
We thank all reviewers for their detailed feedback. We will be sure to address all questions and incorporate all1

suggestions from the reviewers in the final version of the paper. Note: Reference numbers below refer to the main2

submission, not the supplementary version. To reiterate and clarify, our contributions include the following:3

1. We reduce contextual linear bandits with infinite action sets to a regression problem with an algorithm that is both4

practical and efficient.5

2. We optimally adapt to an unknown level of misspecification, which is a non-trivial open problem [27]. Recall6

that previous works in contextual bandits required oracle knowledge of the misspecification level in order to tune the7

algorithm’s parameters (e.g., the upper confidence bound in LinUCB). Let us emphasize that neither doubling tricks8

nor other methods were known to circumvent this requirement. The solution for static action sets heavily relies on9

elimination, and does not generalize to the contextual case [27].10

3. We adapt to a compelling notion of sparsity defined by an average effective dimension.11

4. We provide a novel view of corralling bandits and give an improved master algorithm.12

Questions common to multiple reviewers13

- Optimization problem: Several valid questions were raised regarding solving the optimization problem in Def. 7 and14

the associated computational cost. This is a convex optimization problem over a convex set with easily computable15

gradients. Finding an ε-approximation takes O(Poly(d) log(1/ε)) time. (see “Relatively-Smooth Convex Optimization16

by First-Order Methods, and Applications” (Hu, Freund, Nesterov), Theorem 3.1). See also the optimal design example17

in Sect. 2.2 therein which, up to a linear term and a benign term in the Hessian, is equivalent to our problem. At every18

inner iteration, the solver needs to find argmaxa∈At
〈a, µ〉 + β||a||2H−1 , where H−1 can be updated in O(d2) time,19

while finding the argmax is the same problem that the standard LinUCB algorithm is solving. We will add a formal20

proof and discussion along these lines to the paper.21

- Experiments: We agree that experiments on real-world or synthetic data would be a bonus here, but we believe that our22

strong theoretical results stand for themselves.23

Reviewer 124

- Foster and Rakhlin show ... can you get min(K, d) ? The effective dimension we use in Theorem 13 (L. 249) is upper25

bounded by K, since the linear subspace spanned by the feature vectors of all arms trivially includes the action set. In26

fact, when K is equal to the effective dimension, then the logdet barrier and the logbarrier coincide.27

Reviewer 228

- On logdet-barrier being a proper distribution: This holds by definition, because the optimization problem in Def. 7 is29

over the probability simplex.30

- Adapting SquareCB to the misspecification setting is non-trivial: Briefly, the optimal setting for the parameter γ in31

SquareCB (see Theorem 5/6 in [21]) depends on ε. Any choice for γ that ignores ε leads to suboptimal regret (e.g.,32

using the optimal choice for ε = 0 leads to regret scaling as ε2T 3/2 when ε 6= 0). Hence, the purpose of the master33

algorithm is to learn a near-optimal choice for γ on-the-fly. See also Item 2 at the top of this page.34

- On assumptions in Theorem 10: Theorem 10 is stated and proven for general function classes f ∈ F , f : X → Rd,35

we don’t see any inconsistency with LL. 486-487 (note that the θ?t notation in this proof is just shorthand for f?(xt)).36

- Line 487, how to obtain the 2nd eq. from the 1st one: This follows by adding and subtracting terms, and then applying37

the triangle inequality to term differences.38

Reviewer 339

- This is a little different ... the small deviation case of [22]: These results are not comparable because their work only40

considers fixed action sets. We are not aware of a suitable definition of “small deviation” for the contextual case with41

changing action sets. We agree that it is an interesting direction for future research.42

- Regret bound still linear in T ... : There is a tight lower bound (see, e.g., [27]) showing that the ε
√
dT term is generally43

unavoidable, even if ε is known beforehand. Nonetheless, notice that our bounds rely on the empirical quantity εT ≤ ε44

and, in practice, one may hope for an εT of order T−α, for some positive α, leading to no-regret results.45

Reviewer 446

- The statement of Theorem 12 contains an additional
√
d ... seems to be a typo: Indeed, thanks for spotting this!47

- On Assumption 1 in other settings other than linear, e.g., with kernels: In a kernelized setting, one could use kernelized48

Online Gradient Descent as a regression oracle, which is dimension-independent (scaling instead with the RKHS norm)49

but has a T
1
2 regret rather than d log(T ). On the other hand, one can always rely on the standard kernel online ridge50

regression regret bound, that replaces bound d log(T ) by the log determinant of the kernel Gram matrix of the data, and51

then rely on the speed of eigenvalue decay of this matrix.52

- Misspecification in the case of universal kernels such as Gaussian: With sufficiently small bandwidth, a universal53

kernel can be realizable, i.e. ε = 0. Yet, choosing small bandwidth comes at a cost of increasing sample complexity,54

and the optimal results for a particular problem instance may be obtained by trading off kernel bandwidth versus55

misspecification.56


