−1)

=

r∏
j=1

(
1− ξ2

η2
(d− dj−1)

)
≥ 1−

r∑
j=1

ξ2

η2
(d− dj−1)

≥ 1− ξ2

η2
rd

as desired.

C.4 Technical lemmas

Lemma C.5.

|EXp − EY p| ≤ ‖X − Y ‖p
p−1∑
k=0

‖X‖kp‖Y ‖p−1−kp

Proof. Write EXp − EY p as a telescoping sum:

|EXp − EY p| = |‖X‖pp − ‖Y ‖pp| = |‖X‖p − ‖Y ‖p| ·
p−1∑
k=0

‖X‖kp‖Y ‖p−k−1p

≤ ‖X − Y ‖p ·
p−1∑
k=0

‖X‖kp‖Y ‖p−k−1p .

Lemma C.6. Fix p > 2 and δ > 0 and suppose ‖f‖p+δ, ‖g‖p+δ ≤ Bp+δ . Then

‖f − g‖p ≤ Cp,δ · ‖f − g‖
γp,δ
2 , Cp,δ = (2Bp+δ)

(p−2)(p+δ)
p(p+δ−2) , γp,δ =

2δ

p(p+ δ − 2)
.

The exponent γp,δ satisfies γp,δ ≤ 2/p < 1 and γp,δ → 2/p as δ → ∞, and the constant Cp,δ →
1− 2

p as δ →∞. Thus, if f − g ∈ L∞, then

‖f − g‖p . ‖f − g‖2/p2 .

Proof. Use log-convexity of Lp-norms with 2 = q < p < r = p+ δ.

Lemma C.7. Assume ‖f‖∞ ≤ B∞ <∞ and g ∈ L4. Then

EX(f(X)2 − g(X)2)2 ≤ ‖f(X)− g(X))‖44+

4B∞‖f(X)− g(X)‖33 + 4B2
∞‖f(X)− g(X)‖22.

(15)

If additionally g(X) ∈ L∞, then

EX(f(X)2 − g(X)2)2 . ‖f(X)− g(X)‖22. (16)
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Proof. Note that

(f(X)2 − g(X)2)2 = (g(X)− f(X))4 + 4f(X)(g(X)− f(X))3 + 4f(X)2(g(X)− f(X))2

≤ (g(X)− f(X))4 + 4|f(X)||g(X)− f(X)|3 + 4f(X)2(g(X)− f(X))2.

Thus

E(f(X)2 − g(X)2)2 ≤ E(g(X)− f(X))4+

4E
[
|f(X)||g(X)− f(X)|3

]
+ 4E

[
f(X)2(g(X)− f(X))2

]
≤ E(g(X)− f(X))4+

4B∞E|g(X)− f(X)|3 + 4B2
∞E(g(X)− f(X))2.

This proves the first inequality. The second follows from taking δ → ∞ in Lemma C.6 and using
‖f − g‖pp . ‖f − g‖22 for p = 3, 4.

D Comparison to CAM algorithm

In this section, we justify the claim in Example 5 that there exist infinitely many nonlinear functions
g for which the CAM algorithm returns an incorrect graph under the model (4). To show this, we
first construct a linear model on which CAM returns an incorrect ordering. Since CAM focuses on
nonlinear models, we then show that this extends to any sufficiently small nonlinear perturbation of
this model.

The linear model is 
X1 ∼ N (0, 1)

X2 = X1 + z2 z2 ∼ N (0, 1)

X3 = X1 +X2 + z3 z3 ∼ N (0, 1).

(17)

The graph is

X1 →X2

↘ ↓
X3

which corresponds to the adjacency matrix0 1 1
0 0 1
0 0 0

 .

The IncEdge step of the CAM algorithm (§5.2, [7]) is based on the following score function:

d∑
j=1

log
(
E var(Xj | pa(j))

)
.

The algorithm starts with the empty DAG (i.e. pa(j) = ∅ for all j) and proceeds by greedily adding
edges that decrease this score the most in each step. For example, in the first step, CAM searches for
the pair (Xi, Xj) that maximizes log var(Xj)− logE var(Xj |Xi), and adds the edge Xi → Xj to
the estimated DAG. The second proceeds similarly until the estimated order is determined. Thus, it
suffices to study the log-differences ω(j, i, S) := log var(Xj |XS)− logE var(Xj |XS∪i).

