
A Tree-LSTM Encoding

As mentioned in Sec. 3, a Tree-LSTM [35] model is employed to accomplish the merge process in
Composer. Similar to LSTM, Tree-LSTM uses gate mechanisms to control the flow of information
from child nodes to parent nodes. Meanwhile, it maintains a hidden state and a cell state analogously.
Denoting rli as the node representation of i-th node at layer l, it consists of the hidden state vector hli
and the cell state vector cli. For any parent node, its node representation rli (l > 1) can be obtained by
merging its left child node representation rl−1i = (hl−1i , cl−1i ) and right child node representation
rl−1i+1 = (hl−1i+1, c
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where Wtree ∈ R5Dh×2Dh is a learnable matrix, btree ∈ R5Dh is a learnable vector, σ and tanh
are activation functions, and � represents the element-wise product. As for leaf nodes, their repre-
sentations rli (l = 1) can be obtained by applying leaf transformation on the embeddings of their
corresponding elements wt

i (e.g. $x, after) as:
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)
+ bleaf, (7)

where Wleaf ∈ R2Dh×Dh is a learnable matrix, bleaf ∈ R2Dh is a learnable vector, wt
i is the i-th

element of wt, and Emb(wt
i) ∈ RDh represents the word embedding if wt

i is a word, otherwise the
key vector of the source domain variable wt

i .

B Details about Policy

In the following, we will explain the high-level policy πθ and the low-level policy πϕ in detail. For
the sake of clarity, we simplify st, Gt and at as s, G and a, respectively.

High-level policy Given s, the high-level agent picks G according to the high-level policy πθ(G | s)
parameterized by θ. As mentioned in Sec. 3, G is obtained by applying in turn the merge and check
process. Denoting the decisions made in the merge and check process at layer l asMl and Cl, they
are governed by parameters θM and θC , respectively. A high-level action G is indeed a sequence
ofM and C as (M1C1 · · ·MLCL), where L represents the highest layer. Therefore, πθ(G | s) is
expanded as:

πθ (G = (M1C1 · · ·MLCL) | s) =
L∏
l=1

πθM (Ml | s,M<l, C<l)πθC (Cl | s,M<l+1, C<l) , (8)

where πθM is implemented by a Tree-LSTM with a learnable query vector q (mentioned in Sec. 3.2).
Assuming there are K parent node candidates for layer l, Ml is a one-hot vector drawn from a
K-dimensional categorical distribution πθM (Ml | s,M<l, C<l) with the weight (p1, · · · , pK). For
the k-th parent node candidate, represented by rl+1

k , its selection probability pk is computed by
normalizing over all merging scores (mentioned in Sec. 3.2) as:

pk =
exp
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〉)∑K
k=1 exp
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〉) . (9)

As for πθC (Cl | s,M<l+1, C<l) in the check process, it follows a Bernoulli distribution with expecta-
tion plc = σ(Wcr

l+1
k + bc), where θC = {Wc, bc} are learned parameters. plc is indeed the trigger

probability pc mentioned in Sec. 3.2.
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Table 4: The dataset splits for all tasks.
Dataset SCAN SCAN-ext MiniSCAN

Simple Add Jump Around Right Length MCD (1/2/3) Extend Limit

Train Size 16728 14670 15225 16990 8365 20506 14
Test Size 4182 7706 4476 3920 1045 4000 8

Low-level policy When the high-level action G is determined, the low-level agent is triggered to
output a according to the low-level policy πϕ(a | G, s). The policy πϕ(a | G, s) is implemented by an
LSTM-based sequence to sequence network with an attention mechanism, i.e.,

πϕ(a = (a1 · · · aM ) | G, s) =
M∏
m=1

πϕ (am | G, s, a<m) , (10)

where M is the number of decoding steps and am represents an action word (e.g. JUMP), or a
destination variable (e.g. $Y) which will be replaced by its corresponding constant DstExp stored in
Memory. At each decoding step, am is sampled from a categorical distribution, whose sample space
consists of all action words and destination variables with non-empty value slots.

C Chain Rule Derivation

Looking back to Eq. 2, the parameters θ and ϕ can be optimized by ascending the following gradient:

∇θ,ϕJ (θ, ϕ) = Eτ∼πθ,ϕ R(τ)∇θ,ϕ log πθ,ϕ (τ) , (11)
where the policy πθ,ϕ can be further decomposed into a sequence of actions and state transitions:

πθ , ϕ(τ) = p(s1G1a1 · · · sTGTaT )

= p(s1)

T∏
t=1

πθ,ϕ(a
t,Gt | st) p(st+1 | st,Gt,at).

(12)

Consider that the low-level action at is conditioned on the high-level action Gt, which means that
πθ,ϕ(a

t,Gt | st) = πθ(Gt | st)πϕ(at | Gt, st), and thus πθ , ϕ(τ) can be expanded as:

πθ , ϕ(τ) = p(s1)

T∏
t=1

πθ(Gt|st)πϕ(at|Gt, st)p(st+1|st,Gt,at). (13)

Since the state at step t+ 1 is fully determined by the state and actions at step t, not dependent on the
policy parameters θ and ϕ, the gradients of p(st+1 | st,Gt,at) and p(s1) with respect to θ and ϕ are
0. Therefore, ∇θ,ϕJ (θ, ϕ) can be expanded as:

∇θ,ϕJ (θ, ϕ) = Eτ∼πθ,ϕ R(τ)∇θ,ϕ log πθ,ϕ(τ),

= Eτ∼πθ,ϕ R(τ)∇θ,ϕ
T∑
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[
log πθ

(
Gt|st

)
+ log πϕ

(
at|Gt, st

)]
,
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(14)

D Data Splits

As for data splits, we split each dataset into the train set and the test set for all tasks according to
previous works. More details about train and test sizes can be seen in Tab. 4. More specifically,
except for the task Limit, we further randomly take 20% training data as the development set to tune
the hyperparameters, with the rest being the train set.
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