The following are straightforward to compute for the model (17):

var(X1) = 1 E var(X2|X1) = 1 E var(X1|X2) =
1

2

var(X2) = 2 E var(X3|X1) = 2 E var(X1|X3) =
3

2

var(X3) = 6 E var(X3|X2) =
1

3
E var(X2|X3) =

1

2
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Figure 4: The CAM algorithm does not recover the correct ordering under different nonlinear
functions and models. h(x) refers to model (19), g(x) refers to model (4) respectively.

Then
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Now, if X3 → X2 is chosen first, then the order is incorrect and we are done. Thus suppose CAM
instead chooses X2 → X3, then in the next step it would update the score for X1 → X3 to be

log
( E var(X3|X2)

E var(X3|X1, X2)

)
= log

(3/2

1

)
= log

3

2
< log

( E var(X1|X2)

E var(X1|X3, X2)

)
= log 3

Therefore, for the next edge, CAM would choose X3 → X1, which also leads to the wrong order.
Thus regardless of which edge is selected first, CAM will return the wrong order.

Thus, when CAM is applied to data generated from (17), it is guaranteed to return an incorrect
ordering. Although the model (17) is identifiable, it does not satisfy the identifiability condition for
CAM (Lemma 1, [7]), namely that the structural equation model is a nonlinear additive model. Thus,
we need to extend this example to an identifiable, nonlinear additive model.

Since this depends only on the scores ω(j, i, S), it suffices to construct a nonlinear model with similar
scores. For this, we consider a simple nonlinear extension of (17): Let g be an arbitrary bounded,
nonlinear function, and define gδ(u) := u+ δg(u). The nonlinear model is given by

X1 ∼ N (0, 1)

X2 = gδ(X1) + z2 z2 ∼ N (0, 1)

X3 = gδ(X1) + gδ(X2) + z3 z3 ∼ N (0, 1).

(18)

This model satisfies both our identifiability condition (Condition 2) and the identifiability condition
for CAM (Lemma 1, [7]).

We claim that for sufficiently small δ, the CAM algorithm will return the wrong ordering (see
Proposition D.1 below for a formal statement). It follows that the scores ω(j, i, S; δ) corresponding
to the model (18) can be made arbitrarily close to ω(j, i, S) = ω(j, i, S; 0), which implies that CAM
will return the wrong ordering for sufficiently small δ > 0.
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In Figure 4, we illustrate this empirically. In addition to the model (18), we also simulated from the
following model, which shows that this phenomenon is not peculiar to the construction above:

X1 ∼ N (0, 1)

X2 = X2
1 + z2 z2 ∼ N (0, 1)

X3 = 4X2
1 + h(X2) + z3 z3 ∼ N (0, 1).

(19)

In all eight examples, NPVAR perfectly recovers the ordering while CAM is guaranteed to return an
inconsistent order for sufficiently large n (i.e. once the scores are consistently estimated).
Proposition D.1. Let Eδ and varδ be taken with respect to model (18). Then for all i, j ∈ {1, 2, 3},
as δ → 0,

| varδ(Xi)− var0(Xi)| = o(1),

|Eδ varδ(Xi|Xj)− E0 var0(Xi|Xj)| = o(1).

and |Eδ varδ(X3|X1, X2)− E0 var0(X3|X1, X2)| = o(1).

Proof sketch of Proposition D.1. The proof is consequence of the fact that the differences are contin-
uous functions of δ. We sketch the proof for i = 2; the remaining cases are similar.

We have

varδ(X2) = varδ(g(X1)) + varδ(ε)

var0(X2) = var0(X1) + var0(ε)

Let ϕ(t) be the standard normal density. We only need to analyze and compare var0(X1) −
varδ(g(X1)) = var0(X1)− var0(g(X1)) in two parts:

ż

(X2
1 − g(X1)2)ϕ(X1)dX1

(

ż

X1ϕ(X1)dX1)2 − (

ż

g(X1)ϕ(X1)dX1)2.

Since |X1 − g(X1)| ≤ δ,

|
ż

(X2
1 − g(X1)2)ϕ(X1)dX1| ≤ δ

ż

|X1 + g(X1)|ϕ(X1)dX1 ≤ δ
ż

2|X1|ϕ(X1)dX1 + δ2 = Cδ + δ2

|
ż

g(X1)ϕ(X1)dX1| = |
ż

(X1 − g(X1))ϕ(X1)dX1| ≤ δ
ż

ϕ(X1)dX1 = δ

|
ż

(X1 + g(X1)ϕ(X1))dX1| = |Eg(X1)| ≤ δ.

Thus
|(

ż

X1ϕ(X1)dX1)2 − (

ż

g(X1)ϕ(X1)dX1)2| ≤ δ2,

so that
| varδ(X2)− var0(X2)| = o(1)

as claimed.

E Experiment details

In this appendix we outline the details of our experiments, as well as additional simulations.

E.1 Experiment settings

For graphs, we used

• Markov chain (MC). Graph where there is one edge from Xi−1 to Xi for all nodes i =
2, . . . , d.
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• Erdős Rényi (ER). Random graphs whose edges are added independently with specified
expected number of edges.

• Scale-free networks (SF). Networks simulated according to the Barabasi-Albert model.

For models, we refer to the nonlinear functions in SEM. We specify the nonlinear functions in
Xj = fj(Xpa(j))+zj for all j = 1, 2, . . . , d, where zj

iid∼ N (0, σ2) with variance σ2 ∈ {0.2, 0.5, 0.8}

• Additive sine model (SIN): fj(Xpa(j)) =
∑
k∈pa(j) fjk(Xk) where fjk(Xk) = sin(Xk).

• Additive Gaussian process (AGP): fj(Xpa(j)) =
∑
k∈pa(j) fjk(Xk) where fjk is a draw

from Gaussian process with RBF kernel with length-scale one.
• Non-additive Gaussian process (NGP): fj is a draw from Gaussian process with RBF kernel

with length-scale one.
• Generalized Linear Model (GLM): This is a special case with non-additive model and

non-additive noise. We specify the model P(Xj = 1) = fj(Xpa(j)) by a parameter
p ∈ {0.1, 0.3}. Given p, if j is a source node, P(Xj = 1) = p. For the Markov chain model
we define:

fj(Xpa(j)) =

{
p Xk = 1

1− p Xk = 0

or vice versa.

We generated graphs from each of the above models with {d, 4d} edges each. These are denoted
by the shorthand XX-YYY-k, where XX denotes the graph type, YYY denotes the model, and k
indicates the graphs have kd edges on average. For example, ER-SIN-1 indicates an ER graph with d
(expected) edges under the additive sine model. SF-NGP-4 indicates an SF graph with 4d (expected)
edges under a non-additive Gaussian process. Note that there is no difference between additive or
non-additive GP for Markov chains, so the results for MC-NGP-k are omitted from the Figures in
Appendix E.5.

Based on these models, we generated random datasets with n samples. For each simulation run,
we generated n ∈ {100, 200, 500, 750, 1000} samples for graphs with d ∈ {5, 10, 20, 40, 50, 60, 70}
nodes.

E.2 Implementation and baselines

Code implementing NPVAR can be found at https://github.com/MingGao97/NPVAR. We im-
plemented NPVAR (Algorithm 2) with generalized additive models (GAMs) as the nonparametric
estimator for f̂`j . We used the gam function in the R package mgcv with P-splines bs=’ps’ and the
default smoothing parameter sp=0.6. In all our implementations, including our own for Algorithm 2,
we used default parameters in order to avoid skewing the results in favour of any particular algorithm
as a result of hyperparameter tuning.

We compared our method with following approaches as baselines:

• Regression with subsequent independence test (RESIT) identifies and disregards a sink
node at each step via independence testing [43]. The implementation is available at
http://people.tuebingen.mpg.de/jpeters/onlineCodeANM.zip. Uses HSIC test
for independence testing with alpha=0.05 and gam for nonparametric regression.

• Causal additive models (CAM) estimates the topological order by greedy search over
edges after a preliminary neighborhood selection [7]. The implementation is available
at https://cran.r-project.org/src/contrib/Archive/CAM/. By default, CAM
applies an extra pre-processing step called preliminary neighborhood search (PNS). Uses
gam to compute the scores and for pruning, and mboost for preliminary neighborhood
search. The R implementation of CAM does not use the default parameters for gam or
mboost, and instead optimizes these parameters at runtime.

• NOTEARS uses an algebraic characterization of DAGs for score-based structure learning of
nonparametric models via partial derivatives [61, 62]. The implementation is available at
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https://github.com/xunzheng/notears. We used neural networks for the nonlineari-
ties with a single hidden layer of 10 neurons. The training parameters are lambda1=0.01,
lambda2=0.01 and the threshold for adjacency matrix is w_threshold=0.3.

• Greedy equivalence search with generalized scores (GSGES) uses gen-
eralized scores for greedy search without assuming model class [20].
The implementation is available at https://github.com/Biwei-Huang/
Generalized-Score-Functions-for-Causal-Discovery/. We used cross-
validation parameters parameters.kfold = 10 and parameters.lambda = 0.01.

• Equal variance (EqVar) algorithm identifies source node by minimizing conditional variance
in linear SEM [8]. The implementation is available at https://github.com/WY-Chen/
EqVarDAG. The original EqVar algorithm estimates the error variances in a linear SEM
via the covariance matrix Σ = EXXT , and then uses linear regression (e.g. best subset
selection) to learn the structure of the DAG. We adapted this algorithm to the nonlinear
setting in the obivous way by using GAMs (instead of subset selection) for variable selection.
The use of the covariance matrix to estimate the order remains the same.

• PC algorithm and greedy equivalence search (GES) are standard baselines for structure learn-
ing [10, 52]. The implementation is available from R package pcalg. For PC algorithm, use
correlation matrix as sufficient statistic. Independence test is implemented by gaussCItest
with significance level alpha=0.01. For GES, set the score to be GaussL0penObsScore
with lambda as log n/2, which corresponds to the BIC score.

The experiments were conducted on an Intel E5-2680v4 2.4GHz CPU with 64 GB memory.

E.3 Metrics

We evaluated the performance of each algorithm with the following two metrics:

• P(correct order): The percentage of runs in which the algorithm gives a correct topological
ordering, over N runs. This metric is only sensible for algorithms that first estimate an
ordering or return an adjacency matrix which does not contain undirected edges, including
RESIT, CAM, EqVar and NOTEARS.

• Structural Hamming distance (SHD): A standard benchmark in the structure learning lit-
erature that counts the total number of edge additions, deletions, and reversals needed to
convert the estimated graph into the true graph.

Since there may be multiple topological orderings of a DAG, in our evaluations of order recovery,
we check whether or not the order returned is any of the possible valid orderings. For PC, GES, and
GSGES, they all return a CPDAG that may contain undirected edges, in which case we evaluate
them favourably by assuming correct orientation for undirected edges whenever possible. Since
CAM, RESIT, EqVar and NPVAR each first estimate a topological ordering then estimate a DAG.
To estimate a DAG from an ordering, we apply the same pruning step to each algorithm for a fair
comparison, which is adapted from [7]. Specifically, given an estimated ordering, we run a gam
regression for each node on its ancestors, then determine the parents of the node by the p-values with
significance level cutoff=0.001 for estimating the DAG.

E.4 Timing

For completeness, runtime comparisons are reported in Tables 1 and 2. Algorithms based on linear
models such as EqVar, PC, and GES are by far the fastest. These algorithms are also the most highly
optimized. The slowest algorithms are GSGES and RESIT. Timing comparisons against CAM are
are difficult to interpret since by default, CAM first performs preliminary neighbourhood search,
which can easily be applied to any of the other algorithms tested. The dramatic difference with
and without this pre-processing step by comparing Tables 1 and 2: For d = 40, with this extra
step CAM takes just over 90 seconds, whereas without it, on the same data, it takes over 8.5 hours.
For comparison, NPVAR takes around two minutes (i.e. without pre-processing or neighbourhood
search).
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Algorithm d n Runtime (s)

EqVar 20 1000 0.0017± 0.0003
PC 20 1000 0.056± 0.016
GES 20 1000 0.060± 0.034
NPVAR 20 1000 10.76± 0.23
NOTEARS 20 1000 31.46± 8.79
CAM (w/ PNS) 20 1000 40.56± 1.29
CAM (w/o PNS) 20 1000 559.01± 9.49
RESIT 20 1000 652.15± 7.26
GSGES 20 1000 3216.00± 95.0

Table 1: Runtime comparisons for d = 20. Timing for CAM is presented with and without preliminary
neighbourhood selection (PNS), which is a pre-processing step that can be applied to any algorithm.
In our experiments, only CAM used PNS.

Algorithm d n Runtime (s)

EqVar 40 1000 0.0043± 0.0003
GES 40 1000 0.12± 0.0052
PC 40 1000 0.019± 0.030
NOTEARS 40 1000 76.05± 19.16
CAM (w/ PNS) 40 1000 95.59± 6.33
NPVAR 40 1000 118.33± 2.25
CAM (w/o PNS) 40 1000 31644.56± 1329.31

Table 2: Runtime comparisons for d = 40. Timing for CAM is presented with and without preliminary
neighbourhood selection (PNS), which is a pre-processing step that can be applied to any algorithm.
In our experiments, only CAM used PNS.

E.5 Additional experiments

Here we collect the results of our additional experiments. Since the settings MC-AGP-k and MC-
NGP-k are equivalent (i.e. since there is only parent for each node), the plots for MC-NGP-k are
omitted. Some algorithms might be skipped due to high computational cost or numerical issue.

• Figure 5: SHD vs. n with d = 5 fixed, across all graphs and models tested.
• Figure 6: SHD vs. n with d = 10 fixed, across all graphs and models tested.
• Figure 7: SHD vs. n with d = 20 fixed, across all graphs and models tested.
• Figure 8: SHD vs. n with d = 40 fixed, across all graphs and models tested with GSGES

and RESIT skipped (due to high computational cost).
• Figure 9: SHD vs. n with d = 50 fixed, across all graphs and models tested with GSGES,

RESIT and NOTEARS skipped (due to high computational cost).
• Figure 10: SHD vs. n with d = 60 fixed, across all graphs and models tested with GSGES,

RESIT and NOTEARS skipped (due to high computational cost).
• Figure 11: SHD vs. n with d = 70 fixed, across all graphs and models tested with GSGES,

RESIT and NOTEARS skipped (due to high computational cost).
• Figure 12: SHD vs. n with d ranging from 5 to 70 on GLM with CAM and RESIT skipped

(due to numerical issues).
• Figure 13: SHD vs. d with n = 500 fixed, across all graphs and models tested.
• Figure 14: SHD vs. d with n = 1000 fixed, across all graphs and models tested.
• Figure 15: Ordering recovery vs. n with d = 5 fixed, across all graphs and models tested.
• Figure 16: Ordering recovery vs. n with d = 10 fixed, across all graphs and models tested.
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• Figure 17: Ordering recovery vs. n with d = 20 fixed, across all graphs and models tested.
• Figure 18: Ordering recovery vs. n with d = 40 fixed, across all graphs and models tested

with RESIT skipped (due to high computational cost).
• Figure 19: Ordering recovery vs. n with d = 50 fixed, across all graphs and models tested

with RESIT and NOTEARS skipped (due to high computational cost).
• Figure 20: Ordering recovery vs. n with d = 60 fixed, across all graphs and models tested

with RESIT and NOTEARS skipped (due to high computational cost).
• Figure 21: Ordering recovery vs. n with d = 70 fixed, across all graphs and models tested

with RESIT and NOTEARS skipped (due to high computational cost).
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Figure 5: SHD vs n for fixed d = 5.
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Figure 6: SHD vs n for fixed d = 10.
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Figure 7: SHD vs n for fixed d = 20.
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Figure 8: SHD vs n for fixed d = 40.
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Figure 9: SHD vs n for fixed d = 50.
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Figure 10: SHD vs n for fixed d = 60.
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Figure 11: SHD vs n for fixed d = 70.
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Figure 12: SHD vs n for different d ranging from 5 to 70 on GLM
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Figure 13: SHD vs d for fixed n = 500.
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Figure 14: SHD vs d for fixed n = 1000.
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Figure 15: Ordering recovery vs n for fixed d = 5.
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Figure 16: Ordering recovery vs n for fixed d = 10.
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Figure 17: Ordering recovery vs n for fixed d = 20.
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Figure 18: Ordering recovery vs n for fixed d = 40.
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Figure 19: Ordering recovery vs n for fixed d = 50.
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Figure 20: Ordering recovery vs n for fixed d = 60.
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Figure 21: Ordering recovery vs n for fixed d = 70.
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